Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW. 2006. Stromatolite reef from the early Archaean era of Australia. Nature 441:714–18 [Google Scholar]
  2. Andrusevich VE, Engel MH, Zumberge JE. 2000. Effects of paleolatitude on the stable carbon isotope composition of crude oils. Geology 28:847–50 [Google Scholar]
  3. Aquino Neto FR, Restle A, Connan J, Albrecht P, Ourisson G. 1982. Novel tricyclic terpanes (C19, C20) in sediments and petroleums. Tetrahedron Lett. 23:2027–30 [Google Scholar]
  4. Aquino Neto FR, Trendel JM, Restle A, Connan J, Albrecht P. 1983. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. Advances in Organic Geochemistry 1981: Proceedings of the 10th International Meeting on Organic Geochemistry M Bjoroy 659–67 Chichester, UK: Wiley [Google Scholar]
  5. Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC. 2007. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316:280–85 [Google Scholar]
  6. Bacia K, Schwille P, Kurzchalia T. 2005. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. PNAS 102:3272–77 [Google Scholar]
  7. Baker PRS, Armando AM, Campbell JL, Quehenberger O, Dennis EA. 2014. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. J. Lipid Res. 55:2432–42 [Google Scholar]
  8. Bednarczyk A, Hernandez TC, Schaeffer P, Adam P, Talbot HM. et al. 2005. 32,35-Anhydrobacterioho-panetetrol: an unusual bacteriohopanepolyol widespread in recent and past environments. Org. Geochem. 36:673–77 [Google Scholar]
  9. Bell CD. 2015. Between a rock and a hard place: applications of the “molecular clock” in systematic biology. Syst. Bot. 40:6–13 [Google Scholar]
  10. Bertazzo S, Maidment SCR, Kallepitis C, Fearn S, Stevens MM, Xie HN. 2015. Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat. Commun. 6:7352 [Google Scholar]
  11. Blain JC, Szostak JW. 2014. Progress toward synthetic cells. Annu. Rev. Biochem. 83:615–40 [Google Scholar]
  12. Blumenberg M, Berndmeyer C, Moros M, Muschalla M, Schmale O, Thiel V. 2013. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosciences 10:2725–35 [Google Scholar]
  13. Blumenberg M, Kruger M, Nauhaus K, Talbot HM, Oppermann BI. et al. 2006. Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ. Microbiol. 8:1220–27 [Google Scholar]
  14. Bradley AS, Pearson A, Sáenz JP, Marx CJ. 2010. Adenosylhopane: the first intermediate in hopanoid side chain biosynthesis. Org. Geochem. 41:1075–81 [Google Scholar]
  15. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ. et al. 2002. Questioning the evidence for Earth's oldest fossils. Nature 416:76–81 [Google Scholar]
  16. Breslow DK, Weissman JS. 2010. Membranes in balance: mechanisms of sphingolipid homeostasis. Mol. Cell 40:267–79 [Google Scholar]
  17. Brocks JJ. 2011. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination?. Geochim. Cosmochim. Acta 75:3196–213 [Google Scholar]
  18. Brocks JJ, Banfield J. 2009. Unravelling ancient microbial history with community proteogenomics and lipid geochemistry. Nat. Rev. Microbiol. 7:601–9 [Google Scholar]
  19. Brocks JJ, Logan GA, Buick R, Summons RE. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–36 [Google Scholar]
  20. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–70 [Google Scholar]
  21. Brocks JJ, Summons RE. 2003. Sedimentary hydrocarbons, biomarkers for early life. Treatise on Geochemistry, Vol. 8: Biogeochemistry WH Schlesinger 63–115 Oxford, UK: Pergamon, 1st ed.. [Google Scholar]
  22. Carroll SB. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36 [Google Scholar]
  23. Cooke MP, Talbot HM, Wagner T. 2008. Tracking soil organic carbon transport to continental margin sediments using soil-specific hopanoid biomarkers: a case study from the Congo fan (ODP site 1075). Org. Geochem. 39:965–71 [Google Scholar]
  24. Crosby CH, Bailey JV, Sharma M. 2014. Fossil evidence of iron-oxidizing chemolithotrophy linked to phosphogenesis in the wake of the Great Oxidation Event. Geology 42:1015–18 [Google Scholar]
  25. Cunningham JA, Thomas CW, Bengtson S, Marone F, Stampanoni M. et al. 2012. Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Proc. R. Soc. B 279:1857–64 [Google Scholar]
  26. Cybulski LE, Ballering J, Moussatova A, Inda ME, Vazquez DB. et al. 2015. Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. PNAS 112:6353–58 [Google Scholar]
  27. David LA, Alm EJ. 2011. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 469:93–96 [Google Scholar]
  28. Doughty DM, Coleman ML, Hunter RC, Sessions AL, Summons RE, Newman DK. 2011. The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1. PNAS 108:E1045–51 [Google Scholar]
  29. Doughty DM, Dieterle M, Sessions AL, Fischer WW, Newman DK. 2014. Probing the subcellular localization of hopanoid lipids in bacteria using NanoSIMS. PLOS ONE 9:e84455 [Google Scholar]
  30. Doughty DM, Hunter RC, Summons RE, Newman DK. 2009. 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implications. Geobiology 7:524–32 [Google Scholar]
  31. Eickhoff M, Birgel D, Talbot HM, Peckmann J, Kappler A. 2013. Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE-1. Geobiology 11:268–78 [Google Scholar]
  32. Elvert M, Niemann H. 2008. Occurrence of unusual steroids and hopanoids derived from aerobic methanotrophs at an active marine mud volcano. Org. Geochem. 39:167–77 [Google Scholar]
  33. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH. et al. 2009. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50:S9–14 [Google Scholar]
  34. Farrimond P, Talbot HM, Watson DF, Schulz LK, Wilhelms A. 2004. Methylhopanoids: molecular indicators of ancient bacteria and a petroleum correlation tool. Geochim. Cosmochim. Acta 68:3873–82 [Google Scholar]
  35. Fischer WW, Fike DA, Johnson JE, Raub TD, Guan YB. et al. 2014. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. PNAS 111:5468–73 [Google Scholar]
  36. Fischer WW, Summons RE, Pearson A. 2005. Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology 3:33–40 [Google Scholar]
  37. Förster HJ, Biemann K, Haigh WG, Tattrie NH, Colvin JR. 1973. The structure of novel C35 pentacyclic terpenes from Acetobacter xylinum. Biochem. J. 135:133–43 [Google Scholar]
  38. Freeman KH, Hayes JM, Trendel JM, Albrecht P. 1990. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254–56 [Google Scholar]
  39. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA. et al. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. PNAS 112:5915–20Articulates criteria for assessing biomarker syngenicity in Archean rocks. [Google Scholar]
  40. Frickey T, Kannenberg E. 2009. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer. Environ. Microbiol. 11:1224–41 [Google Scholar]
  41. Frigaard NU, Maresca JA, Yunker CE, Jones AD, Bryant DA. 2004. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J. Bacteriol. 186:5210–20 [Google Scholar]
  42. Hancock JF. 2006. Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell Biol. 7:456–62 [Google Scholar]
  43. Härtner T, Straub KL, Kannenberg E. 2005. Occurrence of hopanoid lipids in anaerobic Geobacter species. FEMS Microbiol. Lett. 243:59–64 [Google Scholar]
  44. Hays LE, Grice K, Foster CB, Summons RE. 2012. Biomarker and isotopic trends in a Permian-Triassic sedimentary section at Kap Stosch, Greenland. Org. Geochem. 43:67–82 [Google Scholar]
  45. Higgins MB, Robinson RS, Husson JM, Carter SJ, Pearson A. 2012. Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+. PNAS 109:2269–74 [Google Scholar]
  46. Jenkyns HC. 2010. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11:Q03004 [Google Scholar]
  47. Kalisky T, Blainey P, Quake SR. 2011. Genomic analysis at the single-cell level. Annu. Rev. Genet. 45:431–45 [Google Scholar]
  48. Kannenberg E, Blume A, McElhaney RN, Poralla K. 1983. Monolayer and calorimetric studies of phosphatidylcholines containing branched chain fatty acids and of their interactions with cholesterol and with a bacterial hopanoid in model membranes. Biochim. Biophys. Acta 733:111–16 [Google Scholar]
  49. Kharbush JJ, Ugalde JA, Hogle SL, Allen EE, Aluwihare LI. 2013. Composite bacterial hopanoids and their microbial producers across oxygen gradients in the water column of the California current. Appl. Environ. Microbiol. 79:7491–501 [Google Scholar]
  50. Kiser PD, Golczak M, Maeda A, Palczewski K. 2012. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim. Biophys. Acta 1821:137–51 [Google Scholar]
  51. Kleemann G, Alskog G, Berry AM, Hussdanell K. 1994. Lipid composition and nitrogenase activity of symbiotic Frankia (Alnus incana) in response to different oxygen concentrations. Protoplasma 183:107–15 [Google Scholar]
  52. Knani M, Corpe WA, Rohmer M. 1994. Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMS) and from green plant surfaces. Microbiology 140:2755–59 [Google Scholar]
  53. Knoll AH, Summons RE, Waldbauer JR, Zumberge JE. 2007. The geological succession of primary producers in the oceans. Evolution of Primary Producers in the Sea PG Falkowski, AH Knoll 133–63 Amsterdam: Elsevier [Google Scholar]
  54. Kulkarni G, Busset N, Molinaro A, Gargani D, Chaintreuil C. et al. 2015. Specific hopanoid classes differentially affect free-living and symbiotic states of Bradyrhizobium diazoefficiens. mBio 6:e01251–15 [Google Scholar]
  55. Kulkarni G, Wu CH, Newman DK. 2013. The general stress response factor EcfG regulates expression of the C-2 hopanoid methylase HpnP in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 195:2490–98 [Google Scholar]
  56. Kunin V, Goldovsky L, Darzentas N, Ouzounis CA. 2005. The net of life: reconstructing the microbial phylogenetic network. Genome Res. 15:954–59 [Google Scholar]
  57. Kuypers MMM, van Breugel Y, Schouten S, Erba E, Sinninghe Damsté JS. 2004. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32:853–56 [Google Scholar]
  58. Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50 [Google Scholar]
  59. Lombard J, Lopez-Garcia P, Moreira D. 2012. The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10:507–15 [Google Scholar]
  60. Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP. et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–21 [Google Scholar]
  61. Margheri MC, Allotta G. 1993. Homoacetic fermentation in the cyanobacterium Nostoc sp. strain Cc from Cycas circinalis. FEMS Microbiol. Lett. 111:213–17 [Google Scholar]
  62. Mercier R, Dominguez-Cuevas P, Errington J. 2012. Crucial role for membrane fluidity in proliferation of primitive cells. Cell Rep. 1:417–23 [Google Scholar]
  63. Miller WL, Auchus RJ. 2011. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32:81–151 [Google Scholar]
  64. Moldowan JM, Seifert WK, Gallegos EJ. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull. 69:1255–68 [Google Scholar]
  65. Monteiro FM, Pancost RD, Ridgwell A, Donnadieu Y. 2012. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): model-data comparison. Paleoceanography 27:PA4209 [Google Scholar]
  66. Nalin R, Putra SR, Domenach AM, Rohmer M, Gourbiere F, Berry AM. 2000. High hopanoid/total lipids ratio in Frankia mycelia is not related to the nitrogen status. Microbiology 146:3013–19 [Google Scholar]
  67. Neubauer C, Dalleska NF, Cowley ES, Shikuma NJ, Wu CH. et al. 2015. Lipid remodeling in Rhodopseudomonas palustris TIE-1 upon loss of hopanoids and hopanoid methylation. Geobiology 13:443–53 [Google Scholar]
  68. Noble R, Alexander R, Kagi RI. 1985. The occurrence of bisnorhopane, trisnorhopane and 25-norhopanes as free hydrocarbons in some Australian shales. Org. Geochem. 8:171–76 [Google Scholar]
  69. Ottesen EA, Hong JW, Quake SR, Leadbetter JR. 2006. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–67 [Google Scholar]
  70. Ourisson G, Albrecht P. 1992. Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth?. Acc. Chem. Res. 25:398–402Early review of hopanoid discovery and distribution patterns in the rock record. [Google Scholar]
  71. Ourisson G, Rohmer M. 1992. Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids. Acc. Chem. Res. 25:403–08 [Google Scholar]
  72. Pace NR. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734–40 [Google Scholar]
  73. Pais FSM, Ruy PD, Oliveira G, Coimbra RS. 2014. Assessing the efficiency of multiple sequence alignment programs. Algorithms Mol. Biol. 9:4 [Google Scholar]
  74. Pawlowska MM, Butterfield NJ, Brocks JJ. 2013. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41:103–6 [Google Scholar]
  75. Pearson A. 2014. Lipidomics for geochemistry. Treatise on Geochemistry 12 Organic Geochemistry PG Falkowski, KH Freeman 291–336 Oxford, UK: Elsevier, 2nd ed.. [Google Scholar]
  76. Pearson A, Leavitt WD, Sáenz JP, Summons RE, Tam MCM, Close HG. 2009. Diversity of hopanoids and squalene-hopene cyclases across a tropical land-sea gradient. Environ. Microbiol. 11:1208–23 [Google Scholar]
  77. Pearson A, Page SRF, Jorgenson TL, Fischer WW, Higgins MB. 2007. Novel hopanoid cyclases from the environment. Environ. Microbiol. 9:2175–88 [Google Scholar]
  78. Pearson A, Rusch DB. 2009. Distribution of microbial terpenoid lipid cyclases in the global ocean metagenome. ISME J. 3:352–63 [Google Scholar]
  79. Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J. et al. 2015. Ancient and modern environmental DNA. Philos. Trans. R. Soc. B 370:20130383 [Google Scholar]
  80. Peters KE, Moldowan JM. 1991. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org. Geochem. 17:47–61 [Google Scholar]
  81. Peters KE, Moldowan JM, Walters CC. 2005. Biomarkers and Isotopes in the Environment and Human History Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  82. Petroff AP, Sim MS, Maslov A, Krupenin M, Rothman DH, Bosak T. 2010. Biophysical basis for the geometry of conical stromatolites. PNAS 107:9956–61 [Google Scholar]
  83. Poger D, Mark AE. 2013. The relative effect of sterols and hopanoids on lipid bilayers: when comparable is not identical. J. Phys. Chem. 117:16129–40 [Google Scholar]
  84. Poralla K, Kannenberg E, Blume A. 1980. A glycolipid containing hopane isolated from the acidophilic, thermophilic Bacillus acidocaldarius, has a cholesterol-like function in membranes. FEBS Lett. 113:107–10 [Google Scholar]
  85. Puth K, Hofbauer HF, Sáenz JP, Ernst R. 2015. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors. Biol. Chem. 396:1043–58 [Google Scholar]
  86. Rashby SE, Sessions AL, Summons RE, Newman DK. 2007. Biosynthesis of 2-methylbacterio-hopanepolyols by an anoxygenic phototroph. PNAS 104:15099–104Discovery that an alphaproteobacterium can produce 2-methylhopanoids in equal abundance as can cyanobacteria. [Google Scholar]
  87. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–4 [Google Scholar]
  88. Ricci JN. 2015. Constraining the interpretation of 2-methylhopanoids through genetic and phylogenetic methods PhD Diss., Div. Biol. Biol. Eng., Calif. Inst. Technol. [Google Scholar]
  89. Ricci JN, Coleman ML, Welander PV, Sessions AL, Summons RE. et al. 2014. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. ISME J. 8:675–84Identification of a correlation between 2-methylhopanoid production capacity and a particular ecological niche. [Google Scholar]
  90. Ricci JN, Michel AJ, Newman DK. 2015. Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria. Geobiology 13:267–77A phylogenetic analysis of HpnP indicating that 2-methylhopanoid biosynthesis originated in the Alphaproteobacteria. [Google Scholar]
  91. Rohmer M, Bouvier P, Ourisson G. 1979. Molecular evolution of biomembranes—structural equivalents and phylogenetic precursors of sterols. PNAS 76:847–51 [Google Scholar]
  92. Rohmer M, Bouvier-Nave P, Ourisson G. 1984. Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol. 130:1137–50Early comprehensive survey of distribution of hopanoid production capacity based on cultivation. [Google Scholar]
  93. Rohmer M, Ourisson G. 1976. Structure of bacteriohopanetetrols from Acetobacter xylinum. Tetrahedron Lett. 40:3633–36 [Google Scholar]
  94. Rush D, Sinninghe Damsté JS, Poulton SW, Thamdrup B, Garside AL. et al. 2014. Anaerobic ammonium-oxidising bacteria: a biological source of the bacteriohopanetetrol stereoisomer in marine sediments. Geochim. Cosmochim. Acta 140:50–64 [Google Scholar]
  95. Sackmann E. 1995. Biological membranes—architecture and function. Structure and Dynamics of Membranes from Cells to Vesicles R Lipowsky, E Sackmann 1–63 Amsterdam: North-Holland [Google Scholar]
  96. Sáenz JP, Eglinton TI, Summons RE. 2011a. Abundance and structural diversity of bacteriohopanepolyols in suspended particulate matter along a river to ocean transect. Org. Geochem. 42:774–80 [Google Scholar]
  97. Sáenz JP, Grosser D, Bradley AS, Lagny TJ, Lavrynenko O. et al. 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. PNAS 112:11971–76 [Google Scholar]
  98. Sáenz JP, Sezgin E, Schwille P, Simons K. 2012a. Functional convergence of hopanoids and sterols in membrane ordering. PNAS 109:14236–40 [Google Scholar]
  99. Sáenz JP, Wakeham SG, Eglinton TI, Summons RE. 2011b. New constraints on the provenance of hopanoids in the marine geologic record: bacteriohopanepolyols in marine suboxic and anoxic environments. Org. Geochem. 42:1351–62 [Google Scholar]
  100. Sáenz JP, Waterbury JB, Eglinton TI, Summons RE. 2012b. Hopanoids in marine cyanobacteria: probing their phylogenetic distribution and biological role. Geobiology 10:311–19 [Google Scholar]
  101. Schoon PL, Sluijs A, Sinninghe Damsté JS, Schouten S. 2011. Stable carbon isotope patterns of marine biomarker lipids in the Arctic Ocean during Eocene Thermal Maximum 2. Paleoceanography 26:PA3215 [Google Scholar]
  102. Schopf JW, Kudryavtsev AB, Walter MR, Van Kranendonk MJ, Williford KH. et al. 2015. Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis. PNAS 112:2087–92 [Google Scholar]
  103. Schweitzer MH, Zheng WX, Organ CL, Avci R, Suo ZY. et al. 2009. Biomolecular characterization and protein sequences of the Campanian Hadrosaur B. canadensis. Science 324:626–31 [Google Scholar]
  104. Seckler B, Poralla K. 1986. Characterization and partial purification of squalene-hopene cyclase from Bacillus acidocaldarius. Biochim. Biophys. Acta 881:356–63 [Google Scholar]
  105. Sharpe HJ, Stevens TJ, Munro S. 2010. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142:158–69 [Google Scholar]
  106. Silipo A, Vitiello G, Gully D, Sturiale L, Chaintreuil C. et al. 2014. Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nat. Commun. 5:5106 [Google Scholar]
  107. Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:569–72 [Google Scholar]
  108. Sinninghe Damsté JS, Schouten S. 1997. Is there evidence for a substantial contribution of prokaryotic biomass to organic carbon in Phanerozoic carbonaceous sediments?. Org. Geochem. 26:517–30 [Google Scholar]
  109. Speelman EN, Reichart GJ, de Leeuw JW, Rijpstra WIC, Sinninghe Damsté JS. 2009. Biomarker lipids of the freshwater fern Azolla and its fossil counterpart from the Eocene Arctic Ocean. Org. Geochem. 40:628–37 [Google Scholar]
  110. Stal LJ. 1991. The metabolic versatility of the mat-building cyanobacteria Microcoleus chthonoplastes and Oscillatoria limosa and its ecological significance. Arch. Hydrobiol. 64:453–67 [Google Scholar]
  111. Summons RE, Jahnke LL, Hope JM, Logan GA. 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–57Original interpretation of 2-methylhopanoids as biomarkers of oxygenic photosynthesis. [Google Scholar]
  112. Talbot HM, Farrimond P. 2007. Bacterial populations recorded in diverse sedimentary biohopanoid distributions. Org. Geochem. 38:1212–25 [Google Scholar]
  113. Talbot HM, Farrimond P, Schaeffer P, Pancost RD. 2005. Bacteriohopanepolyols in hydrothermal vent biogenic silicates. Org. Geochem. 36:663–72 [Google Scholar]
  114. Talbot HM, Summons RE, Jahnke LL, Cockell CS, Rohmer M, Farrimond P. 2008. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Org. Geochem. 39:232–63 [Google Scholar]
  115. Talbot HM, Watson DF, Pearson EJ, Farrimond P. 2003. Diverse biohopanoid compositions of non-marine sediments. Org. Geochem. 34:1353–71 [Google Scholar]
  116. Tanford C. 1978. Hydrophobic effect and organization of living matter. Science 200:1012–18 [Google Scholar]
  117. Thiel V, Blumenberg M, Pape T, Seifert R, Michaelis W. 2003. Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Org. Geochem. 34:81–87 [Google Scholar]
  118. van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24 [Google Scholar]
  119. Van Mooy BA, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM. et al. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72 [Google Scholar]
  120. van Winden JF, Talbot HM, Kip N, Reichart GJ, Pol A. et al. 2012. Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss. Geochim. Cosmochim. Acta 77:52–61 [Google Scholar]
  121. Vogl K, Bryant DA. 2012. Biosynthesis of the biomarker okenone: χ-ring formation. Geobiology 10:205–15 [Google Scholar]
  122. Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD. 2011. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 4:698–702 [Google Scholar]
  123. Welander PV, Coleman ML, Sessions AL, Summons RE, Newman DK. 2010. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. PNAS 107:8537–42Identification of the C-2 methylase HpnP using genetic analysis of the model organism Rhodopseudomonas palustris. [Google Scholar]
  124. Welander PV, Doughty DM, Wu CH, Mehay S, Summons RE, Newman DK. 2012. Identification and characterization of Rhodopseudomonas palustris TIE-1 hopanoid biosynthesis mutants. Geobiology 10:163–77 [Google Scholar]
  125. Welander PV, Hunter RC, Zhang LC, Sessions AL, Summons RE, Newman DK. 2009. Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 191:6145–56 [Google Scholar]
  126. Welander PV, Summons RE. 2012. Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. PNAS 109:12905–10 [Google Scholar]
  127. Wendt KU, Poralla K, Schulz GE. 1997. Structure and function of a squalene cyclase. Science 277:1811–15 [Google Scholar]
  128. Wenk MR. 2010. Lipidomics: new tools and applications. Cell 143:888–95‘ [Google Scholar]
  129. Whiteside JH, Grice K. 2016. Biomarker records associated with mass extinction events. Annu. Rev. Earth Planet. Sci. 44:581–612 [Google Scholar]
  130. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP. et al. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–95 [Google Scholar]
  131. Williford KH, Ushikubo T, Schopf JW, Lepot K, Kitajima K, Valley JW. 2013. Preservation and detection of microstructural and taxonomic correlations in the carbon isotopic compositions of individual Precambrian microfossils. Geochim. Cosmochim. Acta 104:165–82 [Google Scholar]
  132. Woese CR, Fox GE. 1977. Phylogenetic structure of prokaryotic domain—primary kingdoms. PNAS 74:5088–90 [Google Scholar]
  133. Wu CH, Kong L, Bialecka-Fornal M, Park S, Thompson AL. et al. 2015. Quantitative hopanoid analysis enables robust pattern detection and comparison between laboratories. Geobiology 13:391–407Reports the development of new standards for quantitative hopanoid analysis. [Google Scholar]
  134. Xie SC, Pancost RD, Yin HF, Wang HM, Evershed RP. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494–97 [Google Scholar]
  135. Xu YP, Cooke MP, Talbot HM, Simpson MJ. 2009. Bacteriohopanepolyol signatures of bacterial populations in Western Canadian soils. Org. Geochem. 40:79–86 [Google Scholar]
  136. Zhang CL, Huang ZY, Li YL, Romanek CS, Mills GL. et al. 2007. Lipid biomarkers, carbon isotopes, and phylogenetic characterization of bacteria in California and Nevada hot springs. Geomicrobiol. J. 24:519–34 [Google Scholar]
  137. Zhang YM, Rock CO. 2009. Transcriptional regulation in bacterial membrane lipid synthesis. J. Lipid Res. 50:S115–19 [Google Scholar]
  138. Zhu C, Talbot HM, Wagner T, Pan JM, Pancost RD. 2010. Intense aerobic methane oxidation in the Yangtze Estuary: a record from 35-aminobacteriohopanepolyols in surface sediments. Org. Geochem. 41:1056–59 [Google Scholar]
  139. Zhu C, Talbot HM, Wagner T, Pan JM, Pancost RD. 2011. Distribution of hopanoids along a land to sea transect: implications for microbial ecology and the use of hopanoids in environmental studies. Limnol. Oceanogr. 56:1850–65 [Google Scholar]
  140. Zundel M, Rohmer M. 1985. Prokaryotic triterpenoids. 3. The biosynthesis of 2β-methylhopanoids and 3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp. pasteurianus. Eur. J. Biochem. 150:35–39 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error