Annual Review of Earth and Planetary Sciences - Volume 44, 2016
Volume 44, 2016
- Preface
-
-
-
Tektites, Apollo, the Crust, and Planets: A Life with Trace Elements
Vol. 44 (2016), pp. 1–15More LessStuart Ross Taylor, MSc (University of New Zealand), PhD (Indiana University), ScD (University of Oxford), FAA, AC, always called Ross, grew up on a farm near Ashburton, New Zealand. Ross has worked on a wide variety of topics in trace element geochemistry, including the composition and evolution of the Moon, the continental crust, tektites, impact glasses, and island arc rocks. In 1969 he carried out the first chemical analysis of the first returned lunar sample at NASA in Houston. He has published 10 books and 240 papers in scientific journals. He was awarded the V.M. Goldschmidt Award of the Geochemical Society in 1993. In 1994 he was elected a Foreign Associate of the National Academy of Sciences. In 1998, he was awarded the Leonard Medal of the Meteoritical Society, in 2002 the Bucher Medal of the American Geophysical Union, and in 2012 the Shoemaker Distinguished Lunar Scientist Medal of the NASA Lunar Science Institute. Asteroid 5670 is named Rosstaylor.
-
-
-
Environmental Detection of Clandestine Nuclear Weapon Programs
Vol. 44 (2016), pp. 17–35More LessEnvironmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.
-
-
-
From Tunguska to Chelyabinsk via Jupiter
Vol. 44 (2016), pp. 37–56More LessThe Tunguska event remained enigmatic for almost 100 years until the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 helped to resolve this enigma and allowed us to adequately interpret the more recent Chelyabinsk event. Airbursts typically occur if a meteoroid entering Earth's atmosphere is 10–100 m in diameter, i.e., its energy ranges from 0.5 (Chelyabinsk) to 20 (Tunguska) Mt TNT. All this energy is released in the atmosphere with strong shock waves generated during the entry reaching the surface and causing substantial damage. Atmospheric plumes are capable of dispersing extraterrestrial materials worldwide. Modern civilization is extremely vulnerable to those relatively small disturbances that recur on a decadal timescale and are still difficult to predict.
-
-
-
The Lakes and Seas of Titan
Vol. 44 (2016), pp. 57–83More LessAnalogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.
-
-
-
Inference of Climate Sensitivity from Analysis of Earth's Energy Budget
Vol. 44 (2016), pp. 85–106More LessRecent attempts to diagnose equilibrium climate sensitivity (ECS) from changes in Earth's energy budget point toward values at the low end of the Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5)'s likely range (1.5–4.5 K). These studies employ observations but still require an element of modeling to infer ECS. Their diagnosed effective ECS over the historical period of around 2 K holds up to scrutiny, but there is tentative evidence that this underestimates the true ECS from a doubling of carbon dioxide. Different choices of energy imbalance data explain most of the difference between published best estimates, and effective radiative forcing dominates the overall uncertainty. For decadal analyses the largest source of uncertainty comes from a poor understanding of the relationship between ECS and decadal feedback. Considerable progress could be made by diagnosing effective radiative forcing in models.
-
-
-
Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup
Vol. 44 (2016), pp. 107–138More LessWe present a revised global plate motion model with continuously closing plate boundaries ranging from the Triassic at 230 Ma to the present day, assess differences among alternative absolute plate motion models, and review global tectonic events. Relatively high mean absolute plate motion rates of approximately 9–10 cm yr−1 between 140 and 120 Ma may be related to transient plate motion accelerations driven by the successive emplacement of a sequence of large igneous provinces during that time. An event at ∼100 Ma is most clearly expressed in the Indian Ocean and may reflect the initiation of Andean-style subduction along southern continental Eurasia, whereas an acceleration at ∼80 Ma of mean rates from 6 to 8 cm yr−1 reflects the initial northward acceleration of India and simultaneous speedups of plates in the Pacific. An event at ∼50 Ma expressed in relative, and some absolute, plate motion changes around the globe and in a reduction of global mean plate speeds from about 6 to 4–5 cm yr−1 indicates that an increase in collisional forces (such as the India–Eurasia collision) and ridge subduction events in the Pacific (such as the Izanagi–Pacific Ridge) play a significant role in modulating plate velocities.
-
-
-
Lithification Mechanisms for Planetary Regoliths: The Glue that Binds
Vol. 44 (2016), pp. 139–174More LessIt is understood how rocks are made on Earth. However, on the Moon, Mercury, and, to a lesser extent, Mars and Venus, there are distinct rock-forming processes that we do not fully comprehend. The surfaces and crusts of the inner planetary bodies may retain a history of disruption by hypervelocity impact resulting in the generation of disaggregated materials to several kilometers depth. The uppermost component of this is called regolith (typically <20 m thick on the Moon), which is part of a more extensive megaregolith that is up to tens of kilometers thick, and which in places may pervade the entire crust of a planetary body. It is from these pulverized materials that new rocks are reaggregated to form so-called breccias. This work reviews regolith and megaregolith structure for the inner planetary bodies and investigates how extraterrestrial breccias are produced. Three principal formation mechanisms are explored: thermal sintering, shock sintering, and the dynamic interaction of impact-generated melt with fragmental material.
-
-
-
Forensic Stable Isotope Biogeochemistry
Vol. 44 (2016), pp. 175–206More LessStable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.
-
-
-
Reconstructing Ocean pH with Boron Isotopes in Foraminifera
Vol. 44 (2016), pp. 207–237More LessIn order to better understand the effect of CO2 on the Earth system in the future, geologists may look to CO2-induced environmental change in Earth's past. Here we describe how CO2 can be reconstructed using the boron isotopic composition (δ11B) of marine calcium carbonate. We review the chemical principles that underlie the proxy, summarize the available calibration data, and detail how boron isotopes can be used to estimate ocean pH and ultimately atmospheric CO2 in the past. δ11B in a variety of marine carbonates shows a coherent relationship with seawater pH, in broad agreement with simple models for this proxy. Offsets between measured and predicted δ11B may in part be explained by physiological influences, though the exact mechanisms of boron incorporation into carbonate remain unknown. Despite these uncertainties, we demonstrate that δ11B may provide crucial constraints on past ocean acidification and atmospheric CO2.
-
-
-
Sun, Ocean, Nuclear Bombs, and Fossil Fuels: Radiocarbon Variations and Implications for High-Resolution Dating
Vol. 44 (2016), pp. 239–275More LessRadiocarbon, or 14C, is a radiometric dating method ideally suited for providing a chronological framework in archaeology and geosciences for timescales spanning the last 50,000 years. 14C is easily detectable in most common natural organic materials and has a half-life (5,730±40 years) relevant to these timescales. 14C produced from large-scale detonations of nuclear bombs between the 1950s and the early 1960s can be used for dating modern organic materials formed after the 1950s. Often these studies demand high-resolution chronology to resolve ages within a few decades to less than a few years. Despite developments in modern, high-precision 14C analytical methods, the applicability of 14C in high-resolution chronology is limited by short-term variations in atmospheric 14C in the past. This article reviews the roles of the principal natural drivers (e.g., solar magnetic activity and ocean circulation) and the anthropogenic perturbations (e.g., fossil fuel CO2 and 14C from nuclear and thermonuclear bombs) that are responsible for short-term 14C variations in the environment. Methods and challenges of high-resolution 14C dating are discussed.
-
-
-
Climate Sensitivity in the Geologic Past
Vol. 44 (2016), pp. 277–293More LessThe response of temperature to CO2 change (climate sensitivity) in the geologic past may help inform future climate predictions. Proxies for CO2 and temperature generally imply high climate sensitivities: ≥3 K per CO2 doubling during ice-free times (fast-feedback sensitivity) and ≥6 K during times with land ice (Earth-system sensitivity). Climate models commonly underpredict the magnitude of climate change and have fast-feedback sensitivities close to 3 K. A better characterization of feedbacks in warm worlds raises climate sensitivity to values more in line with proxies and produces climate simulations that better fit geologic evidence. As CO2 builds in our atmosphere, we should expect both slow (e.g., land ice) and fast (e.g., vegetation, clouds) feedbacks to elevate the long-term temperature response over that predicted from the canonical fast-feedback value of 3 K. Because temperatures will not decline for centuries to millennia, climate sensitivities that integrate slower processes have relevance for current climate policy.
-
-
-
Redox Effects on Organic Matter Storage in Coastal Sediments During the Holocene: A Biomarker/Proxy Perspective
Vol. 44 (2016), pp. 295–319More LessCoastal margins play a significant role in the burial of organic matter (OM) on Earth. These margins vary considerably with respect to their efficiency in OM burial and to the amounts and periodicity of their OM delivery, depending in large part on whether they are passive or active margins. In the context of global warming, these coastal regions are expected to experience higher water temperatures, changes in riverine inputs of OM, and sea level rise. Low-oxygen conditions continue to expand around the globe in estuarine regions (i.e., hypoxic zones) and shelf regions (i.e., oxygen minimum zones), which will impact the amounts and sources of OM stored in these regions. In this review, we explore how these changes are impacting the storage of OM and the preservation of sedimentary biomarkers, used as proxies to reconstruct environmental change, in coastal margins.
-
-
-
Fracking in Tight Shales: What Is It, What Does It Accomplish, and What Are Its Consequences?
Vol. 44 (2016), pp. 321–351More LessFracking is a popular term referring to hydraulic fracturing when it is used to extract hydrocarbons. We distinguish between low-volume traditional fracking and the high-volume modern fracking used to recover large volumes of hydrocarbons from shales. Shales are fine-grained rocks with low granular permeabilities. During the formation of oil and gas, large fluid pressures are generated. These pressures result in natural fracking, and the resulting fracture permeability allows oil and gas to escape, reducing the fluid pressures. These fractures may subsequently be sealed by mineral deposition, resulting in tight shale formations. The objective of modern fracking is to reopen these fractures and/or create new fractures on a wide range of scales. Modern fracking has had a major impact on the availability of oil and gas globally; however, there are serious environmental objections to modern fracking, which should be weighed carefully against its benefits.
-
-
-
The Climate of Titan
Vol. 44 (2016), pp. 353–380More LessOver the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (∼90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface, and subsurface in order to make further progress in understanding Titan's complex climate system.
-
-
-
The Climate of Early Mars
Vol. 44 (2016), pp. 381–408More LessThe nature of the early martian climate is one of the major unanswered questions of planetary science. Key challenges remain, but a new wave of orbital and in situ observations and improvements in climate modeling have led to significant advances over the past decade. Multiple lines of geologic evidence now point to an episodically warm surface during the late Noachian and early Hesperian periods 3–4 Ga. The low solar flux received by Mars in its first billion years and inefficiency of plausible greenhouse gases such as CO2 mean that the steady-state early martian climate was likely cold. A denser CO2 atmosphere would have caused adiabatic cooling of the surface and hence migration of water ice to the higher-altitude equatorial and southern regions of the planet. Transient warming caused melting of snow and ice deposits and a temporarily active hydrological cycle, leading to erosion of the valley networks and other fluvial features. Precise details of the warming mechanisms remain unclear, but impacts, volcanism, and orbital forcing all likely played an important role. The lack of evidence for glaciation across much of Mars's ancient terrain suggests the late Noachian surface water inventory was not sufficient to sustain a northern ocean. Though mainly inhospitable on the surface, early Mars may nonetheless have presented significant opportunities for the development of microbial life.
-
-
-
The Evolution of Brachiopoda
Vol. 44 (2016), pp. 409–438More LessBrachiopods are (perhaps all too) familiar to any geology student who has taken an invertebrate paleontology course; they may well be less familiar to biology students. Even though brachiopods are among the most significant components of the marine fossil record by virtue of their considerable diversity, abundance, and long evolutionary history, fewer than 500 species are extant. Reconciling the geological and biological perspectives is necessary in order to test hypotheses, not only about phylogenetic relationships among brachiopods but also about their spectacular decline in diversity in the end-Permian mass extinction, which permanently reset their evolutionary trajectory. Studying brachiopod ontogeny and development, population genetics, ecology, physiology, and biogeography, as well as molecular systematics and phylogenomics, enables us to better understand the context of evolutionary processes over the short term. Investigating brachiopod morphological, taxonomic, and stratigraphic records over the Phanerozoic Eon reveals historical patterns of long-term macroevolutionary change, patterns that are simply unknowable from a biological perspective alone.
-
-
-
Permafrost Meta-Omics and Climate Change
Vol. 44 (2016), pp. 439–462More LessPermanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.
-
-
-
Triple Oxygen Isotopes: Fundamental Relationships and Applications
Vol. 44 (2016), pp. 463–492More LessThe element oxygen has three stable isotopes: 16O, 17O, and 18O. For a defined process, a change in 18O/16O scales with the corresponding change in 17O/16O, or the fractionation factors 18α and 17α have a relationship of θ = ln17α/ln18α, in which the triple oxygen isotope exponent θ is relatively fixed but does vary with reaction path, temperature, and species involved. When the small variation is of interest, the distinction of three concepts—θ, S (a slope through data points in δ17O–δ18O space), and C (an arbitrary referencing number for the degree of 17O deviation)—becomes important. Triple oxygen isotope variations can be measured by modern instruments and thus offer an additional line of information on the underlying reaction processes and conditions. Analytical methods and Earth science applications have recently been developed for air oxygen, carbon dioxide, water, silicates, oxides, sulfates, carbonates, and phosphates.
-
-
-
Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers
Vol. 44 (2016), pp. 493–522More LessOur ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.
-
Previous Volumes
-
Volume 52 (2024)
-
Volume 51 (2023)
-
Volume 50 (2022)
-
Volume 49 (2021)
-
Volume 48 (2020)
-
Volume 47 (2019)
-
Volume 46 (2018)
-
Volume 45 (2017)
-
Volume 44 (2016)
-
Volume 43 (2015)
-
Volume 42 (2014)
-
Volume 41 (2013)
-
Volume 40 (2012)
-
Volume 39 (2011)
-
Volume 38 (2010)
-
Volume 37 (2009)
-
Volume 36 (2008)
-
Volume 35 (2007)
-
Volume 34 (2006)
-
Volume 33 (2005)
-
Volume 32 (2004)
-
Volume 31 (2003)
-
Volume 30 (2002)
-
Volume 29 (2001)
-
Volume 28 (2000)
-
Volume 27 (1999)
-
Volume 26 (1998)
-
Volume 25 (1997)
-
Volume 24 (1996)
-
Volume 23 (1995)
-
Volume 22 (1994)
-
Volume 21 (1993)
-
Volume 20 (1992)
-
Volume 19 (1991)
-
Volume 18 (1990)
-
Volume 17 (1989)
-
Volume 16 (1988)
-
Volume 15 (1987)
-
Volume 14 (1986)
-
Volume 13 (1985)
-
Volume 12 (1984)
-
Volume 11 (1983)
-
Volume 10 (1982)
-
Volume 9 (1981)
-
Volume 8 (1980)
-
Volume 7 (1979)
-
Volume 6 (1978)
-
Volume 5 (1977)
-
Volume 4 (1976)
-
Volume 3 (1975)
-
Volume 2 (1974)
-
Volume 1 (1973)
-
Volume 0 (1932)