Brachiopods are (perhaps all too) familiar to any geology student who has taken an invertebrate paleontology course; they may well be less familiar to biology students. Even though brachiopods are among the most significant components of the marine fossil record by virtue of their considerable diversity, abundance, and long evolutionary history, fewer than 500 species are extant. Reconciling the geological and biological perspectives is necessary in order to test hypotheses, not only about phylogenetic relationships among brachiopods but also about their spectacular decline in diversity in the end-Permian mass extinction, which permanently reset their evolutionary trajectory. Studying brachiopod ontogeny and development, population genetics, ecology, physiology, and biogeography, as well as molecular systematics and phylogenomics, enables us to better understand the context of evolutionary processes over the short term. Investigating brachiopod morphological, taxonomic, and stratigraphic records over the Phanerozoic Eon reveals historical patterns of long-term macroevolutionary change, patterns that are simply unknowable from a biological perspective alone.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adachi K, Kuramochi T, Kimura K, Kumura S-I. 2013. First extensive examination of genome size in phylum Brachiopoda (lamp shells) collected from Japan. J. Shellfish Res. 32:539–41 [Google Scholar]
  2. Agassiz L. 1859. An Essay on Classification London: Longman, Brown, Green, Longmans & Roberts/Trübner
  3. Alberch P, Gould SJ, Oster GF, Wake DB. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317 [Google Scholar]
  4. Altenburger A, Martinez P, Wanninger A. 2011. Homeobox gene expression in Brachiopoda: the role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification. Gene Expr. Patterns 11:427–36 [Google Scholar]
  5. Atkins D. 1959. The growth stages of the lophophore of the brachiopods Platidia davidsoni (Eudes Deslongchamps) and P. anomioides (Philippi), with notes on the feeding mechanism. J. Mar. Biol. Assoc. UK 38:103–32 [Google Scholar]
  6. Baker PG. 1990. The classification, origin and phylogeny of thecideidine brachiopods. Palaeontology 33:175–91 [Google Scholar]
  7. Balthasar U, Butterfield NJ. 2009. Early Cambrian “soft-shelled” brachiopods as possible stem-group phoronids. Acta Palaeontol. Pol. 54:2307–14 [Google Scholar]
  8. Balthasar U, Skovsted CB, Holmer LE, Brock GA. 2009. Homologous skeletal secretion in tommotiids and brachiopods. Geology 37:121143–46 [Google Scholar]
  9. Bambach RK. 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55 [Google Scholar]
  10. Bassett MG, Popov LE, Holmer LE. 2001. Functional morphology of articulatory structures and implications for patterns of musculature in Cambrian rhynchonelliform brachiopods. See Brunton et al. 2001 163–76
  11. Baumgarten S, Laudien J, Jantzen C, Haussermann V, Forsterra G. 2014. Population structure, growth and reproduction of a recent brachiopod from the Chilean fjord region. Mar. Ecol. 35:401–13 [Google Scholar]
  12. Beecher CE. 1891. Development of the Brachiopoda. Pt. 1. Introduction. Am. J. Sci. 41:343–57 [Google Scholar]
  13. Bitner MA, Cohen BL. 2015. Congruence and conflict: case studies of morphotaxonomy versus rDNA gene tree phylogeny among articulate brachiopods (Brachiopoda: Rhynchonelliformea), with description of a new genus. Zool. J. Linn. Soc. 173:486–504 [Google Scholar]
  14. Boucot AJ, Johnson JG, Staton RD. 1964. On some atrypoid, retzioid, and athyridoid Brachiopoda. J. Paleontol. 38:805–22 [Google Scholar]
  15. Brunton CHC, Cocks LRM, Long SL. 2001. Brachiopods Past and Present. Proc. 4th Int. Brachiopod Congr., 2000, London London: Taylor & Francis [Google Scholar]
  16. Brunton CHC, Lazarev SS, Grant RE. 1995. A review and new classification of the brachiopod order Productida. Palaeontology 38:915–36 [Google Scholar]
  17. Brusca RC, Brusca GJ. 1990. Invertebrates Sunderland, MA: Sinauer
  18. Brusca RC, Brusca GJ. 2003. Invertebrates Sunderland, MA: Sinauer, 2nd ed..
  19. Carlson SJ. 1991a. A phylogenetic perspective on articulate brachiopod diversity and the Permo-Triassic extinctions. The Unity of Evolutionary Biology, 1 Proc. 4th Int. Congr. Syst. Evol. Biol. EC Dudley 119–42 Portland, OR: Dioscorides Press [Google Scholar]
  20. Carlson SJ. 1991b. Phylogenetic relationships among brachiopod higher taxa. Brachiopods Through Time. Proc. 2nd Int. Brachiopod Congr. DI MacKinnon, DE Lee, JD Campbell 3–10 Rotterdam, Neth: Balkema [Google Scholar]
  21. Carlson SJ. 1995. Phylogenetic relationships among extant brachiopods. Cladistics 11:131–97 [Google Scholar]
  22. Carlson SJ. 2001. Ghosts of the past, present, and future in brachiopod systematics. J. Paleontol. 75:1109–18 [Google Scholar]
  23. Carlson SJ. 2007. Recent research on brachiopod evolution. See Kaesler & Selden 1997–2007 62878–900
  24. Carlson SJ, Cohen BL. 2009. Separating the crown from the stem: defining Brachiopoda and Pan-Brachiopoda delineates stem-brachiopods. Geol. Soc. Am. Annu. Meet. Abstr. Progr. 41:562 [Google Scholar]
  25. Carlson SJ, Cohen BL. 2016. Brachiopoda, Pan-Brachiopoda, Neoarticulata, Pan-Neoarticulata. Phylonyms: A Companion to the PhyloCode K de Queiroz, PD Cantino, JA Gauthier Berkeley: Univ. Calif. Press. In press [Google Scholar]
  26. Carlson SJ, Leighton LR. 2001. Incorporating stratigraphic data in the phylogenetic analysis of the Rhynchonelliformea. See Brunton et al. 2001 248–58
  27. Carlson SJ, Schreiber HA, Bapst DW. 2014. Evolution of the lophophore and its mineralized supports. Int. Palaeontol. Congr. Abstr. Vol. 4130
  28. Chen Z-Q, Kaiho K, George AD. 2005. Survival strategies of brachiopod faunas from the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224:232–69 [Google Scholar]
  29. Chuang SH. 1996. The embryonic, larval and early postlarval development of the terebratellid brachiopod Calloria inconspicua (Sowerby). J. R. Soc. N.Z. 26:119–37 [Google Scholar]
  30. Clapham ME. 2015. Ecological consequences of the Guadalupian extinction and its role in the brachiopod-mollusc transition. Paleobiology 41:266–79 [Google Scholar]
  31. Cohen BL. 2000. Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.). Proc. R. Soc. B 267:225–31 [Google Scholar]
  32. Cohen BL. 2007. The brachiopod genome. See Kaesler & Selden 1997–2007 62356–72
  33. Cohen BL. 2013. Rerooting the rDNA gene tree reveals phoronids to be ‘brachiopods without shells’: dangers of wide taxon samples in metazoan phylogenetics (Phoronida; Brachiopoda). Zool. J. Linn. Soc. 167:82–92 [Google Scholar]
  34. Cohen BL, Balfe P, Cohen M, Curry GB. 1993. Molecular and morphometric variation in European populations of the articulate brachiopod Terebratulina retusa. Mar. Biol. 115:105–11 [Google Scholar]
  35. Cohen BL, Bitner MA. 2013. Molecular phylogeny of rhynchonellide articulate brachiopods (Brachiopoda, Rhynchonellida). J. Paleontol. 87:211–16 [Google Scholar]
  36. Cohen BL, Gawthrop AB. 1997. The brachiopod genome. See Kaesler & Selden 1997–2007 1189–211
  37. Cohen BL, Weydmann A. 2005. Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the Early Cambrian. Org. Divers. Evol. 5:253–73 [Google Scholar]
  38. Conway Morris S, Peel JS. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philos. Trans. R. Soc. B 347:305–58 [Google Scholar]
  39. Cooper GA. 1956. Chazyan and Related Brachiopods Smithson. Misc. Collect. 127 Washington, DC: Smithson. Inst. Sch. Press
  40. Cooper GA. 1976. Lower Cambrian brachiopods from Rift Valley (Israel and Jordan). J. Paleontol. 50:269–89 [Google Scholar]
  41. Cooper GA. 1983. The Terebratulacea (Brachiopoda), Triassic to Recent: A Study of the Brachidia (Loops) Smithson. Contrib. Paleobiol. 50 Washington, DC: Smithson. Inst. Press
  42. Cooper GA, Grant RE. 1969–1976. Permian brachiopods of West Texas, I–V. Smithson. Contrib. Paleobiol. 1:1–20 15:233–793 19:795–1298 21:1923–2607 24:2609–3159 [Google Scholar]
  43. Curry GB, Brunton CHC. 2007. Stratigraphic distribution of brachiopods. See Kaesler & Selden 1997–2007 62901–3081
  44. Davidson T. 1886–1888. A monograph of Recent Brachiopoda. Trans. Linn. Soc. (Zool.) Lond. 4:1–31–242 [Google Scholar]
  45. de Queiroz K, Cantino PD, Gauthier JA. 2016. Phylonyms: A Companion to the PhyloCode Berkeley: Univ. Calif. Press. In press
  46. de Queiroz K, Gauthier J. 1990. Phylogeny as a central principle in taxonomy—phylogenetic definitions of taxon names. Syst. Zool. 39:307–22 [Google Scholar]
  47. Dumeril AMC. 1806. Zoologie analytique, ou method naturelle de classification des animaux. Paris: Allais
  48. Dunn CW, Giribet G, Edgecombe GD, Hejnol A. 2014. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 45:1371–95 [Google Scholar]
  49. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE. et al. 2008. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–50 [Google Scholar]
  50. Eernisse DJ, Albert JS, Anderson FE. 1992. Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Syst. Biol. 41:305–30 [Google Scholar]
  51. Elliott GF. 1953. The classification of the thecidean brachiopods. Ann. Mag. Nat. Hist. 6:693–701 [Google Scholar]
  52. Emig CC. 1984. On the origin of the Lophophorata. J. Zool. Syst. Evol. 22:91–94 [Google Scholar]
  53. Endo K, Noguchi Y, Ueshima R, Jacobs HT. 2005. Novel repetitive structures, deviant protein-encoding sequences and unidentified ORFs in the mitochondrial genome of the brachiopod Lingula anatina. J. Mol. Evol. 61:36–53 [Google Scholar]
  54. Endo K, Ozawa T, Kojima S. 2001. Nuclear and mitochondrial gene sequences reveal unexpected genetic heterogeneity among northern Pacific populations of the brachiopod Lingula anatina. Mar. Biol. 139:105–12 [Google Scholar]
  55. Erwin DH. 2005. The Mother of Mass Extinctions: Life and Death in the Permian Princeton, NJ: Princeton Univ. Press
  56. Erwin DH, Tweedt S. 2012. Ecological drivers of the Ediacaran–Cambrian diversification of Metazoa. Evol. Ecol. 26:417–33 [Google Scholar]
  57. Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27:401–10 [Google Scholar]
  58. Field K, Olsen GJ, Lane DJ, Giovanonni SJ, Ghiselin MT. et al. 1988. Molecular phylogeny of the animal kingdom. Science 239:4841748–53 [Google Scholar]
  59. Finnegan S, Droser M. 2008. Body size, energetics, and the Ordovician restructuring of marine ecosystems. Paleobiology 34:342–59 [Google Scholar]
  60. Foster MW. 1974. Recent Antarctic and Sub-Antarctic Brachiopods Antarctic Res. Ser. 21 Washington, DC: Am. Geophys. Union
  61. Freeman G. 1993. Metamorphosis in the brachiopod Terebratalia: evidence for a role of calcium channel function and the dissociation of shell formation from settlement. Biol. Bull. 184:15–24 [Google Scholar]
  62. Freeman G, Lundelius JW. 1999. Changes in the timing of mantle formation and larval life history traits in linguliform and craniiform brachiopods. Lethaia 32:197–217 [Google Scholar]
  63. Giribet G. 2008. Assembling the lophotrochozoan (= spiralian) tree of life. Philos. Trans. R. Soc. B 363:1513–22 [Google Scholar]
  64. Giribet G. 2010. A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zool. 91:11–19 [Google Scholar]
  65. Giribet G. 2015. Morphology should not be forgotten in the era of genomics—a phylogenetic perspective. Zool. Anz. 256:96–103 [Google Scholar]
  66. Giribet G, Distel DL, Polz M, Sterrer W, Wheeler WC. 2000. Triploblastic relationships with an emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst. Biol. 49:3539–62 [Google Scholar]
  67. Gould SJ, Calloway CB. 1980. Clams and brachiopods: ships that pass in the night. Paleobiology 6:383–96 [Google Scholar]
  68. Gould SJ, Raup DM, Sepkoski JJ, Schopf TJM, Simberloff DS. 1977. The shape of evolution: comparison of real and random clades. Paleobiology 3:23–40 [Google Scholar]
  69. Gray JE. 1848. On the arrangement of the Brachiopoda. Ann. Mag. Nat. Hist. 3:435–40 [Google Scholar]
  70. Haeckel E. 1875. Die Gastrula und die Eifurchung der Tiere. Jena. Ztg. Naturwiss. 9:402–508 [Google Scholar]
  71. Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA. 1995. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:52041641–43 [Google Scholar]
  72. Hall J, Clarke JM. 1892. An Introduction to the Study of the Genera of Paleozoic Brachiopoda. Part I Geol. Surv. State N.Y. Palaeontology 8 Albany, NY: Van Benthuysen [Google Scholar]
  73. Harper DAT, Zhan R-B, Jin J. 2015. The great Ordovician biodiversification event: reviewing two decades of research on diversity's big bang illustrated by mainly brachiopod data. Palaeoworld 24:75–85 [Google Scholar]
  74. He W, Shi GR, Feng Q, Campi MJ, Gu S. et al. 2007. Brachiopod miniaturization and its possible causes during the Permian–Triassic crisis in deep water environments, South China. Palaeogeog. Palaeoclimatol. Palaeoecol. 252:145–63 [Google Scholar]
  75. Heim NA, Knope ML, Schaal EK, Wang SC, Payne JL. 2015. Cope's rule in the evolution of marine animals. Science 347:6224867–70 [Google Scholar]
  76. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW. et al. 2009. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. R. Soc. B 276:4261–70 [Google Scholar]
  77. Helfenbein KG, Brown WM, Boore JL. 2001. The complete mitochondrial genome of the articulate brachiopod Terebratalia transversa. Mol. Biol. Evol. 18:1734–44 [Google Scholar]
  78. Hendricks JR, Saupe EE, Myers CE, Hermsen EJ, Allmon WD. 2014. The generification of the fossil record. Paleobiology 40:511–28 [Google Scholar]
  79. Hints L. 2012. New Hirnantian orthide brachiopods from the type section of the Porkuni Stage (Porkuni Quarry, northeastern Estonia). Estonian J. Earth Sci. 61:227–41 [Google Scholar]
  80. Holland SM, Sclafani JA. 2015. Phanerozoic diversity and neutral theory. Paleobiology 41:369–76 [Google Scholar]
  81. Holmer LE. 2001. Phylogeny and classification: Linguliformea and Craniiformea. Paleontol. Soc. Pap. 7:11–26 [Google Scholar]
  82. Holmer LE, Popov LE. 2000. Class Lingulata. See Kaesler & Selden 1997–2007 230–146
  83. Holmer LE, Skovsted CB, Williams A. 2002. A stem group brachiopod from the Lower Cambrian: support for a Micrina (halkieriid) ancestry. Palaeontology 45:5875–82 [Google Scholar]
  84. Huang B, Harper DAT. 2013. Ontogenic study of the brachiopod Dicoelosia by geometric morphometrics and morphing techniques. Lethaia 46:308–16 [Google Scholar]
  85. Hunt G. 2013. Testing the link between phenotypic evolution and speciation: an integrated palaeontological and phylogenetic analysis. Methods Ecol. Evol. 4:714–23 [Google Scholar]
  86. Huxley TH. 1869. An Introduction to the Classification of Animals London: Churchill
  87. Hyman LH. 1959. The Invertebrates 5 Smaller Coelomate Groups New York: McGraw-Hill
  88. Immel F, Gaspard D, Marie A, Guichard N, Cusack M, Marin F. 2015. Shell proteome of rhynchonelliform brachiopods. J. Struct. Biol. 190:360–66 [Google Scholar]
  89. Jaanusson V. 1971. Evolution of the brachiopod hinge. Smithson. Contrib. Paleobiol. 3:33–46 [Google Scholar]
  90. Jablonski D, Finarelli JA. 2009a. Congruence of morphologically-defined genera with molecular phylogenies. PNAS 106:8262–66 [Google Scholar]
  91. Jablonski D, Finarelli JA. 2009b. Reply to Smith & O'Meara: the utility of morphogenera. PNAS 106:E99–100 [Google Scholar]
  92. Jackson DJ, Mann K, Häussermann V, Schilhabel MB, Lüter C. et al. 2015. The Magellania venosa biomineralizing proteome: a window into brachiopod shell evolution. Genome Biol. Evol. 7:1349–62 [Google Scholar]
  93. Jackson JBC, Goreau TF, Hartman WD. 1971. Recent brachiopod-coralline sponge communities and their paleoecological significance. Science 173:623–25 [Google Scholar]
  94. Jaecks GS, Carlson SJ. 2001. How phylogenetic inference can shape our view of heterochrony: examples from thecideide brachiopods. Paleobiology 27:2205–25 [Google Scholar]
  95. James MA, Ansell AD, Collins MJ, Curry GB, Peck LS, Rhodes MC. 1992. Biology of living brachiopods. Adv. Mar. Biol. 28:175–387 [Google Scholar]
  96. Kaesler RL, Selden PA. 1997–2007. Treatise on Invertebrate Paleontology Part H (Revised): Brachiopoda , Vols. 1–6 Boulder, CO/Lawrence, KS: Geol. Soc. Am./Univ. Kansas
  97. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256:295–313 [Google Scholar]
  98. Koch CF. 1987. Prediction of sample size effects on the measured temporal and geographic patterns of species. Paleobiology 13:100–7 [Google Scholar]
  99. Kocot KM, Halanych KM, Krug PJ. 2013. Phylogenomics supports Panpulmonata: opisthobranch paraphyly and key evolutionary steps in a major radiation of gastropod molluscs. Mol. Phylogenet. Evol. 69:764–71 [Google Scholar]
  100. Larsson CM, Skovsted CB, Brock GA, Balthasar U, Topper TP, Holmer LE. 2014. Paterimitra pyramidalis from South Australia: scleritome, shell structure and evolution of a Lower Cambrian stem group brachiopod. Palaeontology 57:417–46 [Google Scholar]
  101. Lemer S, Kawauchi GY, Andrade SCS, Gonzalez VL, Boyle MJ, Giribet G. 2015. Reevaluating the phylogeny of Sipuncula through transcriptomics. Mol. Phylogenet. Evol. 83:174–83 [Google Scholar]
  102. Liow LH, Reitan T, Harnik PG. 2015. Ecological interactions on macroevolutionary time scales: clams and brachiopods are more than ships that pass in the night. Ecol. Lett. 18:1030–39 [Google Scholar]
  103. Logan A. 2008. Holocene thecideide brachiopods from the north-western Pacific Ocean: systematics, life habits and ontogeny. Syst. Biodivers. 6:405–13 [Google Scholar]
  104. Lopez Carranza N, Schreiber HA, Carlson SJ. 2015. Putting 3D models to the test: quantifying loop variability in Laqueus erythraeus and Terebratalia transversa. The Brachiopod World. Abstr. 7th Int. Brachiopod Congr B Huang, S Shen 56–57 Calgary, Can.: Int. Comm. Stratigr. (Abstr.) [Google Scholar]
  105. Luo Y-J, Takeuchi T, Koyanagi R, Yamada L, Kanda M. et al. 2015. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat. Commun. 6:8301 [Google Scholar]
  106. Luter C, Bartolomaeus T. 1997. The phylogenetic position of Brachiopoda—a comparison of morphological and molecular data. Zool. Scr. 26:245–53 [Google Scholar]
  107. MacKinnon DI, Lee DE. 2006. Terebratelloidea. See Kaesler & Selden 1997–2007 52227–44
  108. Mallatt J, Winchell CJ. 2002. Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol. Biol. Evol. 19:289–301 [Google Scholar]
  109. Mancenido MO, Gourvennec R. 2008. A reappraisal of feeding current systems inferred for spire-bearing brachiopods. Earth Environ. Sci. Trans. R. Soc. Edinb. 98:345–56 [Google Scholar]
  110. Motchurova-Dekova N, Saito M, Endo K. 2002. The Recent rhynchonellide brachiopod Parasphenarina cavernicola gen. et sp. nov. from the submarine caves of Okinawa, Japan. Paleontol. Res. 6:3299–319 [Google Scholar]
  111. Muir-Wood HM. 1955. A History of the Classification of the Phylum Brachiopoda London: Brit. Mus. Nat. Hist.
  112. Muir-Wood HM, Cooper GA. 1960. Morphology, Classification and Life Habits of the Productoidea (Brachiopoda) Geol. Soc. Am. Mem 81 New York: Geol. Soc. Am.
  113. Murdock DJE, Bengtson S, Marone F, Greenwood JM, Donoghue PCJ. 2014. Evaluating scenarios for the evolutionary assembly of the brachiopod body plan. Evol. Dev. 16:113–24 [Google Scholar]
  114. Murdock DJE, Donoghue PCJ, Bengtson S, Marone F. 2012. Ontogeny and microstructure of the enigmatic Cambrian tommotiid Sunnaginia Missarzhevsky, 1969. Palaeontology 55:661–76 [Google Scholar]
  115. Nesnidal MP, Helmkampf M, Meyer A, Witek A, Bruchhaus I. et al. 2013. New phylogenomic data support the monophyly of Lophophorata and an ectoproct-phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol. Biol. 13:253 [Google Scholar]
  116. Nielsen C. 1995. Animal Evolution: Interrelationships of the Living Phyla Oxford, UK: Oxford Univ. Press
  117. Nielsen C. 2002. The phylogenetic position of Entoprocta, Ectoprocta, Phoronida and Brachiopoda. Integr. Comp. Biol. 42:685–91 [Google Scholar]
  118. Novack-Gottshall PM, Lanier MA. 2008. Scale-dependence of Cope's rule in body-size evolution of Paleozoic brachiopods. PNAS 105:5430–34 [Google Scholar]
  119. Olszewski TD, Erwin DH. 2004. Dynamic response of Permian brachiopod communities to long-term environmental change. Nature 428:6984738–41 [Google Scholar]
  120. Paps J, Baguna J, Riutort M. 2009. Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proc. R. Soc. B 276:1245–54 [Google Scholar]
  121. Passamaneck YA, Hejnol A, Martindale MQ. 2015. Mesodermal gene expression during the embryonic and larval development of the articulate brachiopod Terebratalia transversa. EvoDevo 6:10 [Google Scholar]
  122. Patterson C. 1981. Significance of fossils in determining evolutionary relationships. Annu. Rev. Ecol. Syst. 12:195–223 [Google Scholar]
  123. Patterson C, Smith AB. 1987. Is the periodicity of extinctions a taxonomic artifact?. Nature 330:248–52 [Google Scholar]
  124. Payne JL, Clapham ME. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?. Annu. Rev. Earth Planet. Sci. 40:89–111 [Google Scholar]
  125. Payne JL, Heim NA, Knope ML, McClain CR. 2015. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proc. R. Soc. B 281:20133122 [Google Scholar]
  126. Peterson KJ, Eernisse DJ. 2001. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol. Dev. 3:170–205 [Google Scholar]
  127. Podsiadlowski L, Braband A, Struck TH, von Dohren J, Bartolomaeus T. 2009. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea. BMC Genom. 10:364 [Google Scholar]
  128. Popov LE. 1992. The Cambrian radiation of brachiopods. Origin and Early Evolution of the Metazoa JH Lipps, PW Signor 399–423 New York: Plenum Press [Google Scholar]
  129. Popov LE, Bassett MG, Holmer LE. 2000. Class Craniata. See Kaesler & Selden 1997–2007 5158–64
  130. Powell MG, Moore BR, Smith TJ. 2015. Origination, extinction, invasion, and extirpation components of the brachiopod latitudinal biodiversity gradient through the Phanerozoic Eon. Paleobiology 41:330–41 [Google Scholar]
  131. Raup DM. 1979. Size of the Permo–Triassic bottleneck and its evolutionary implications. Science 206:217–18 [Google Scholar]
  132. Reeder TW, Townsend TM, Mulcahy DG, Noonan BP, Wood PL. et al. 2015. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLOS ONE 10:3e0118199 [Google Scholar]
  133. Rong JY, Shen SZ. 2002. Comparative analysis of the end-Permian and end-Ordovician brachiopod mass extinctions and survivals in South China. Palaeogeog. Palaeoclimatol. Palaeoecol. 188:25–38 [Google Scholar]
  134. Rowell AJ. 1982. The monophyletic origin of the Brachiopoda. Lethaia 15:4299–307 [Google Scholar]
  135. Rudwick MJS. 1970. Living and Fossil Brachiopods London: Hutchinson Univ. Libr.
  136. Runnegar BN. 1989. The evolution of mineral skeletons. Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals RE Crick 75–94 New York: Plenum Press [Google Scholar]
  137. Saito M, Endo K, Cohen BL. 2001. Molecular phylogenetics and evolution of long-looped brachiopods. See Brunton et al. 2001 129–38
  138. Schreiber HA, Bitner MA, Carlson SJ. 2013. Morphological analysis of phylogenetic relationships among extant rhynchonellide brachiopods. J. Paleontol. 87:4550–69 [Google Scholar]
  139. Schuchert C, Cooper GA. 1932. Brachiopod Genera of the Suborders Orthoidea and Pentameroidea Mem. Peabody Mus. Nat. Hist. 4, Pt. 1 New Haven, CT: Yale Univ.
  140. Sepkoski JJ, Bambach RK, Raup DM, Valentine JW. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435–37 [Google Scholar]
  141. Simpson GG. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–350 [Google Scholar]
  142. Skovsted CB, Brock GA, Paterson JR, Holmer LE, Budd GE. 2008. The scleritome of Eccentrotheca from the Lower Cambrian of South Australia: Lophophorate affinities and implications for tommotiid phylogeny. Geology 36:171–74 [Google Scholar]
  143. Skovsted CB, Brock GA, Topper TP, Paterson JR, Holmer LE. 2011. Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the early Cambrian of South Australia. Palaeontology 54:253–86 [Google Scholar]
  144. Skovsted CB, Clausen S, Alvaro J, Ponleve D. 2014. Tommotiids from the Early Cambrian (Series 2, Stage 3) of Morocco and the evolution of the tannuolinid scleritome and setigerous shell structures in stem group brachiopods. Palaeontology 57:171–92 [Google Scholar]
  145. Skovsted CB, Holmer LE. 2003. The Early Cambrian stem group brachiopod Mickwitzia from Northeast Greenland. Acta Palaeontol. Pol. 48:11–30 [Google Scholar]
  146. Skovsted CB, Holmer LE, Larsson CM, Högström AE, Brock GA. et al. 2009. The scleritome of Paterimitra: an Early Cambrian stem group brachiopod from South Australia. Proc. R. Soc. B 276:16621651–56 [Google Scholar]
  147. Slater GJ, Harmon LJ, Alfaro ME. 2012. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66:123931–44 [Google Scholar]
  148. Smith SA, O'Meara BC. 2009. Morphogenera, monophyly, and macroevolution. PNAS 106:E97–98 [Google Scholar]
  149. Sperling EA, Pisani D, Peterson KJ. 2011. Molecular paleobiological insights into the origin of the Brachiopoda. Evol. Dev. 13:3290–303 [Google Scholar]
  150. Stanley SM. 1979. Macroevolution: Pattern and Process. San Francisco: Freeman
  151. Stechmann A, Schlegel M. 1999. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes. Proc. R. Soc. B 266:14332043–52 [Google Scholar]
  152. Thayer CW. 1975. Size-frequency and population structure of brachiopods. Palaeogeog. Palaeoclimatol. Palaeoecol. 17:139–48 [Google Scholar]
  153. Thayer CW. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:4379458–61 [Google Scholar]
  154. Thomson JA. 1927. Brachiopod Morphology and Genera (Recent and Tertiary) N.Z. Board Sci. & Art Man. 7 Wellington, NZ: Dominion Mus. [Google Scholar]
  155. Tunnicliffe V, Wilson K. 1988. Brachiopod populations: distribution in fjords of British Columbia (Canada) and tolerance of low oxygen concentrations. Mar. Ecol. Prog. Ser. 47:2117–28 [Google Scholar]
  156. Ushatinskaya GT. 2014. What might cause the differences in the shell composition of the earliest brachiopods?. Paleontol. J. 48:141502–10 [Google Scholar]
  157. Valentine JW. 2009. The infusion of biology into paleontological research. The Paleobiological Revolution: Essays on the Growth of Modern Paleontology D Sepkoski, M Ruse 385–97 Chicago: Univ. Chicago Press [Google Scholar]
  158. Valentine JW, Ayala FJ. 1975. Genetic variation in Frieleia halli, a deep-sea brachiopod. Deep-Sea Res. 22:137–44 [Google Scholar]
  159. Veizer J, Prokoph A. 2015. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 146:92–104 [Google Scholar]
  160. Vinther J, Nielsen C. 2005. The Early Cambrian Halkieria is a mollusc. Zool. Scr. 34:81–89 [Google Scholar]
  161. Wiens JJ. 2009. Paleontology, genomics, and combined-data phylogenetics: Can molecular data improve phylogeny estimates for fossil taxa?. Syst. Biol. 58:87–99 [Google Scholar]
  162. Williams A. 1973. The secretion and structural evolution of the shell of thecideidine brachiopods. Philos. Trans. R. Soc. B 264:865439–78 [Google Scholar]
  163. Williams A, Carlson SJ. 2007. Affinities of brachiopods and trends in their evolution. See Kaesler & Selden 1997–2007 62822–77
  164. Williams A, Carlson SJ, Brunton CHC. 2000. Brachiopoda. See Kaesler & Selden 1997–2007 128
  165. Williams A, Carlson SJ, Brunton CHC, Holmer LE, Popov L. 1996. A supra-ordinal classification of the Brachiopoda. Philos. Trans. R. Soc. B 351:13441171–93 [Google Scholar]
  166. Williams A, Holmer LE. 2002. Shell structure and inferred growth, functions and affinities of the sclerites of the problematic Micrina. Palaeontology 45:5845–73 [Google Scholar]
  167. Williams A, Rowell AJ. 1965. Evolution and phylogeny. Treatise on Invertebrate Paleontology, Part H: Brachiopoda RC Moore 1164–99 Boulder, CO/Lawrence, KS: Geol. Soc. Am./Univ. Kansas [Google Scholar]
  168. Wright AD. 1979. Brachiopod radiation. The Origin of Major Invertebrate Groups MR House 235–52 London: Academic Press [Google Scholar]
  169. Wright DF, Stigall AL. 2013. Phylogenetic revision of the Late Ordovician orthid brachiopod genera Plaesiomys and Hebertella from Laurentia. J. Paleontol. 87:1107–28 [Google Scholar]
  170. Zhang Zh, Li G, Emig CC, Han J, Holmer LE, Shu D. 2009. Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian, South China). Geobios 42:649–61 [Google Scholar]
  171. Zhang Zi, Augustin M, Payne JL. 2015. Phanerozoic trends in brachiopod body size from synoptic data. Paleobiology 41:491–501 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error