The response of temperature to CO change (climate sensitivity) in the geologic past may help inform future climate predictions. Proxies for CO and temperature generally imply high climate sensitivities: ≥3 K per CO doubling during ice-free times (fast-feedback sensitivity) and ≥6 K during times with land ice (Earth-system sensitivity). Climate models commonly underpredict the magnitude of climate change and have fast-feedback sensitivities close to 3 K. A better characterization of feedbacks in warm worlds raises climate sensitivity to values more in line with proxies and produces climate simulations that better fit geologic evidence. As CO builds in our atmosphere, we should expect both slow (e.g., land ice) and fast (e.g., vegetation, clouds) feedbacks to elevate the long-term temperature response over that predicted from the canonical fast-feedback value of 3 K. Because temperatures will not decline for centuries to millennia, climate sensitivities that integrate slower processes have relevance for current climate policy.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abbot DS, Huber M, Bousquet G, Walker CC. 2009. High-CO2 cloud radiative forcing feedback over both land and ocean in a global climate model. Geophys. Res. Lett. 36:L05702 [Google Scholar]
  2. Abbot DS, Tziperman E. 2008a. A high-latitude convective cloud feedback and equable climates. Q. J. R. Meteorol. Soc. 134:165–85 [Google Scholar]
  3. Abbot DS, Tziperman E. 2008b. Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett. 35:L03702 [Google Scholar]
  4. Archer D, Brovkin V. 2008. The millennial atmospheric lifetime of anthropogenic CO2. Clim. Change 90:283–97 [Google Scholar]
  5. Armour KC, Roe GH. 2011. Climate commitment in an uncertain world. Geophys. Res. Lett. 38:L01707 [Google Scholar]
  6. Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature on the ground. Philos. Mag. J. Sci. 41:237–75 [Google Scholar]
  7. Barron EJ, Fawcett PJ, Pollard D, Thompson S. 1993. Model simulations of Cretaceous climates: the role of geography and carbon dioxide. Philos. Trans. R. Soc. B 341:307–16 [Google Scholar]
  8. Barron EJ, Thompson SL, Schneider SH. 1981. An ice-free Cretaceous? Results from climate model simulations. Science 212:501–8 [Google Scholar]
  9. Beerling DJ, Fox A, Anderson CW. 2009. Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves. Am. J. Sci. 309:775–87 [Google Scholar]
  10. Beerling DJ, Fox A, Stevenson DS, Valdes PJ. 2011. Enhanced chemistry-climate feedbacks in past greenhouse worlds. PNAS 108:9770–75 [Google Scholar]
  11. Beerling DJ, Royer DL. 2011. Convergent Cenozoic CO2 history. Nat. Geosci. 4:418–20 [Google Scholar]
  12. Bice KL, Scotese CR, Seidov D, Barron EJ. 2000. Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161:295–310 [Google Scholar]
  13. Bijl PK, Houben AJP, Schouten S, Bohaty SM, Sluijs A. et al. 2010. Transient middle Eocene atmospheric CO2 and temperature variations. Science 330:819–21 [Google Scholar]
  14. Borzenkova II. 2003. Determination of global climate sensitivity to the gas composition of the atmosphere from paleoclimatic data. Izv. Atmos. Ocean. Phys. 39:197–202 [Google Scholar]
  15. Bowen GJ. 2013. Up in smoke: a role for organic carbon feedbacks in Paleogene hyperthermals. Glob. Planet. Change 109:18–29 [Google Scholar]
  16. Bowen GJ, Maibauer BJ, Kraus MJ, Rohl U, Westerhold T. et al. 2015. Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene Thermal Maximum. Nat. Geosci. 8:44–47 [Google Scholar]
  17. Bradshaw CD, Lunt DJ, Flecker R, Davies-Barnard T. 2015. Disentangling the roles of late Miocene palaeogeography and vegetation—implications for climate sensitivity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417:17–34 [Google Scholar]
  18. Breecker DO. 2013. Quantifying and understanding the uncertainty of atmospheric CO2 concentrations determined from calcic paleosols. Geochem. Geophys. Geosyst. 14:3210–20 [Google Scholar]
  19. Breecker DO, Retallack GJ. 2014. Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 406:1–8 [Google Scholar]
  20. Breecker DO, Sharp ZD, McFadden LD. 2010. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A. D. 2100. PNAS 107:576–80 [Google Scholar]
  21. Budyko MI, Ronov AB, Yanshin AL. 1987. History of the Earth's Atmosphere Berlin: Springer-Verlag
  22. Caballero R, Huber M. 2013. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. PNAS 110:14162–67 [Google Scholar]
  23. Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature 425:365 [Google Scholar]
  24. Came RE, Eiler JM, Veizer J, Azmy K, Brand U, Weidman CR. 2007. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449:198–201 [Google Scholar]
  25. Charney JG, Arakawa A, Baker DJ, Bolin B, Dickinson RE. et al. 1979. Carbon Dioxide and Climate: A Scientific Assessment Washington, DC: Natl. Acad. Sci.
  26. Colman R, McAvaney B. 2009. Climate feedbacks under a very broad range of forcing. Geophys. Res. Lett. 36:L01702 [Google Scholar]
  27. Covey C, Sloan LC, Hoffert MI. 1996. Paleoclimate data constraints on climate sensitivity: the paleocalibration method. Clim. Change 32:165–84 [Google Scholar]
  28. Cramer BS, Toggweiler JR, Wright JD, Katz ME, Miller KG. 2009. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24:PA4216 [Google Scholar]
  29. Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK. et al. 2011. Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum. Nat. Geosci. 4:481–85 [Google Scholar]
  30. DeConto RM, Brady EC, Bergengren J, Hay WW. 2000. Late Cretaceous climate, vegetation, and ocean interactions. Warm Climates in Earth History BT Huber, KG MacLeod, SL Wing 275–96 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  31. Deenen MHL, Ruhl M, Bonis NR, Krijgsman W, Kuerschner WM. et al. 2010. A new chronology for the end-Triassic mass extinction. Earth Planet. Sci. Lett. 291:113–25 [Google Scholar]
  32. Donnadieu Y, Pierrehumbert R, Jacob R, Fluteau F. 2006. Modelling the primary control of paleogeography on Cretaceous climate. Earth Planet. Sci. Lett. 248:426–37 [Google Scholar]
  33. Dunkley Jones T, Lunt DJ, Schmidt DN, Ridgwell A, Sluijs A. et al. 2013. Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum. Earth-Sci. Rev. 125:123–45 [Google Scholar]
  34. Dunkley Jones T, Ridgwell A, Lunt DJ, Maslin MA, Schmidt DN, Valdes PJ. 2010. A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philos. Trans. R. Soc. A 368:2395–415 [Google Scholar]
  35. Dutton JE, Barron EJ. 1997. Miocene to present vegetation changes: a possible piece of the Cenozoic cooling puzzle. Geology 25:39–41 [Google Scholar]
  36. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D. et al. 2000. The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–96 [Google Scholar]
  37. Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC. 2013. Patterns and mechanisms of early Pliocene warmth. Nature 496:43–49 [Google Scholar]
  38. Finnegan S, Bergmann K, Eiler JM, Jones DS, Fike DA. et al. 2011. The magnitude and duration of Late Ordovician-early Silurian glaciation. Science 331:903–6 [Google Scholar]
  39. Foster GL, Royer DL, Lunt DJ. 2014. Past and future CO2: reconstructing atmospheric carbon dioxide. http://descentintotheicehouse.org.uk/past-and-future-co2/
  40. Franks PJ, Royer DL, Beerling DJ, Van de Water PK, Cantrill DJ. et al. 2014. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophys. Res. Lett. 41:4685–94 [Google Scholar]
  41. Friedlingstein P, Solomon S, Plattner GK, Knutti R, Ciais P, Raupach MR. 2011. Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation. Nat. Clim. Change 1:457–61 [Google Scholar]
  42. Gillett NP, Arora VK, Zickfeld K, Marshall SJ, Merryfield WJ. 2011. Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat. Geosci. 4:83–87 [Google Scholar]
  43. Gingerich PD. 2006. Environment and evolution through the Paleocene-Eocene Thermal Maximum. Trends Ecol. Evol. 21:246–53 [Google Scholar]
  44. Goldner A, Huber M, Caballero R. 2013. Does Antarctic glaciation cool the world?. Clim. Past 9:173–89 [Google Scholar]
  45. Golledge NR, Kowalewski DE, Naish TR, Levy RH, Fogwill CJ, Gasson EGW. 2015. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526:421–25 [Google Scholar]
  46. Gough DO. 1981. Solar interior structure and luminosity variations. Solar Phys. 74:21–34 [Google Scholar]
  47. Greene SE, Martindale RC, Ritterbush KA, Bottjer DJ, Corsetti FA, Berelson WM. 2012. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth-Sci. Rev. 113:72–93 [Google Scholar]
  48. Greenop R, Foster GL, Wilson PA, Lear CH. 2014. Middle Miocene climate instability associated with high-amplitude CO2 variability. Paleoceanography 29:845–53 [Google Scholar]
  49. Grossman EL. 2012. Oxygen isotope stratigraphy. The Geologic Timescale 2012 FM Gradstein, JG Ogg, MD Schmitz, GM Ogg 181–206 Amsterdam: Elsevier [Google Scholar]
  50. Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F. et al. 2013a. Assessing “dangerous climate change”: required reduction of carbon emissions to protect young people, future generations and nature. PLOS ONE 8:e81648 [Google Scholar]
  51. Hansen J, Sato M. 2012. Paleoclimate implications for human-made climate change. Climate Change: Inferences for Paleoclimate and Regional Aspects A Berger, F Mesinger, D Šijački 21–47 Wien: Springer [Google Scholar]
  52. Hansen J, Sato M, Kharecha P, Beerling D, Berner R. et al. 2008. Target atmospheric CO2: Where should humanity aim?. Open Atmos. Sci. J. 2:217–31Calculation of Earth-system sensitivity for the Pleistocene. [Google Scholar]
  53. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A. et al. 2005. Efficacy of climate forcings. J. Geophys. Res. 110:D18104 [Google Scholar]
  54. Hansen J, Sato M, Russell G, Kharecha P. 2013b. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. A 371:20120294 [Google Scholar]
  55. Haywood AM, Hill DJ, Dolan AM, Otto-Bliesner BL, Bragg F. et al. 2013. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9:191–209A meta-analysis of Pliocene climate simulations. [Google Scholar]
  56. Heinemann M, Jungclaus JH, Marotzke J. 2009. Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM. Clim. Past 5:785–802 [Google Scholar]
  57. Hill DJ. 2015. The non-analogue nature of Pliocene temperature gradients. Earth Planet. Sci. Lett. 425:232–41 [Google Scholar]
  58. Hoffert MI, Covey C. 1992. Deriving global climate sensitivity from palaeoclimate reconstructions. Nature 360:573–76 [Google Scholar]
  59. Huber M, Caballero R. 2011. The early Eocene equable climate problem revisited. Clim. Past 7:603–33 [Google Scholar]
  60. IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  61. IPCC 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change O Edenhofer, R Pichs-Madruga, Y Sokona, JC Minx, E Farahani et al. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  62. Joughin I, Smith BE, Medley B. 2014. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344:735–38 [Google Scholar]
  63. Kasprak AH, Sepúlveda J, Price-Waldman R, Williford KH, Schoepfer SD. et al. 2015. Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology 43:307–10 [Google Scholar]
  64. Kiehl JT. 2011. Lessons from Earth's past. Science 331:158–59 [Google Scholar]
  65. Kiehl JT, Shields CA. 2013. Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties. Philos. Trans. R. Soc. A 371:20130093 [Google Scholar]
  66. Kirk-Davidoff DB, Lamarque JF. 2008. Maintenance of polar stratospheric clouds in a moist stratosphere. Clim. Past 4:69–78 [Google Scholar]
  67. Kirk-Davidoff DB, Schrag DP, Anderson JG. 2002. On the feedback of stratospheric clouds and polar climate. Geophys. Res. Lett. 29:1151 [Google Scholar]
  68. Köhler P, de Boer B, von der Heydt AS, Stap LB, van de Wal RSW. 2015. On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Clim. Past 11:1801–23 [Google Scholar]
  69. Kopp RE, Raub TD, Schumann D, Vali H, Smirnov AV, Kirschvink JL. 2007. Magnetofossil spike during the Paleocene-Eocene Thermal Maximum: ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States. Paleoceanography 22:PA4103 [Google Scholar]
  70. Kump LR, Pollard D. 2008. Amplification of Cretaceous warmth by biological cloud feedbacks. Science 320:195 [Google Scholar]
  71. Lippert PC, Zachos JC. 2007. A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey. Paleoceanography 22:PA4104 [Google Scholar]
  72. Loptson CA, Lunt DJ, Francis JE. 2014. Investigating vegetation-climate feedbacks during the early Eocene. Clim. Past 10:419–36 [Google Scholar]
  73. Lunt DJ, Dunkley Jones T, Heinemann M, Huber M, LeGrande A. et al. 2012a. A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations: EoMIP. Clim. Past 8:1717–36A meta-analysis of Eocene climate simulations. [Google Scholar]
  74. Lunt DJ, Haywood AM, Schmidt GA, Salzmann U, Valdes PJ, Dowsett HJ. 2010. Earth system sensitivity inferred from Pliocene modelling and data. Nat. Geosci. 3:60–64First quantitative treatment of Earth-system sensitivity for the pre-Pleistocene. [Google Scholar]
  75. Lunt DJ, Haywood AM, Schmidt GA, Salzmann U, Valdes PJ. et al. 2012b. On the causes of mid-Pliocene warmth and polar amplification. Earth Planet. Sci. Lett. 321–322128–38
  76. Martínez-Botí MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF. et al. 2015. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:49–54Presents an exceptionally rich record of CO2 and temperature for the Pliocene and early Pleistocene. [Google Scholar]
  77. Matthews HD, Caldeira K. 2008. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35:L04705Demonstrates the centennial constancy of elevated temperatures even if all anthropogenic carbon emissions cease. [Google Scholar]
  78. McElwain JC, Beerling DJ, Woodward FI. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–90 [Google Scholar]
  79. McGhee GR, Sheenan PM, Bottjer DJ, Droser ML. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211:289–97 [Google Scholar]
  80. McInerney FA, Wing SL. 2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39:489–516 [Google Scholar]
  81. Meraner K, Mauritsen T, Voigt A. 2013. Robust increases in equilibrium climate sensitivity under global warming. Geophys. Res. Lett. 40:5944–48 [Google Scholar]
  82. Montañez I, Norris R, Algeo T, Chandler M, Johnson K. et al. 2011. Understanding Earth's Deep Past: Lessons for Our Climate Future Washington, DC: Natl. Acad.
  83. Myhre G, Highwood EJ, Shine KP, Stordal F. 1998. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25:2715–18 [Google Scholar]
  84. Otto-Bliesner BL, Upchurch GR. 1997. Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. Nature 385:804–7 [Google Scholar]
  85. Panchuk K, Ridgwell A, Kump LR. 2008. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36:315–18 [Google Scholar]
  86. Park J, Royer DL. 2011. Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity. Am. J. Sci. 311:1–26 [Google Scholar]
  87. Pearson PN, Thomas E. 2015. Drilling disturbance and constraints on the onset of the Paleocene-Eocene boundary carbon isotope excursion in New Jersey. Clim. Past 11:95–104 [Google Scholar]
  88. Poulsen CJ, Tabor C, White JD. 2015. Long-term climate forcing by atmospheric oxygen concentrations. Science 348:1238–41 [Google Scholar]
  89. Price GD, Twitchett RJ, Wheeley JR, Buono G. 2013. Isotopic evidence for long term warmth in the Mesozoic. Sci. Rep. 3:1438 [Google Scholar]
  90. Prokoph A, Shields GA, Veizer J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, and 87Sr/86Sr and δ34S database through Earth history. Earth-Sci. Rev. 87:113–33 [Google Scholar]
  91. Röhl U, Bralower TJ, Norris RD, Wefer G. 2000. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927–30 [Google Scholar]
  92. Rohling E, Sluijs A, Dijkstra H, Köhler P. de Wal R. , van et al. 2012. Making sense of palaeoclimate sensitivity. Nature 491:683–91Summarizes the paleoclimate sensitivity literature and proposes a syntax for comparing results across studies. [Google Scholar]
  93. Royer DL. 2014. Atmospheric CO2 and O2 during the Phanerozoic: tools, patterns, and impacts. Treatise on Geochemistry The Atmosphere—History, ed. J Farquhar 251–67 Oxford: Elsevier, 2nd ed.. [Google Scholar]
  94. Royer DL, Berner RA, Park J. 2007. Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446:530–32 [Google Scholar]
  95. Royer DL, Donnadieu Y, Park J, Kowalczyk J, Goddéris Y. 2014. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314:1259–83 [Google Scholar]
  96. Royer DL, Pagani M, Beerling DJ. 2012. Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic. Geobiology 4:298–310 [Google Scholar]
  97. Ruhl M, Bonis NR, Reichart G-J, Sinninghe Damsté JS, Kürschner WM. 2011. Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333:430–34 [Google Scholar]
  98. Sagoo N, Valdes P, Flecker R, Gregoire LJ. 2013. The early Eocene equable climate problem: Can perturbations of climate model parameters identify possible solutions?. Philos. Trans. R. Soc. A 371:20130123Presents the feasibility of correctly simulating early Eocene climate at only 560 ppmv CO2. [Google Scholar]
  99. Schaller MF, Wright JD, Kent DV. 2011. Atmospheric PCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331:1404–9 [Google Scholar]
  100. Schaller MF, Wright JD, Kent DV, Olsen PE. 2012. Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2. Earth Planet. Sci. Lett. 323–24:27–39 [Google Scholar]
  101. Schmidt GA, Ruedy R, Miller R, Lacis A. 2010. Attribution of the present-day total greenhouse effect. J. Geophys. Res. 115:D20106 [Google Scholar]
  102. Sewall JO, Sloan LC. 2006. Come a little bit closer: a high-resolution climate study of the early Paleogene Laramide foreland. Geology 34:81–84 [Google Scholar]
  103. Sewall JO, Sloan LC, Huber M, Wing S. 2000. Climate sensitivity to changes in land surface characteristics. Glob. Planet. Change 26:445–65 [Google Scholar]
  104. Shaffer G, Olsen SM, Pedersen JOP. 2009. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nat. Geosci. 2:105–9 [Google Scholar]
  105. Sloan LC, Pollard D. 1998. Polar stratospheric clouds: a high latitude warming mechanism in an ancient greenhouse world. Geophys. Res. Lett. 25:3517–20 [Google Scholar]
  106. Sloan LC, Rea DK. 1995. Atmospheric carbon dioxide and early Eocene climate: a general circulation modeling sensitivity study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 119:275–92 [Google Scholar]
  107. Sloan LC, Walker JCG, Moore TC, Rea DK, Zachos JC. 1992. Possible methane-induced polar warming in the early Eocene. Nature 357:320–22 [Google Scholar]
  108. Soden BJ, Held IM. 2006. An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Clim. 19:3354–60 [Google Scholar]
  109. Solomon S, Daniel JS, Sanford TJ, Murphy DM, Plattner G-K. et al. 2010. Persistence of climate changes due to a range of greenhouse gases. PNAS 107:18354–59 [Google Scholar]
  110. Solomon S, Plattner G-K, Knutti R, Friedlingstein P. 2009. Irreversible climate change due to carbon dioxide emissions. PNAS 106:1704–9 [Google Scholar]
  111. Steinthorsdottir M, Jeram AJ, McElwain JC. 2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308:418–32 [Google Scholar]
  112. Thomas E, Shackleton NJ. 1996. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. Geol. Soc. Spec. Publ. 101:401–41 [Google Scholar]
  113. Unger N, Yue X. 2014. Strong chemistry-climate feedbacks in the Pliocene. Geophys. Res. Lett. 41:527–33 [Google Scholar]
  114. Upchurch GR, Kiehl J, Shields C, Scherer J, Scotese C. 2015. Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: congruence of geologic data and climate models. Geology 43:683–86 [Google Scholar]
  115. Valdes PJ. 2011. Built for stability. Nat. Geosci. 4:414–16Discusses some of the key challenges of paleoclimate modeling. [Google Scholar]
  116. van de Wal RSW, de Boer B, Lourens LJ, Köhler P, Bintanja R. 2011. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7:1459–69 [Google Scholar]
  117. Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–83 [Google Scholar]
  118. Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA. et al. 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science 308:1611–15 [Google Scholar]
  119. Zachos JC, Shackleton NJ, Revenaugh JS, Pälike H, Flower BP. 2001. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 292:274–78 [Google Scholar]
  120. Zeebe RE. 2011. Where are you heading Earth?. Nat. Geosci. 4:416–17 [Google Scholar]
  121. Zeebe RE. 2013. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. PNAS 110:13739–44Models the effects associated with an Earth-system sensitivity on our long-term climate future. [Google Scholar]
  122. Zeebe RE, Zachos JC, Dickens GR. 2009. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nat. Geosci. 2:576–80 [Google Scholar]
  123. Zhang YG, Pagani M, Liu Z, Bohaty SM, DeConto R. 2013. A 40-million-year history of atmospheric CO2. Philos. Trans. R. Soc. A 371:20130096 [Google Scholar]
  124. Zhou J, Poulsen CJ, Rosenbloom N, Shields C, Briegleb B. 2012. Vegetation-climate interactions in the warm mid-Cretaceous. Clim. Past 8:565–76 [Google Scholar]
  125. Zickfeld K, Eby M, Weaver AJ, Alexander K, Crespin E. et al. 2013. Long-term climate change commitment and reversibility: an EMIC intercomparison. J. Clim. 26:5782–809 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error