1932

Abstract

The Tunguska event remained enigmatic for almost 100 years until the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994 helped to resolve this enigma and allowed us to adequately interpret the more recent Chelyabinsk event. Airbursts typically occur if a meteoroid entering Earth's atmosphere is 10–100 m in diameter, i.e., its energy ranges from 0.5 (Chelyabinsk) to 20 (Tunguska) Mt TNT. All this energy is released in the atmosphere with strong shock waves generated during the entry reaching the surface and causing substantial damage. Atmospheric plumes are capable of dispersing extraterrestrial materials worldwide. Modern civilization is extremely vulnerable to those relatively small disturbances that recur on a decadal timescale and are still difficult to predict.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012218
2016-06-29
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/44/1/annurev-earth-060115-012218.html?itemId=/content/journals/10.1146/annurev-earth-060115-012218&mimeType=html&fmt=ahah

Literature Cited

  1. Alvarez LW, Alvarez W, Asaro F, Michel HV. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–108 [Google Scholar]
  2. Artemieva NA, Shuvalov VV. 2001. Motion of a fragmented meteoroid through the planetary atmosphere. J. Geophys. Res. 106:E23297–310 [Google Scholar]
  3. Artemieva NA, Shuvalov VV. 2007. 3D effects of Tunguska event on the ground and in atmosphere. Lunar Planet. Sci. Conf. Abstr. 38:1537 [Google Scholar]
  4. Artemieva NA, Shuvalov VV. 2010. Tunguska explosion—final remarks. Lunar Planet. Sci. Conf. Abstr. 41:1268 [Google Scholar]
  5. Artemieva NA, Shuvalov VV. 2014. The smoke train of the Chelyabinsk meteoroid Presented at the 77th Annual Meteoritical Society Meeting, Sept. 7–12, Casablanca, Moroc., Abstr. 5113 [Google Scholar]
  6. Barringer DM. 1909. Meteor Crater (Formerly Called Coon Mountain or Coon Butte), in Northern Central Arizona Princeton, NJ: privately printed [Google Scholar]
  7. Ben-Menahem A. 1975. Source parameters of the Siberian explosion on June 30, 1908, from analysis and synthesis of signals at four stations. Phys. Earth Planet. Inter. 11:1–35 [Google Scholar]
  8. Bland PA, Artemieva NA. 2003. Efficient disruption of small asteroids by Earth's atmosphere. Nature 424:288–91 [Google Scholar]
  9. Borovička J, Spurný P, Brown P, Wiegert P, Kalenda P. et al. 2013. The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature 503:235–37 [Google Scholar]
  10. Borovička J, Spurný P, Koten P. 2007. Atmospheric deceleration and light curves of Draconid meteors and implications for the structure of cometary dust. Astron. Astrophys. 473:661–72 [Google Scholar]
  11. Boslough MBE, Crawford DA. 1997. Shoemaker-Levy 9 and plume-forming collisions on Earth. Ann. N.Y. Acad. Sci. 822:236–82 [Google Scholar]
  12. Boslough MBE, Crawford DA. 2008. Low-altitude airbursts and the impact threat. Int. J. Impact Eng. 35:1441–48 [Google Scholar]
  13. Boslough MBE, Crawford DA, Robinson AC, Trucano TG. 1994. Mass and penetration depth of Shoemaker-Levy 9 fragments from time-resolved photometry. Geophys. Res. Lett. 21:1555–58 [Google Scholar]
  14. Bronshten VA. 1999. The nature of the Tunguska meteorite. Meteorit. Planet. Sci. 34:723–28 [Google Scholar]
  15. Brown PG, Assink JD, Astiz L, Blaauw R, Boslough MB. et al. 2013. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503:238–41 [Google Scholar]
  16. Brown PG, Spalding RE, ReVelle DO, Tagliaferri E, Worden SP. 2002. The flux of small near-Earth objects colliding with the Earth. Nature 420:294–96 [Google Scholar]
  17. Carlson RW, Weissman PR, Segura M, Hui J, Smythe WD. et al. 1995. Galileo infrared observations of the Shoemaker-Levy 9 G impact fireball: a preliminary report. Geophys. Res. Lett. 22:1557–60 [Google Scholar]
  18. Chushkin PI, Sharipov AK. 1990. Large meteor body ablation by radiative heating. Zh. Vychisl. Mat. Mat. Fiz. 30:1815–26 (in Russian) [Google Scholar]
  19. Chyba CF, Thomas PJ, Zahnle KJ. 1993. The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361:40–44 [Google Scholar]
  20. Collins GS, Melosh HJ, Markus RA. 2005. Earth Impact Effects Program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 40:817–40 [Google Scholar]
  21. Crawford DA. 1997. Comet Shoemaker-Levy 9 fragment size estimates: How big was the parent body?. Ann. N.Y. Acad. Sci. 822:155–73 [Google Scholar]
  22. Crawford DA, Boslough MBE, Trucano TG, Robinson AC. 1994. The impact of comet Shoemaker-Levy 9 on Jupiter. Shock Waves 4:47–50 [Google Scholar]
  23. Curci G, Visconti G, Jacob DJ, Evans MJ. 2004. Tropospheric fate of Tunguska generated nitrogen oxides. Geophys. Res. Lett. 31:L06123 [Google Scholar]
  24. Glasstone S, Dolan PJ. 1977. The Effects of Nuclear Weapons Washington, DC: US Dep. Defense and US Energy Res. Dev. Admin, 3rd ed.. [Google Scholar]
  25. Gorkavyi N, Rault DF, Newman PA, Silva AM, Dudorov AE. 2013. New stratospheric dust belt due to the Chelyabinsk bolide. Geophys. Res. Lett. 40:4728–33 [Google Scholar]
  26. Grigorian SS. 1980. Motion and destruction of meteors in planetary atmospheres. Cosmic Res. 17:724–40 [Google Scholar]
  27. Hammel HB, Beebe RF, Ingersoll AP, Orton GS, Mills JR. et al. 1995. HST imaging of atmospheric phenomena created by the impact of comet Shoemaker-Levy 9. Science 267:1288–96 [Google Scholar]
  28. Harris AW. 2002. A new estimate of the population of small NEAs. Bull. Am. Astron. Soc. 34:835 [Google Scholar]
  29. Hills JG, Goda MP. 1993. The fragmentation of small asteroids in the atmosphere. Astron. J. 105:1114–44 [Google Scholar]
  30. Hou QL, Kolesnikov EM, Xie LW, Zhou MF, Sun M, Kolesnikova NV. 2000. Discovery of probable Tunguska cosmic body material: anomalies of platinum group elements and rare-earth elements in peat near the explosion site. Planet. Space Sci. 48:1447–55 [Google Scholar]
  31. Jenniskens P, Shaddad MH, Numan D, Elsir S, Kudoda AM. et al. 2009. The impact and recovery of asteroid 2008 TC3. Nature 458:485–88 [Google Scholar]
  32. Kelley MC, Seyler CE, Larsen MF. 2009. Two-dimensional turbulence, space shuttle plume transport in the thermosphere, and a possible relation to the Great Siberian Impact Event. Geophys. Res. Lett. 36:L14103 [Google Scholar]
  33. Korobeinikov VP, Shurshalov LV, Vlasov VL, Semenov IV. 1998. Complex modelling of the Tunguska catastrophe. Planet. Space Sci. 46:231–44 [Google Scholar]
  34. Kovalev AT, Nemchinov IV, Shuvalov VV. 2006. Ionospheric and magnetospheric disturbances caused by impacts of small comets and asteroids. Solar Syst. Res. 40:57–67 [Google Scholar]
  35. Kulik L. 1927. On the fall of the Podkamennaya Tunguska meteorite in 1908, transl. L La Paz, G Wiens, 1935, in. Meteor Notes 43:596–99 (from Russian) [Google Scholar]
  36. Kulik LA. 1938. The meteorite of June 30, 1908, in Central Siberia. Astron. Soc. Pac. Leafl. 3:78–84 [Google Scholar]
  37. Kuzmicheva MY, Losseva TV. 2012. Simulations of the geomagnetic field disturbances caused by the Tunguska event 1908. Lunar Planet. Sci. Conf. Abstr. 43:2319 [Google Scholar]
  38. McGlaun JM, Thompson SL, Elrick MG. 1990. CTH: a three-dimensional shock waves physics code. Int. J. Impact Eng. 10:351–60 [Google Scholar]
  39. Merrill GP. 1908. The meteor crater of Canyon Diablo, Arizona—its history, origin and associated meteoritic irons. Smithson. Misc. Collect. 50:461–98 [Google Scholar]
  40. Nazarov MA, Korina MI, Kolesov GM, Vasil'ev N, Kolesnikov E. 1983. The Tunguska event: mineralogical and geochemical data. Lunar Planet. Sci. Conf. Abstr. 14:548–49 [Google Scholar]
  41. Nemtchinov IV, Shuvalov VV, Kosarev IB, Artemieva NA, Trubetskaya IA. et al. 1997. Assessment of comet Shoemaker-Levy 9 fragment sizes using light curves measured by Galileo spacecraft instruments. Planet. Space Sci. 45:311–26 [Google Scholar]
  42. Öpik EJ. 1916. A note on the meteoric theory of lunar craters. Mirovedenie 5:125–134 (in Russian) [Google Scholar]
  43. Pasechnik IP. 1976. Evaluation of parameters of the Tunguska meteorite explosion by seismic and microbarographic data. Space Matter in the Earth25–54 Novosibirsk, Russ: Nauka (in Russian) [Google Scholar]
  44. Passey QR, Melosh HJ. 1980. Effects of atmospheric breakup on crater field formation. Icarus 42:211–33 [Google Scholar]
  45. Petrov GI, Stulov VP. 1976. Motion of large bodies in the atmospheres of planets. Cosmic Res. 13:525–31 [Google Scholar]
  46. Petrovic JJ. 2001. Mechanical properties of meteorites and their constituents. J. Mater. Sci. 36:1579–83 [Google Scholar]
  47. Pierazzo E, Vickery AM, Melosh HJ. 1997. A reevaluation of impact melt production. Icarus 127:408–23 [Google Scholar]
  48. Popova O, Borovička J, Hartmann WK, Spurný P, Gnos E. et al. 2011. Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46:1525–50 [Google Scholar]
  49. Popova O, Jenniskens P, Emel'yanenko V, Kartashova A, Biryukov E. et al. 2013. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science 342:1069–73 [Google Scholar]
  50. Shoemaker EM, Shoemaker CS, Levy DH. 1993. Collision of P/Shoemaker-Levy 9 with Jupiter. Bull. Am. Astron. Soc. 25:1042 [Google Scholar]
  51. Shuvalov VV. 1999a. Atmospheric plumes created by meteoroids impacting the Earth. J. Geophys. Res. 104:E35877–89 [Google Scholar]
  52. Shuvalov VV. 1999b. Multi-dimensional hydrodynamic code SOVA for interfacial flows: application to the thermal layer effect. Shock Waves 9:381–90 [Google Scholar]
  53. Shuvalov VV, Artemieva NA. 2002. Numerical modeling of Tunguska-like impacts. Planet. Space Sci. 50:181–92 [Google Scholar]
  54. Shuvalov VV, Svettsov VV, Trubetskaya IA. 2013. An estimate for the size of the area of damage on the Earth's surface after impacts of 10–300-m asteroids. Solar Syst. Res. 47:260–67 [Google Scholar]
  55. Shuvalov VV, Trubetskaya IA. 2007. Aerial bursts in the terrestrial atmosphere. Solar Syst. Res. 41:220–30 [Google Scholar]
  56. Stevens MH, Gumbel J, Englert CR, Grossmann KU, Rapp M, Hartogh P. 2003. Polar mesospheric clouds formed from space shuttle exhaust. Geophys. Res. Lett. 30:1546 [Google Scholar]
  57. Svetsov VV. 1996. Total ablation of the debris from the 1908 Tunguska explosion. Nature 383:697–99 [Google Scholar]
  58. Svetsov VV. 1998. Could the Tunguska debris survive the terminal flare?. Planet. Space Sci. 46:261–68 [Google Scholar]
  59. Svetsov VV, Nemtchinov IV, Teterev AV. 1995. Disintegration of large meteoroids in Earth's atmosphere: theoretical models. Icarus 116:131–53 [Google Scholar]
  60. Svettsov VV. 2007. Estimates of the energy of surface waves from atmospheric explosions and the source parameters of the Tunguska event. Izv. Phys. Solid Earth 43:583–91 [Google Scholar]
  61. Thomas GE, McKay CP. 1985. On the mean particle size and water content of polar mesospheric clouds. Planet. Space Sci. 33:1209–24 [Google Scholar]
  62. Toon OB, Zahnle KJ, Morrison D, Turco RP, Covey C. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. Space Phys. 35:41–78 [Google Scholar]
  63. Vasilyev NV. 1998. The Tunguska meteorite problem today. Planet. Space Sci. 46:129–50 [Google Scholar]
  64. Weaver HA, A'Hearn MF, Arpigny C, Boice DC, Feldman PD. et al. 1995. The Hubble Space Telescope (HST) observing campaign on Comet Shoemaker-Levy 9. Science 267:1282–88 [Google Scholar]
  65. Wegener A. 1921. The origin of lunar craters, transl. AMC Sengôr, 1975, in Moon. 14211–36 (from German)
  66. Weibull W. 1951. A statistical distribution function of wide applicability. J. Appl. Mech. 18:140–47 [Google Scholar]
  67. Werner SC, Harris AW, Neukum G, Ivanov BA. 2002. The near-Earth asteroid size-frequency distribution: a snapshot of the lunar impactor size-frequency distribution. Icarus 156:287–90 [Google Scholar]
  68. Zahnle K. 1990. Atmospheric chemistry by large impacts. Geol. Soc. Am. Spec. Pap. 247:271–88 [Google Scholar]
  69. Zahnle K, MacLow MM. 1994. The collision of Jupiter and Comet Shoemaker-Levy 9. Icarus 108:1–17 [Google Scholar]
  70. Zotkin IT, Tsikulin MA. 1966. Simulation of the explosion of the Tungus meteorite. Sov. Phys. Dokl. 11:183–86 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012218
Loading
/content/journals/10.1146/annurev-earth-060115-012218
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error