We present a revised global plate motion model with continuously closing plate boundaries ranging from the Triassic at 230 Ma to the present day, assess differences among alternative absolute plate motion models, and review global tectonic events. Relatively high mean absolute plate motion rates of approximately 9–10 cm yr−1 between 140 and 120 Ma may be related to transient plate motion accelerations driven by the successive emplacement of a sequence of large igneous provinces during that time. An event at ∼100 Ma is most clearly expressed in the Indian Ocean and may reflect the initiation of Andean-style subduction along southern continental Eurasia, whereas an acceleration at ∼80 Ma of mean rates from 6 to 8 cm yr−1 reflects the initial northward acceleration of India and simultaneous speedups of plates in the Pacific. An event at ∼50 Ma expressed in relative, and some absolute, plate motion changes around the globe and in a reduction of global mean plate speeds from about 6 to 4–5 cm yr−1 indicates that an increase in collisional forces (such as the India–Eurasia collision) and ridge subduction events in the Pacific (such as the Izanagi–Pacific Ridge) play a significant role in modulating plate velocities.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Amante C, Eakins BW. 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis NOAA Tech. Memo. NESDIS NGDC-24, Mar. Geol. Geophys. Div., Natl. Geophys. Data Cent., Natl. Ocean. Atmos. Admin. (NOAA), Boulder, CO
  2. Arculus RJ, Ishizuka O, Bogus KA, Gurnis M, Hickey-Vargas R. et al. 2015. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc. Nat. Geosci. 8:728–33 [Google Scholar]
  3. Barnett-Moore N, Müller RD, Williams SE, Skogseid J, Seton M. 2016. A reconstruction of the North Atlantic since the earliest Jurassic. Basin Res. In review
  4. Bird P. 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4:1027 [Google Scholar]
  5. Boschman LM, van Hinsbergen DJ, Torsvik TH, Spakman W, Pindell JL. 2014. Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth-Sci. Rev. 138:102–36 [Google Scholar]
  6. Bower DJ, Gurnis M, Seton M. 2013. Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem. Geophys. Geosyst. 14:44–63 [Google Scholar]
  7. Boyden JA, Müller RD, Gurnis M, Torsvik TH, Clark JA. et al. 2011. Next-generation plate-tectonic reconstructions using GPlates. Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences GR Keller, C Baru 95–114 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  8. Butterworth NP, Müller RD, Quevedo L, O'Connor JM, Hoernle K, Morra G. 2014a. Pacific Plate slab pull and intraplate deformation in the early Cenozoic. Solid Earth 5:757–77 [Google Scholar]
  9. Butterworth NP, Talsma AS, Müller RD, Seton M, Bunge HP. et al. 2014b. Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs. J. Geodyn. 73:1–13 [Google Scholar]
  10. Cande SC, Kent DV. 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100:B46093–95 [Google Scholar]
  11. Cande SC, Patriat P. 2015. The anticorrelated velocities of Africa and India in the Late Cretaceous and early Cenozoic. Geophys. J. Int. 200:227–43 [Google Scholar]
  12. Cannon J, Lau E, Müller R. 2014. Plate tectonic raster reconstruction in GPlates. Solid Earth 5:741–55 [Google Scholar]
  13. Capitanio F, Faccenna C, Funiciello R. 2009. The opening of Sirte basin: result of slab avalanching?. Earth Planet. Sci. Lett. 285:210–16 [Google Scholar]
  14. Channell JET. 1995. Recalibration of the geomagnetic polarity timescale. Rev. Geophys. 33:161–68 [Google Scholar]
  15. Christeson G, Van Avendonk H, Norton I, Snedden J, Eddy D. et al. 2014. Deep crustal structure in the eastern Gulf of Mexico. J. Geophys. Res. Solid Earth 119:6782–801 [Google Scholar]
  16. Cogne JP, Humler E, Courtillot V. 2006. Mean age of oceanic lithosphere drives eustatic sea-level change since Pangea breakup. Earth Planet. Sci. Lett. 245:115–22 [Google Scholar]
  17. Colli L, Stotz I, Bunge HP, Smethurst M, Clark S. et al. 2014. Rapid South Atlantic spreading changes and coeval vertical motion in surrounding continents: evidence for temporal changes of pressure-driven upper mantle flow. Tectonics 33:1304–21 [Google Scholar]
  18. Coltice N, Rolf T, Tackley P, Labrosse S. 2012. Dynamic causes of the relation between area and age of the ocean floor. Science 336:335–38 [Google Scholar]
  19. Coltice N, Seton M, Rolf T, Müller R, Tackley PJ. 2013. Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading. Earth Planet. Sci. Lett. 383:92–100 [Google Scholar]
  20. Cox A, Hart BR. 1986. Plate Tectonics: How It Works Palo Alto, CA: Blackwell
  21. Dodd SC, Mac Niocaill C, Muxworthy AR. 2015. Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná-Etendeka Large Igneous Province: new palaeomagnetic data from Namibia. Earth Planet. Sci. Lett. 414:16–29 [Google Scholar]
  22. Doubrovine PV, Steinberger B, Torsvik TH. 2012. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. 117:B09101 [Google Scholar]
  23. Eagles G, Jokat W. 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611:28–50 [Google Scholar]
  24. Fournier M, Chamot-Rooke N, Petit C, Huchon P, Al-Kathiri A. et al. 2010. Arabia-Somalia plate kinematics, evolution of the Aden-Owen-Carlsberg triple junction, and opening of the Gulf of Aden. J. Geophys. Res. 115:B04102 [Google Scholar]
  25. Gee J, Kent D. 2007. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Treatise on Geophysics 5 Geomagnetism M Kono 455–507 Amsterdam: Elsevier, 1st ed.. [Google Scholar]
  26. Gibbons A, Zahirovic S, Müller R, Whittaker J, Yatheesh V. 2015. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Res. 28:451–92 [Google Scholar]
  27. Gibbons AD, Whittaker JM, Müller RD. 2013. The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. J. Geophys. Res. Solid Earth 118:808–22 [Google Scholar]
  28. Goes S, Capitanio FA, Morra G. 2008. Evidence of lower mantle slab penetration phases in plate motions. Nature 451:981–84 [Google Scholar]
  29. Granot R, Cande S, Stock J, Damaske D. 2013. Revised Eocene-Oligocene kinematics for the West Antarctic rift system. Geophys. Res. Lett. 40:279–84 [Google Scholar]
  30. Granot R, Dyment J. 2015. The Cretaceous opening of the South Atlantic Ocean. Earth Planet. Sci. Lett. 414:156–63 [Google Scholar]
  31. Granot R, Dyment J, Gallet Y. 2012. Geomagnetic field variability during the Cretaceous Normal Superchron. Nat. Geosci. 5:220–23 [Google Scholar]
  32. Gurnis M, Turner M, Zahirovic S, DiCaprio L, Spasojevic S. et al. 2012. Plate tectonic reconstructions with continuously closing plates. Comput. Geosci. 38:35–42 [Google Scholar]
  33. Heine C, Zoethout J, Müller RD. 2013. Kinematics of the South Atlantic rift. Solid Earth 4:215–53 [Google Scholar]
  34. Hellinger S. 1981. The uncertainties of finite rotations in plate tectonics. J. Geophys. Res. Solid Earth 86:9312–18 [Google Scholar]
  35. Hoink T, Jellinek A, Lenardic A. 2011. Viscous coupling at the lithosphere-asthenosphere boundary. Geochem. Geophys. Geosyst. 12:Q0AK02 [Google Scholar]
  36. Hosseinpour M, Müller RD, Williams SE, Whittaker JM. 2013. Full-fit reconstruction of the Labrador Sea and Baffin Bay. Solid Earth 4:461–79 [Google Scholar]
  37. Hosseinpour M, Williams SE, Seton M, Barnett-Moore N, Müller RD. 2016. Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models. Int. Geol. Rev. In press
  38. Huber M, Goldner A. 2012. Eocene monsoons. J. Asian Earth Sci. 44:3–23 [Google Scholar]
  39. Iaffaldano G, Hawkins R, Bodin T, Sambridge M. 2014a. REDBACK: open-source software for efficient noise-reduction in plate kinematic reconstructions. Geochem. Geophys. Geosyst. 15:1663–70 [Google Scholar]
  40. Iaffaldano G, Hawkins R, Sambridge M. 2014b. Bayesian noise-reduction in Arabia/Somalia and Nubia/Arabia finite rotations since ∼20 Ma: implications for Nubia/Somalia relative motion. Geochem. Geophys. Geosyst. 15:845–54 [Google Scholar]
  41. Kirkwood BH, Royer JY, Chang TC, Gordon RG. 1999. Statistical tools for estimating and combining finite rotations and their uncertainties. Geophys. J. Int. 137:408–28 [Google Scholar]
  42. Kneller EA, Johnson CA, Karner GD, Einhorn J, Queffelec TA. 2012. Inverse methods for modeling non-rigid plate kinematics: application to Mesozoic plate reconstructions of the Central Atlantic. Comput. Geosci. 49:217–30 [Google Scholar]
  43. Kumar P, Yuan X, Kumar MR, Kind R, Li X, Chadha R. 2007. The rapid drift of the Indian tectonic plate. Nature 449:894–97 [Google Scholar]
  44. Larson RL, Chase CG. 1972. Late Mesozoic evolution of the western Pacific Ocean. Geol. Soc. Am. Bull. 83:3627–44 [Google Scholar]
  45. Lehnert K, Su Y, Langmuir C, Sarbas B, Nohl U. 2000. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1:1012 [Google Scholar]
  46. Lowrie W, Kent DV. 2004. Geomagnetic polarity timescales and reversal frequency regimes. Geophys. Monogr. Ser. 145:117–29 [Google Scholar]
  47. Maher SM, Wessel P, Müller RD, Williams SE, Harada Y. 2015. Absolute plate motion of Africa around Hawaii-Emperor bend time. Geophys. J. Int. 201:1743–64 [Google Scholar]
  48. Matthews KJ, Maloney KT, Zahirovic S, Williams SE, Seton M, Müller RD. 2016a. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change. Submitted
  49. Matthews KJ, Müller RD, Sandwell DT. 2016b. Oceanic microplate formation records the onset of India–Eurasia collision. Earth Planet. Sci. Lett. 433:204–14 [Google Scholar]
  50. Matthews KJ, Müller RD, Wessel P, Whittaker JM. 2011. The tectonic fabric of the ocean basins. J. Geophys. Res. 116B12109
  51. Matthews KJ, Seton M, Müller RD. 2012. A global-scale plate reorganization event at 105–100 Ma. Earth Planet. Sci. Lett. 355:283–98 [Google Scholar]
  52. Matthews KJ, Williams SE, Whittaker JM, Müller RD, Seton M, Clarke GL. 2015. Geologic and kinematic constraints on Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific. Earth-Sci. Rev. 140:72–107 [Google Scholar]
  53. Morra G, Seton M, Quevedo L, Müller RD. 2013. Organization of the tectonic plates in the last 200 Myr. Earth Planet. Sci. Lett. 373:93–101 [Google Scholar]
  54. Müller RD, Dutkiewicz A, Seton M, Gaina C. 2013. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology 41:907–10 [Google Scholar]
  55. Müller RD, Dutkiewicz A, Seton M, Gaina C. 2014. Seawater chemistry driven by supercontinent assembly, breakup and dispersal: reply. Geology 42:e335 [Google Scholar]
  56. Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG. 1997. Digital isochrons of the world's ocean floor. J. Geophys. Res. 102:B23211–14 [Google Scholar]
  57. Müller RD, Roest WR, Royer JY. 1998. Asymmetric sea-floor spreading caused by ridge-plume interactions. Nature 396:455–59 [Google Scholar]
  58. Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:1357–62 [Google Scholar]
  59. Nakanishi M, Tamaki K, Kobayashi K. 1992. A new Mesozoic isochron chart of the northwestern Pacific Ocean: paleomagnetic and tectonic implications. Geophys. Res. Lett. 19:693–96 [Google Scholar]
  60. O'Neill C, Müller D, Steinberger B. 2005. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst. 6:Q04003 [Google Scholar]
  61. Peters SE, Zhang C, Livny M, C. 2014. A machine reading system for assembling synthetic paleontological databases. PLOS ONE 9:e113523 [Google Scholar]
  62. Prokoph A, El Bilali H, Ernst R. 2013. Periodicities in the emplacement of large igneous provinces through the Phanerozoic: relations to ocean chemistry and marine biodiversity evolution. Geosci. Front. 4:263–76 [Google Scholar]
  63. Qin X, Müller RD, Cannon J, Landgrebe TCW, Heine C. et al. 2012. The GPlates Geological Information Model and Markup Language. Geosci. Instrum. Methods Data Syst. 2:365–428 [Google Scholar]
  64. Quirk DG, Hertle M, Jeppesen JW, Raven M, Mohriak WU. et al. 2013. Rifting, subsidence and continental break-up above a mantle plume in the central South Atlantic. Geol. Soc. Lond. Spec. Publ. 369:185–214 [Google Scholar]
  65. Rona PA, Richardson ES. 1978. Early Cenozoic global plate reorganization. Earth Planet. Sci. Lett. 40:1–11 [Google Scholar]
  66. Sandwell DT, Müller RD, Smith WH, Garcia E, Francis R. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346:65–67 [Google Scholar]
  67. Schellart W, Stegman D, Freeman J. 2008. Global trench migration velocities and slab migration induced upper mantle volume fluxes: constraints to find an Earth reference frame based on minimizing viscous dissipation. Earth-Sci. Rev. 88:118–44 [Google Scholar]
  68. Schettino A, Turco E. 2011. Tectonic history of the western Tethys since the Late Triassic. Geol. Soc. Am. Bull. 123:89–105 [Google Scholar]
  69. Seton M, Flament N, Whittaker J, Müller RD, Gurnis M, Bower DJ. 2015. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60–50 million years ago. Geophys. Res. Lett. 42:1732–40 [Google Scholar]
  70. Seton M, Mortimer N, Williams SE, Quilty P, Gans P. et al. 2016. Melanesian back-arc basin and arc development: implication for Ontong Java Plateau timing. Gondwana Res. In review
  71. Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik TH. et al. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113:212–70 [Google Scholar]
  72. Seton M, Whittaker JM, Wessel P, Müller RD, DeMets C. et al. 2014. Community infrastructure and repository for marine magnetic identifications. Geochem. Geophys. Geosyst. 15:1629–41 [Google Scholar]
  73. Shephard GE, Bunge HP, Schuberth BS, Müller R, Talsma A. et al. 2012. Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure. Earth Planet. Sci. Lett. 317:204–17 [Google Scholar]
  74. Shephard GE, Flament N, Williams SE, Seton M, Gurnis M, Müller RD. 2014. Circum-Arctic mantle structure and long-wavelength topography since the Jurassic. J. Geophys. Res. Solid Earth 119:7889–908 [Google Scholar]
  75. Shephard GE, Müller RD, Seton M. 2013. The tectonic evolution of the Arctic since Pangea breakup: integrating constraints from surface geology and geophysics with mantle structure. Earth-Sci. Rev. 124:148–83 [Google Scholar]
  76. Steinberger B, O'Connell RJ. 1998. Advection of plumes in mantle flow: implications for hot spot motion, mantle viscosity and plume distributions. Geophys. J. Int. 132:412–34 [Google Scholar]
  77. Steinberger B, Torsvik TH. 2008. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452:620–23 [Google Scholar]
  78. Tarduno JA. 2007. On the motion of Hawaii and other mantle plumes. Chem. Geol. 241:234–47 [Google Scholar]
  79. Torsvik TH, Müller RD, Van der Voo R, Steinberger B, Gaina C. 2008. Global plate motion frames: toward a unified model. Rev. Geophys. 46:RG3004 [Google Scholar]
  80. Torsvik TH, Steinberger B, Gurnis M, Gaina C. 2010. Plate tectonics and net lithosphere rotation over the past 150 My. Earth Planet. Sci. Lett. 291:106–12 [Google Scholar]
  81. Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B. et al. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114:325–68 [Google Scholar]
  82. van der Meer DG, Spakman W, van Hinsbergen DJ, Amaru ML, Torsvik TH. 2010. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3:36–40 [Google Scholar]
  83. Van der Voo R, van Hinsbergen DJ, Domeier M, Spakman W, Torsvik TH. 2015. Latest Jurassic–earliest Cretaceous closure of the Mongol-Okhotsk Ocean: a paleomagnetic and seismological-tomographic analysis. Geol. Soc. Am. Spec. Pap. 513:SPE513–19 [Google Scholar]
  84. Wessel P, Kroenke L. 2008. Pacific absolute plate motion since 145 Ma: an assessment of the fixed hot spot hypothesis. J. Geophys. Res. 113:B06101 [Google Scholar]
  85. Wessel P, Matthews KJ, Müller RD, Mazzoni A, Whittaker JM. et al. 2015. Semiautomatic fracture zone tracking. Geochem. Geophys. Geosyst. 16:2462–72 [Google Scholar]
  86. Whittaker JM, Afonso JC, Masterton S, Müller RD, Wessel P. et al. 2015. Long-term interaction between mid-ocean ridges and mantle plumes. Nat. Geosci. 8:479–83 [Google Scholar]
  87. Whittaker JM, Müller RD, Leitchenkov G, Stagg H, Sdrolias M. et al. 2007. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time. Science 318:83–86 [Google Scholar]
  88. Whittaker JM, Williams SE, Müller RD. 2013. Revised tectonic evolution of the Eastern Indian Ocean. Geochem. Geophys. Geosyst. 14:1891–909 [Google Scholar]
  89. Williams SE, Flament N, Müller RD, Butterworth N. 2015. Absolute plate motions since 130 Ma constrained by subduction zone kinematics. Earth Planet. Sci. Lett. 418:66–77 [Google Scholar]
  90. Williams SE, Whittaker JM, Müller RD. 2011. Full-fit, palinspastic reconstruction of the conjugate Australian-Antarctic margins. Tectonics 30:TC6012 [Google Scholar]
  91. Wright NM, Müller RD, Seton M, Williams SE. 2015. Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend. Geology 43:455–58 [Google Scholar]
  92. Wright NM, Seton M, Williams SE, Müller RD. 2016. The Late Cretaceous to recent tectonic history of the Pacific Ocean basin. Earth-Sci. Rev. 154138–73
  93. Zahirovic S, Müller RD, Seton M, Flament N. 2015. Tectonic speed limits from plate kinematic reconstructions. Earth Planet. Sci. Lett. 418:40–52 [Google Scholar]
  94. Zahirovic S, Seton M, Müller RD. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth 5:227–73 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error