It is understood how rocks are made on Earth. However, on the Moon, Mercury, and, to a lesser extent, Mars and Venus, there are distinct rock-forming processes that we do not fully comprehend. The surfaces and crusts of the inner planetary bodies may retain a history of disruption by hypervelocity impact resulting in the generation of disaggregated materials to several kilometers depth. The uppermost component of this is called regolith (typically <20 m thick on the Moon), which is part of a more extensive megaregolith that is up to tens of kilometers thick, and which in places may pervade the entire crust of a planetary body. It is from these pulverized materials that new rocks are reaggregated to form so-called breccias. This work reviews regolith and megaregolith structure for the inner planetary bodies and investigates how extraterrestrial breccias are produced. Three principal formation mechanisms are explored: thermal sintering, shock sintering, and the dynamic interaction of impact-generated melt with fragmental material.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abramov O, Wong SM, Kring DA. 2012. Differential melt scaling for oblique impacts on terrestrial planets. Icarus 218:905–16 [Google Scholar]
  2. Agrell SO, Scoon JH, Muir ID, Long JVP, McConnell JDC, Pecket A. 1970. Mineralogy and petrology of some lunar samples. Science 167:583–86 [Google Scholar]
  3. Ahrens TJ. 1975. Compaction by impact of unconsolidated lunar fines. Moon 14:291–99 [Google Scholar]
  4. Ahrens TJ, Cole DM. 1974. Shock compression and adiabatic release of lunar fines from Apollo 17. Proc. Lunar Sci. Conf. 5:2333–45 [Google Scholar]
  5. Allen CC, Jercinovic MJ, Thomas S, Klaus K. 1982. Experimental shock lithification of water-bearing rock powders. Geophys. Res. Lett. 9:1013–16 [Google Scholar]
  6. Anderson DL. 2007. New Theory of the Earth Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  7. Asphaug E. 2009. Growth and evolution of asteroids. Annu. Rev. Earth Planet. Sci. 37:413–48 [Google Scholar]
  8. Barlow NG. 2008. Mars: An Introduction to Its Interior, Surface and Atmosphere Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  9. Bart GD. 2014. The quantitative relationship between small impact crater morphology and regolith depth. Icarus 235:130–35 [Google Scholar]
  10. Bart GD, Nickerson RD, Lawder MY, Melosh HJ. 2011. Global survey of lunar regolith depths from LROC images. Icarus 215:485–90 [Google Scholar]
  11. Beaty DW, Albee AL. 1978. Comparative petrology and possible genetic relations among the Apollo 11 basalts. Lunar Planet. Sci. Conf. Abstr. 9:359–63 [Google Scholar]
  12. Beauchamp EK. 1987. Shock-activated sintering. High Pressure Explosive Processing of Ceramics RA Graham, AB Sawaoka 139–74 Aedermannsdorf, Switz.: Trans Tech [Google Scholar]
  13. Binder AB, Lange M. 1980. On the thermal history, thermal state, and related tectonism of a Moon of fission origin. J. Geophys. Res. 85:B63194–208 [Google Scholar]
  14. Blake DF, Bish DL, Morris RV, Downs RT, Treiman AH. et al. 2013. Mineralogy and elemental composition of wind drift soil at Rocknest, Gale crater. Proc. Lunar Sci. Conf. 44:1289 [Google Scholar]
  15. Boast M, Spray JG. 2006. Superimposition of a thrust-transfer fault system on a large impact structure: implications for Ni-Cu-PGE exploration at Sudbury. Econ. Geol. 101:1583–94 [Google Scholar]
  16. Boslough MB. 1991. Shock modification and chemistry and planetary geologic processes. Annu. Rev. Earth Planet. Sci. 19:101–30 [Google Scholar]
  17. Bougher SW, Hunten DM, Phillips RJ. 1997. Venus II: Geology, Atmosphere, and Solar Wind Environment Tucson: Univ. Ariz. Press [Google Scholar]
  18. Burov E, Gerya T. 2014. Asymmetric three-dimensional topography over mantle plumes. Nature 513:85–89 [Google Scholar]
  19. Byrne PK, Klimczak C, Williams DA, Hurwitz DM, Solomon SC. et al. 2013. An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets 118:1303–22 [Google Scholar]
  20. Campbell BA, Arvidson RE, Shepard MK, Brackett RA. 1997. Remote sensing of surface processes. See Bougher et al. 1997 503–26
  21. Carrier WD, Olhoeft GR, Mendell W. 1991. Physical properties of the lunar surface. See Heiken et al. 1991 475–594
  22. Cashore J, Woronow A. 1985. A new Monte Carlo model of lunar megaregolith development. J. Geophys. Res. 90:S02C811–16 [Google Scholar]
  23. Chao ECT, Boreman JA, Desborough GA. 1971. Unshocked and shocked Apollo 11 and 12 microbreccias: Characteristics and some geologic implications. Proc. Lunar Sci. Conf. 2:797–816 [Google Scholar]
  24. Cintala MJ. 1992. Impact-induced thermal effects in the lunar and mercurian regoliths. J. Geophys. Res. 97:E1947–73 [Google Scholar]
  25. Cintala MJ, Grieve RAF. 1998. Scaling impact melting and crater dimensions: implications for the lunar cratering record. Meteorit. Planet. Sci. 33:889–912 [Google Scholar]
  26. Cooper MR, Kovach RL, Watkins JS. 1974. Lunar near-surface structure. Rev. Geophys. 12:291–308 [Google Scholar]
  27. Ernst CM, Denevi BW, Barnouin OS, Kilmzak C, Chabot NL. et al. 2015. Stratigraphy of the Caloris basin, Mercury: implications for volcanic history and basin impact melt. Icarus 250:413–29 [Google Scholar]
  28. Ernst RE, Grosfils EB, Mège D. 2001. Giant dike swarms: Earth, Venus, and Mars. Annu. Rev. Earth Planet. Sci. 29:489–534 [Google Scholar]
  29. Fa W, Jin YQ. 2007. Simulation of brightness temperature from lunar surface and inversion of regolith-layer thickness. J. Geophys. Res. 112:E05003 [Google Scholar]
  30. Fa W, Jin YQ. 2010. A primary analysis of microwave brightness temperature of lunar surface from Chang-E 1 multi-channel radiometer observation and inversion of regolith layer thickness. Icarus 207:605–15 [Google Scholar]
  31. Fa W, Wieczorek MA. 2012. Regolith thickness over the lunar nearside: results from Earth-based 70-cm Arecibo radar observations. Icarus 218:771–87 [Google Scholar]
  32. Fa W, Wieczorek MA, Heggy E. 2011. Modeling polarimetric radar scattering from the lunar surface: study on the effect of physical properties of regolith layer. J. Geophys. Res. 116:E03005 [Google Scholar]
  33. Fang ZZ. 2010. Sintering of Advanced Materials: Fundamentals and Processing. Oxford, UK: Woodhead [Google Scholar]
  34. Fang ZZ, Wang H. 2010. Sintering of ultrafine and nanosized particles. See Fang 2010 434–73
  35. Fassett CI, Minton DA. 2013. Impact bombardment of the terrestrial planets and the early history of the Solar System. Nat. Geosci. 6:520–24 [Google Scholar]
  36. Fernandes V, Artemieva N. 2012. Impact ejecta temperature profile on the Moon—what are the effects on the Ar-Ar dating method?. Lunar Planet. Sci. Conf. Abstr. 43:1367 [Google Scholar]
  37. Fruland RM. 1983. Regolith Breccia Workbook NASA Planet. Mater. Branch Publ. 66. Houston: Johnson Space Cent. [Google Scholar]
  38. German RM. 1984. Powder Metallurgy Science Princeton, NJ: Met. Powder Ind. Fed. [Google Scholar]
  39. German RM. 2014. Sintering: From Empirical Observations to Scientific Principles Amsterdam: Elsevier [Google Scholar]
  40. Gibson RL, Reimold WU, Ashley AJ, Koeberl C. 2002. Metamorphism on the Moon: a terrestrial analogue in the Vredefort dome, South Africa?. Geology 30:475–78 [Google Scholar]
  41. Gillet P, El Goresy A. 2013. Shock events in the Solar System: the message from minerals in terrestrial planets and asteroids. Annu. Rev. Earth Planet. Sci. 41:257–85 [Google Scholar]
  42. Grapes RH. 2006. Pyrometamorphism. Berlin: Springer [Google Scholar]
  43. Grimm RE, Hess PC. 1997. The crust of Venus. See Bougher et al. 1997 1205–44
  44. Grimm RE, Solomon SC. 1987. Limits on modes of lithospheric heat transport on Venus from impact crater density. Geophys. Res. Lett. 14:538–41 [Google Scholar]
  45. Grott M, Breuer D, Laneuville D. 2011. Thermo-chemical evolution and global contraction of Mercury. Earth Planet. Sci. Lett. 307:135–46 [Google Scholar]
  46. Hartmann WK. 1973. Ancient lunar megaregolith and subsurface structure. Icarus 18:634–39 [Google Scholar]
  47. Hartmann WK, Ansan V, Berman DC, Mangold N, Forget F. 2014. Comprehensive analysis of glaciated martian crater Greg. Icarus 228:96–120 [Google Scholar]
  48. Haskin L, Warren PH. 1991. Lunar Chemistry. See Heiken et al. 1991 357–474
  49. Head JW. 1976. The significance of substrate characteristics in determining morphology and morphometry of lunar craters. Lunar Sci. Conf. Abstr. 7:2913–29 [Google Scholar]
  50. Head JW, Neukum G, Jaumann R, Hiesinger H, Hauber E. et al. 2005. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434:346–51 [Google Scholar]
  51. Heiken GH, Vaniman DT, French BH. 1991. Lunar Sourcebook: A User's Guide to the Moon Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  52. Heisinger H, Head JW. 2006. New views of lunar geoscience: an introduction and overview. Rev. Mineral. Geochem. 60:1–81 [Google Scholar]
  53. Hermalyn B, Schultz PH. 2010. Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand. Icarus 209:866–70 [Google Scholar]
  54. Hoffman N. 2001. Modern geothermal gradients on Mars and implications for subsurface liquids. Conference on the Geophysical Detection of Subsurface Water on Mars49–50 Houston: Lunar Planet. Inst. [Google Scholar]
  55. Hörz F. 1977. Impact cratering and regolith dynamics. Phys. Chem. Earth 10:3–15 [Google Scholar]
  56. Hörz F, Cintala M. 1997. Impact experiments related to the evolution of planetary regoliths. Meteorit. Planet. Sci. 32:179–209 [Google Scholar]
  57. Hörz F, Cintala MJ, See TH, Le L. 2005. Shock melting of ordinary chondrite powders and implications for asteroidal regoliths. Meteorit. Planet. Sci. 40:1329–46 [Google Scholar]
  58. Hörz F, Gibbons RV, Hill RE, Gault DE. 1976. Large-scale cratering of the lunar highlands: some Monte Carlo model considerations. Proc. Lunar Sci. Conf. 7:2931–45 [Google Scholar]
  59. Housen KR, Holsapple KA. 2003. Impact cratering on porous asteroids. Icarus 163:102–19 [Google Scholar]
  60. Housen KR, Wilkening LL. 1982. Regoliths on small bodies in the Solar System. Annu. Rev. Earth Planet. Sci. 10:355–76 [Google Scholar]
  61. Hudgins JA, Kelley SP, Korotev RL, Spray JG. 2011a. Mineralogy, geochemistry and 40Ar/39Ar geochronology of lunar granulitic breccia NWA 3163 and paired stones: comparisons with Apollo samples. Geochim. Cosmochim. Acta 75:2865–81 [Google Scholar]
  62. Hudgins JA, Spray JG, Hawkes CD. 2011b. Element diffusion rates in lunar granulitic breccias: evidence for contact metamorphism on the Moon. Am. Mineral. 96:1673–85 [Google Scholar]
  63. Hudgins JA, Spray JG, Kelley SP, Korotev RL, Sherlock SC. 2008. A laser probe 40Ar/39Ar and INAA investigation of four Apollo granulitic breccias. Geochim. Cosmochim. Acta 72:5781–98 [Google Scholar]
  64. Jaeger JC. 1964. Thermal effects of intrusions. Rev. Geophys. 2:443–65 [Google Scholar]
  65. James PB, Zuber MT, Phillips RJ. 2013. Crustal thickness and support of topography on Venus. J. Geophys. Res. Planets 118:859–75 [Google Scholar]
  66. Johnson CL, Phillip RJ, Purucker M, Anderson BJ, Byrne PK. et al. 2015. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field. Science 348:892–95 [Google Scholar]
  67. Kang SL. 2005. Sintering: Densification, Grain Growth, and Microstructure. Amsterdam: Elsevier [Google Scholar]
  68. Keihm SJ, Langseth MG. 1975. Microwave emission spectrum of the Moon: mean global heat flow and average depth of the regolith. Science 187:64–66 [Google Scholar]
  69. Keil K, Stöffler D, Love SG, Scott ERD. 1997. Constraints on the role of impact heating and melting in asteroids. Meteorit. Planet. Sci. 32:349–363 [Google Scholar]
  70. Khan A, Mosegaard K, Rasmussen KL. 2000. A new seismic velocity model for the Moon from a Monte Carlo inversion of Apollo lunar seismic data. Geophys. Res. Lett. 27:1591–94 [Google Scholar]
  71. Kieffer SW. 1975. From regolith to rock by shock. Moon 13:301–20 [Google Scholar]
  72. Kieffer SW, Phakey PP, Christie JM. 1976. Shock processes in porous quartzite: transmission electron microscope observations and theory. Contrib. Mineral. Petrol. 59:41–93 [Google Scholar]
  73. Kobayashi T, Kim JH, Lee SR, Araki H, Ono T. 2010. Simultaneous observation of Lunar Radar Sounder and Laser ALTimeter of Kaguya for lunar regolith layer thickness estimate. IEEE Geosci. Remote Sens. Lett. 7:435–39 [Google Scholar]
  74. Kocurek G, Ewing RC. 2012. Source-to-sink: an Earth/Mars comparison of boundary conditions for eolian dune systems. SEPM Spec. Publ. 102:151–68 [Google Scholar]
  75. Kreslavsky MA, Head JW. 2015. A thicker regolith on Mercury. Lunar Planet. Sci. Conf. Abstr. 46:1246 [Google Scholar]
  76. Kreslavsky MA, Head JW, Neumann GA, Zuber MT, Smith DE. 2014. Kilometer-scale topographic roughness of Mercury: correlation with geologic features and units. Geophys. Res. Lett. 41:8245–51 [Google Scholar]
  77. Kreslavsky MA, Ivanov MA, Head JW. 2015. The resurfacing history of Venus: constraints from buffered crater densities. Icarus 250:438–50 [Google Scholar]
  78. Ksanfomality L, Harmon J, Petrova E, Thomas N, Veselovsky N, Warell J. 2008. Earth-based visible near-IR imaging of Mercury. Space Sci. Rev. 132:2–4 [Google Scholar]
  79. Langevin Y, Arnold JR. 1977. The evolution of the lunar regolith. Annu. Rev. Earth Planet. Sci. 5:449–89 [Google Scholar]
  80. Le Feuvre M, Wieczorek MA. 2008. Nonuniform cratering of the terrestrial planets. Icarus 197:291–306 [Google Scholar]
  81. Lindstrom MM, Lindstrom DJ. 1986. Lunar granulites and their precursor anorthositic norites of the early lunar crust. J. Geophys. Res. 91:B4263–76 [Google Scholar]
  82. Liu AJ, Nagel SR. 2001. Jamming and Rheology. London: Taylor & Francis [Google Scholar]
  83. Lu F, Cai Q, Zhou X, Xue H. 1999. The study of shock-activation and sintering of silicon nitride powder materials. J. Mater. Process. 89–90:399–404 [Google Scholar]
  84. Lu Y, Huang YH, Wang C, Sun S, Lou J. 2010. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5:218–24 [Google Scholar]
  85. Lucey P, Korotev RL, Gillis JJ, Taylor LA, Lawrence D. et al. 2006. Understanding the lunar surface and space-Moon interactions. Rev. Mineral. Geochem. 60:83–219 [Google Scholar]
  86. MacCarthy KA, Spray JG, Ryder G. 2002. Mechanisms of lithification of some lunar and HED breccias. Lunar Planet. Sci. Conf. Abstr. 33:1720 [Google Scholar]
  87. McKay DS, Heiken GH, Basu A, Blanford G, Simon S. et al. 1991. The lunar regolith. See Heiken et al. 1991 285–356
  88. McKay DS, Morrison DA. 1971. Lunar breccias. J. Geophys. Res. 76:5658–69 [Google Scholar]
  89. McKinnon WB, Zahnle KJ, Ivanov BA, Melosh HJ. 1997. Cratering on Venus: models and observations. See Bougher et al. 1997 969–1014
  90. McSween HY, Labotka TC, Viviano-Beck CE. 2015. Metamorphism in the Martian crust. Meteorit. Planet. Sci. 50:590–603 [Google Scholar]
  91. Melosh HJ, Ivanov BA. 1999. Impact crater collapse. Annu. Rev. Earth Planet. Sci. 27:385–415 [Google Scholar]
  92. Menikoff R. 2011. Hot spot formation from shock reflections. Shock Waves 21:141–48 [Google Scholar]
  93. Merrill GP. 1897. A Treatise on Rocks, Rock-Weathering and Soils. New York: MacMillan [Google Scholar]
  94. Merstallinger A, Sales M, Semerad E, Dunn BD. 2009. Assessment of Cold Welding Between Separable Contact Surfaces due to Impact and Fretting Under Vacuum Eur. Space Agency (ESA) STM-279. Noordwijk, Neth.: ESA Commun. Prod. Office [Google Scholar]
  95. Meyer C. 1994. Catalog of Apollo 17 Rocks 4 North Massif Houston: Johnson Space Cent. [Google Scholar]
  96. Miljković K, Wieczorek MA, Collins GS, Solomon SC, Smith DE, Zuber MT. 2015. Excavation of the lunar mantle by basin-forming impact events on the Moon. Earth Planet. Sci. Lett. 409:243–51 [Google Scholar]
  97. Minkin JA, Thompson CL, Chao ECT. 1977. Apollo 16 white boulder consortium samples 67455 and 67475—petrologic investigation. Proc. Lunar Sci. Conf. 8:1967–86 [Google Scholar]
  98. Minton DA, Malhotra R. 2010. Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System.. Icarus 207:744–57 [Google Scholar]
  99. Molaro J, Byrne S. 2012. Rates of temperature change of airless landscapes and implications for thermal stress weathering. J. Geophys. Res. 117:E10011 [Google Scholar]
  100. Moser DE, Chamberlain KR, Tait KR, Schmitt AK, Darling JR. et al. 2013. Solving the martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. Nature 499:454–57 [Google Scholar]
  101. Nakamura Y, Dorman J, Duennebier F, Lammlein D, Lathan G. 1975. Shallow lunar structure determined from the passive seismic experiment. Moon 13:3–15 [Google Scholar]
  102. Oberbeck VR, Quaide WL. 1967. Estimated thickness of a fragmental surface layer of Oceanus Procellarum. J. Geophys. Res. 72:4697–704 [Google Scholar]
  103. Oberbeck VR, Quaide WL. 1968. Genetic implications of lunar regolith thickness variations. Icarus 9:446–65 [Google Scholar]
  104. O'Keefe JD, Ahrens TJ. 1977. Impact-induced energy partitioning, melting, and vaporization on terrestrial planets. Proc. Lunar Sci. Conf. 8:3357–74 [Google Scholar]
  105. Padovan S, Wieczorek MA, Margot JL, Tosi N, Solomon SC. 2015. Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys. Res. Lett. 42:1029–38 [Google Scholar]
  106. Park J, Lui Y, Kihm K, Taylor LA. 2008. Characterization of lunar dust for toxicological studies. I: Particle size distribution. J. Aerosp. Eng. 21:266–271 [Google Scholar]
  107. PASSC (Planet. Space Sci. Cent.) 2015. Earth Impact Database Updated March 2015, accessed July 15, 2015. Fredericton, Can.: PASSC. http://www.passc.net/EarthImpactDatabase/index.html [Google Scholar]
  108. Quaide WL, Oberbeck VR. 1968. Thickness determinations of the lunar surface layer from lunar impact craters. J. Geophys. Res. 73:5247–70 [Google Scholar]
  109. Riley FL. 2009. Structural Ceramics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  110. Ryder G. 1990. Lunar samples, lunar accretion and the early bombardment of the Moon. EoS Trans. AGU 71:313–18 [Google Scholar]
  111. Salisbury JW, Smalley VG. 1964. The lunar surface layer. The Lunar Surface Layer: Materials and Characteristics JW Salisbury, P Glaser 411–33 New York: Academic [Google Scholar]
  112. Schaal RB, Hörz F. 1980. Experimental shock metamorphism of lunar soil. Geochim. Cosmochim. Acta 14:1679–96 [Google Scholar]
  113. Schaal RB, Hörz F, Thompson TD, Bauer JF. 1979. Shock metamorphism of granulated lunar basalt. Lunar Planet. Sci. Conf. Abstr. 10:2547–71 [Google Scholar]
  114. Schwartz LS. 2008. Pack set and the effect on pneumatic conveying of cement. IEEE Cement Industry Technical Conference Record 2008187–94 Piscataway, NJ: IEEE [Google Scholar]
  115. Scott ERD, Wilson L. 2005. Meteoritic and other constraints on the internal structure and impact history of small asteroids. Icarus 174:46–53 [Google Scholar]
  116. Scott KM, Palin CF. 2009. Regolith Science. Dordrecht, Neth.: Springer [Google Scholar]
  117. Shalygin EV, Markiewicz WJ, Basilevsky AT, Titov DV, Ignatiev NI, Head JW. 2015. Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys. Res. Lett. 42:4762–69 [Google Scholar]
  118. Shearer CK, Hess PC, Wieczorek MA, Pritchard ME, Parmentier M. et al. 2006. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60:1365–518 [Google Scholar]
  119. Shkuratov YG, Bondarenko NV. 2001. Regolith layer thickness mapping of the Moon by radar and optical data. Icarus 149:329–38 [Google Scholar]
  120. Shoemaker EM, Batson RM, Holt HE, Morris EC, Rennilson JJ, Whitaker EA. 1968. Television observations from Surveyor 3. J. Geophys. Res. 73:3989–4043 [Google Scholar]
  121. Short NM, Foreman ML. 1972. Thickness of impact crater ejecta on the lunar surface. Mod. Geol. 3:69–91 [Google Scholar]
  122. Siegel RW, Ramasamy S, Hahn H, Zongquan L, Ting L, Grinsky R. 1988. Synthesis, characterization, and properties of nanophase TiO2. J. Mater. Res. 3:1367–72 [Google Scholar]
  123. Simonds CH. 1975. Thermal regimes in impact melts and the petrology of Apollo 17 station 6 boulder. Proc. Lunar. Sci. Conf. 6:641–72 [Google Scholar]
  124. Simonds CH, Warner JL, Phinney WC, McGee PE. 1976. Thermal model for impact breccia lithification: Manicouagan and the Moon. Proc. Lunar Sci. Conf. 7:2509–28 [Google Scholar]
  125. Spray JG. 1997. Superfaults. Geology 25:579–82 [Google Scholar]
  126. Spray JG. 1999. Shocking rocks by cavitation and bubble implosion. Geology 27:695–98 [Google Scholar]
  127. Spray JG. 2010. Frictional melting of planetary materials: from hypervelocity impact to earthquakes. Annu. Rev. Earth Planet. Sci. 38:221–54 [Google Scholar]
  128. Spray JG. 2015. Post-shock oscillatory slip: displacement and vibration melting without offset Presented at AGU Joint Assem., May 3–7, Montreal, Abstr P12A–10 [Google Scholar]
  129. Stöffler D, Grieve RAF. 2011. Impactites. Metamorphic Rocks: A Classification and Glossary of Terms D Fettes, J Desmons 82–91 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  130. Stöffler D, Knoll HD, Marvin UB, Simonds CH, Warren PH. 1980. Recommended classification and nomenclature of lunar highland rocks—a committee report. Proceedings of the Conference on the Lunar Highlands Crust JJ Papike, RB Merill 51–70 New York: Pergamon [Google Scholar]
  131. Strangway DW, Pearce GW, Olhoeft GR. 1975. Magnetic and dielectric properties of lunar samples. Proceedings of the Soviet-American Conference on Cosmochemistry of the Moon and Planets AP Vinogradov 712–28 Moscow: Nauka [Google Scholar]
  132. Strom RG, Schaber GG, Dawson DD. 1994. The global resurfacing of Venus. J. Geophys. Res. 99:E510899–926 [Google Scholar]
  133. Syal MB, Schultz PH, Riner MA. 2015. Darkening of Mercury's surface by cometary carbon. Nat. Geosci. 8:352–56 [Google Scholar]
  134. Taylor GJ, Warren P, Ryder G, Delano J, Pieters C, Lofgren G. 1991. Lunar Rocks. See Heiken et al. 1991 183–284
  135. Taylor SR. 2001. Solar System Evolution: A New Perspective Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  136. Taylor SR, McLennan SM. 2010. Planetary Crusts: Their Composition, Origin and Evolution Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  137. Thompson LM, Spray JG. 2016. Dynamic interaction between impact melt and fractured basement at Manicouagan: the suevite connection. Meteorit. Planet. Sci. Submitted [Google Scholar]
  138. Thompson TW, Campbell BA, Ghent RR, Hawke BR. 2009. Rugged crater ejecta as a guide to megaregolith thickness in the southern nearside of the Moon. Geology 37:655–58 [Google Scholar]
  139. Toksoz MN, Dainty S, Solomon SC, Anderson KR. 1973. Velocity structure and evolution of the Moon. Proc. Lunar. Sci. Conf. 4:2529–47 [Google Scholar]
  140. Vaughan WM, Head JW, Wilson L, Hess PC. 2013. Geology and petrology of enormous volumes of impact melt on the Moon: a case study of the Orientale basin impact melt sea. Icarus 223:749–65 [Google Scholar]
  141. Warren PH. 1993. A concise compilation of petrologic information on possible pristine nonmare Moon rocks. Am. Mineral. 78:360–76 [Google Scholar]
  142. Warren PH. 2001. Porosities of lunar meteorites: strength, porosity, and petrologic screening during the meteorite delivery process. J. Geophys. Res. Planets 106:10101–11 [Google Scholar]
  143. Warren PH. 2011. Ejecta-megaregolith accumulation on planetesimals and large asteroids. Meteorit. Planet. Sci. 46:53–78 [Google Scholar]
  144. Warren PH, Rasmussen KL. 1987. Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon. J. Geophys. Res. 92:B53453–65 [Google Scholar]
  145. Wentworth CK. 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30:377–92 [Google Scholar]
  146. Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Taylor GJ. et al. 2013. The crust of the Moon as seen by GRAIL. Science 339:671–75 [Google Scholar]
  147. Wieczorek MA, Zuber MT. 2004. The thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109:E01009 [Google Scholar]
  148. Wilcox BB, Robinson MS, Thomas PC, Hawkes BR. 2005. Constraints on the depth and variability of the lunar regolith. Meteorit. Planet. Sci. 40:695–710 [Google Scholar]
  149. Wilde SA, Valley JW, Peck WH, Graham CM. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–78 [Google Scholar]
  150. Xiao Z, Strom RG, Chapman CR, Head JW, Klimzak C. et al. 2014. Comparisons of fresh complex impact craters on Mercury and the Moon: implications for controlling factors in impact excavation processes. Icarus 228:260–75 [Google Scholar]
  151. Zhang J, Yang W, Hu S, Lin Y, Fang G. et al. 2015. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu. PNAS 112:5342–47 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error