1932

Abstract

It is understood how rocks are made on Earth. However, on the Moon, Mercury, and, to a lesser extent, Mars and Venus, there are distinct rock-forming processes that we do not fully comprehend. The surfaces and crusts of the inner planetary bodies may retain a history of disruption by hypervelocity impact resulting in the generation of disaggregated materials to several kilometers depth. The uppermost component of this is called regolith (typically <20 m thick on the Moon), which is part of a more extensive megaregolith that is up to tens of kilometers thick, and which in places may pervade the entire crust of a planetary body. It is from these pulverized materials that new rocks are reaggregated to form so-called breccias. This work reviews regolith and megaregolith structure for the inner planetary bodies and investigates how extraterrestrial breccias are produced. Three principal formation mechanisms are explored: thermal sintering, shock sintering, and the dynamic interaction of impact-generated melt with fragmental material.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012203
2016-06-29
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/earth/44/1/annurev-earth-060115-012203.html?itemId=/content/journals/10.1146/annurev-earth-060115-012203&mimeType=html&fmt=ahah

Literature Cited

  1. Abramov O. , Wong SM. , Kring DA. . 2012.. Differential melt scaling for oblique impacts on terrestrial planets. . Icarus 218::90516 [Google Scholar]
  2. Agrell SO. , Scoon JH. , Muir ID. , Long JVP. , McConnell JDC. , Pecket A. . 1970.. Mineralogy and petrology of some lunar samples. . Science 167::58386 [Google Scholar]
  3. Ahrens TJ. . 1975.. Compaction by impact of unconsolidated lunar fines. . Moon 14::29199 [Google Scholar]
  4. Ahrens TJ. , Cole DM. . 1974.. Shock compression and adiabatic release of lunar fines from Apollo 17. . Proc. Lunar Sci. Conf. 5::233345 [Google Scholar]
  5. Allen CC. , Jercinovic MJ. , Thomas S. , Klaus K. . 1982.. Experimental shock lithification of water-bearing rock powders. . Geophys. Res. Lett. 9::101316 [Google Scholar]
  6. Anderson DL. . 2007.. New Theory of the Earth. Cambridge, UK:: Cambridge Univ. Press [Google Scholar]
  7. Asphaug E. . 2009.. Growth and evolution of asteroids. . Annu. Rev. Earth Planet. Sci. 37::41348 [Google Scholar]
  8. Barlow NG. . 2008.. Mars: An Introduction to Its Interior, Surface and Atmosphere. Cambridge, UK:: Cambridge Univ. Press [Google Scholar]
  9. Bart GD. . 2014.. The quantitative relationship between small impact crater morphology and regolith depth. . Icarus 235::13035 [Google Scholar]
  10. Bart GD. , Nickerson RD. , Lawder MY. , Melosh HJ. . 2011.. Global survey of lunar regolith depths from LROC images. . Icarus 215::48590 [Google Scholar]
  11. Beaty DW. , Albee AL. . 1978.. Comparative petrology and possible genetic relations among the Apollo 11 basalts. . Lunar Planet. Sci. Conf. Abstr. 9::35963 [Google Scholar]
  12. Beauchamp EK. . 1987.. Shock-activated sintering. . In High Pressure Explosive Processing of Ceramics, ed. RA Graham, AB Sawaoka , pp. 13974. Aedermannsdorf, Switz.: Trans Tech [Google Scholar]
  13. Binder AB. , Lange M. . 1980.. On the thermal history, thermal state, and related tectonism of a Moon of fission origin. . J. Geophys. Res. 85:(B6):3194208 [Google Scholar]
  14. Blake DF. , Bish DL. , Morris RV. , Downs RT. , Treiman AH. , et al. 2013.. Mineralogy and elemental composition of wind drift soil at Rocknest, Gale crater. . Proc. Lunar Sci. Conf. 44::1289 [Google Scholar]
  15. Boast M. , Spray JG. . 2006.. Superimposition of a thrust-transfer fault system on a large impact structure: implications for Ni-Cu-PGE exploration at Sudbury. . Econ. Geol. 101::158394 [Google Scholar]
  16. Boslough MB. . 1991.. Shock modification and chemistry and planetary geologic processes. . Annu. Rev. Earth Planet. Sci. 19::10130 [Google Scholar]
  17. Bougher SW. , Hunten DM. , Phillips RJ. , eds. 1997.. Venus II: Geology, Atmosphere, and Solar Wind Environment. Tucson:: Univ. Ariz. Press [Google Scholar]
  18. Burov E. , Gerya T. . 2014.. Asymmetric three-dimensional topography over mantle plumes. . Nature 513::8589 [Google Scholar]
  19. Byrne PK. , Klimczak C. , Williams DA. , Hurwitz DM. , Solomon SC. , et al. 2013.. An assemblage of lava flow features on Mercury. . J. Geophys. Res. Planets 118::130322 [Google Scholar]
  20. Campbell BA. , Arvidson RE. , Shepard MK. , Brackett RA. . 1997.. Remote sensing of surface processes. . See Bougher et al. 1997 , pp. 50326
  21. Carrier WD. , Olhoeft GR. , Mendell W. . 1991.. Physical properties of the lunar surface. . See Heiken et al. 1991 , pp. 475594
  22. Cashore J. , Woronow A. . 1985.. A new Monte Carlo model of lunar megaregolith development. . J. Geophys. Res. 90:(S02):C81116 [Google Scholar]
  23. Chao ECT. , Boreman JA. , Desborough GA. . 1971.. Unshocked and shocked Apollo 11 and 12 microbreccias: Characteristics and some geologic implications. . Proc. Lunar Sci. Conf. 2::797816 [Google Scholar]
  24. Cintala MJ. . 1992.. Impact-induced thermal effects in the lunar and mercurian regoliths. . J. Geophys. Res. 97:(E1):94773 [Google Scholar]
  25. Cintala MJ. , Grieve RAF. . 1998.. Scaling impact melting and crater dimensions: implications for the lunar cratering record. . Meteorit. Planet. Sci. 33::889912 [Google Scholar]
  26. Cooper MR. , Kovach RL. , Watkins JS. . 1974.. Lunar near-surface structure. . Rev. Geophys. 12::291308 [Google Scholar]
  27. Ernst CM. , Denevi BW. , Barnouin OS. , Kilmzak C. , Chabot NL. , et al. 2015.. Stratigraphy of the Caloris basin, Mercury: implications for volcanic history and basin impact melt. . Icarus 250::41329 [Google Scholar]
  28. Ernst RE. , Grosfils EB. , Mège D. . 2001.. Giant dike swarms: Earth, Venus, and Mars. . Annu. Rev. Earth Planet. Sci. 29::489534 [Google Scholar]
  29. Fa W. , Jin YQ. . 2007.. Simulation of brightness temperature from lunar surface and inversion of regolith-layer thickness. . J. Geophys. Res. 112::E05003 [Google Scholar]
  30. Fa W. , Jin YQ. . 2010.. A primary analysis of microwave brightness temperature of lunar surface from Chang-E 1 multi-channel radiometer observation and inversion of regolith layer thickness. . Icarus 207::60515 [Google Scholar]
  31. Fa W. , Wieczorek MA. . 2012.. Regolith thickness over the lunar nearside: results from Earth-based 70-cm Arecibo radar observations. . Icarus 218::77187 [Google Scholar]
  32. Fa W. , Wieczorek MA. , Heggy E. . 2011.. Modeling polarimetric radar scattering from the lunar surface: study on the effect of physical properties of regolith layer. . J. Geophys. Res. 116::E03005 [Google Scholar]
  33. Fang ZZ. , ed. 2010.. Sintering of Advanced Materials: Fundamentals and Processing. Oxford, UK:: Woodhead [Google Scholar]
  34. Fang ZZ. , Wang H. . 2010.. Sintering of ultrafine and nanosized particles. . See Fang 2010 , pp. 43473
  35. Fassett CI. , Minton DA. . 2013.. Impact bombardment of the terrestrial planets and the early history of the Solar System. . Nat. Geosci. 6::52024 [Google Scholar]
  36. Fernandes V. , Artemieva N. . 2012.. Impact ejecta temperature profile on the Moon—what are the effects on the Ar-Ar dating method?. Lunar Planet. Sci. Conf. Abstr. 43::1367 [Google Scholar]
  37. Fruland RM. . 1983.. Regolith Breccia Workbook. NASA Planet. Mater. Branch Publ. 66. Houston: Johnson Space Cent. [Google Scholar]
  38. German RM. . 1984.. Powder Metallurgy Science. Princeton, NJ:: Met. Powder Ind. Fed. [Google Scholar]
  39. German RM. . 2014.. Sintering: From Empirical Observations to Scientific Principles. Amsterdam:: Elsevier [Google Scholar]
  40. Gibson RL. , Reimold WU. , Ashley AJ. , Koeberl C. . 2002.. Metamorphism on the Moon: a terrestrial analogue in the Vredefort dome, South Africa?. Geology 30::47578 [Google Scholar]
  41. Gillet P. , El Goresy A. . 2013.. Shock events in the Solar System: the message from minerals in terrestrial planets and asteroids. . Annu. Rev. Earth Planet. Sci. 41::25785 [Google Scholar]
  42. Grapes RH. . 2006.. Pyrometamorphism. Berlin:: Springer [Google Scholar]
  43. Grimm RE. , Hess PC. . 1997.. The crust of Venus. . See Bougher et al. 1997 , pp. 120544
  44. Grimm RE. , Solomon SC. . 1987.. Limits on modes of lithospheric heat transport on Venus from impact crater density. . Geophys. Res. Lett. 14::53841 [Google Scholar]
  45. Grott M. , Breuer D. , Laneuville D. . 2011.. Thermo-chemical evolution and global contraction of Mercury. . Earth Planet. Sci. Lett. 307::13546 [Google Scholar]
  46. Hartmann WK. . 1973.. Ancient lunar megaregolith and subsurface structure. . Icarus 18::63439 [Google Scholar]
  47. Hartmann WK. , Ansan V. , Berman DC. , Mangold N. , Forget F. . 2014.. Comprehensive analysis of glaciated martian crater Greg. . Icarus 228::96120 [Google Scholar]
  48. Haskin L. , Warren PH. . 1991.. Lunar Chemistry. . See Heiken et al. 1991 , pp. 357474
  49. Head JW. . 1976.. The significance of substrate characteristics in determining morphology and morphometry of lunar craters. . Lunar Sci. Conf. Abstr. 7::291329 [Google Scholar]
  50. Head JW. , Neukum G. , Jaumann R. , Hiesinger H. , Hauber E. , et al. 2005.. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. . Nature 434::34651 [Google Scholar]
  51. Heiken GH. , Vaniman DT. , French BH. , eds. 1991.. Lunar Sourcebook: A User's Guide to the Moon. Cambridge, UK:: Cambridge Univ. Press [Google Scholar]
  52. Heisinger H. , Head JW. . 2006.. New views of lunar geoscience: an introduction and overview. . Rev. Mineral. Geochem. 60::181 [Google Scholar]
  53. Hermalyn B. , Schultz PH. . 2010.. Early-stage ejecta velocity distribution for vertical hypervelocity impacts into sand. . Icarus 209::86670 [Google Scholar]
  54. Hoffman N. . 2001.. Modern geothermal gradients on Mars and implications for subsurface liquids. . In Conference on the Geophysical Detection of Subsurface Water on Mars, pp. 4950. Houston:: Lunar Planet. Inst. [Google Scholar]
  55. Hörz F. . 1977.. Impact cratering and regolith dynamics. . Phys. Chem. Earth 10::315 [Google Scholar]
  56. Hörz F. , Cintala M. . 1997.. Impact experiments related to the evolution of planetary regoliths. . Meteorit. Planet. Sci. 32::179209 [Google Scholar]
  57. Hörz F. , Cintala MJ. , See TH. , Le L. . 2005.. Shock melting of ordinary chondrite powders and implications for asteroidal regoliths. . Meteorit. Planet. Sci. 40::132946 [Google Scholar]
  58. Hörz F. , Gibbons RV. , Hill RE. , Gault DE. . 1976.. Large-scale cratering of the lunar highlands: some Monte Carlo model considerations. . Proc. Lunar Sci. Conf. 7::293145 [Google Scholar]
  59. Housen KR. , Holsapple KA. . 2003.. Impact cratering on porous asteroids. . Icarus 163::10219 [Google Scholar]
  60. Housen KR. , Wilkening LL. . 1982.. Regoliths on small bodies in the Solar System. . Annu. Rev. Earth Planet. Sci. 10::35576 [Google Scholar]
  61. Hudgins JA. , Kelley SP. , Korotev RL. , Spray JG. . 2011a.. Mineralogy, geochemistry and 40Ar/39Ar geochronology of lunar granulitic breccia NWA 3163 and paired stones: comparisons with Apollo samples. . Geochim. Cosmochim. Acta 75::286581 [Google Scholar]
  62. Hudgins JA. , Spray JG. , Hawkes CD. . 2011b.. Element diffusion rates in lunar granulitic breccias: evidence for contact metamorphism on the Moon. . Am. Mineral. 96::167385 [Google Scholar]
  63. Hudgins JA. , Spray JG. , Kelley SP. , Korotev RL. , Sherlock SC. . 2008.. A laser probe 40Ar/39Ar and INAA investigation of four Apollo granulitic breccias. . Geochim. Cosmochim. Acta 72::578198 [Google Scholar]
  64. Jaeger JC. . 1964.. Thermal effects of intrusions. . Rev. Geophys. 2::44365 [Google Scholar]
  65. James PB. , Zuber MT. , Phillips RJ. . 2013.. Crustal thickness and support of topography on Venus. . J. Geophys. Res. Planets 118::85975 [Google Scholar]
  66. Johnson CL. , Phillip RJ. , Purucker M. , Anderson BJ. , Byrne PK. , et al. 2015.. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field. . Science 348::89295 [Google Scholar]
  67. Kang SL. . 2005.. Sintering: Densification, Grain Growth, and Microstructure. Amsterdam:: Elsevier [Google Scholar]
  68. Keihm SJ. , Langseth MG. . 1975.. Microwave emission spectrum of the Moon: mean global heat flow and average depth of the regolith. . Science 187::6466 [Google Scholar]
  69. Keil K. , Stöffler D. , Love SG. , Scott ERD. . 1997.. Constraints on the role of impact heating and melting in asteroids. . Meteorit. Planet. Sci. 32::349363 [Google Scholar]
  70. Khan A. , Mosegaard K. , Rasmussen KL. . 2000.. A new seismic velocity model for the Moon from a Monte Carlo inversion of Apollo lunar seismic data. . Geophys. Res. Lett. 27::159194 [Google Scholar]
  71. Kieffer SW. . 1975.. From regolith to rock by shock. . Moon 13::30120 [Google Scholar]
  72. Kieffer SW. , Phakey PP. , Christie JM. . 1976.. Shock processes in porous quartzite: transmission electron microscope observations and theory. . Contrib. Mineral. Petrol. 59::4193 [Google Scholar]
  73. Kobayashi T. , Kim JH. , Lee SR. , Araki H. , Ono T. . 2010.. Simultaneous observation of Lunar Radar Sounder and Laser ALTimeter of Kaguya for lunar regolith layer thickness estimate. . IEEE Geosci. Remote Sens. Lett. 7::43539 [Google Scholar]
  74. Kocurek G. , Ewing RC. . 2012.. Source-to-sink: an Earth/Mars comparison of boundary conditions for eolian dune systems. . SEPM Spec. Publ. 102::15168 [Google Scholar]
  75. Kreslavsky MA. , Head JW. . 2015.. A thicker regolith on Mercury. . Lunar Planet. Sci. Conf. Abstr. 46::1246 [Google Scholar]
  76. Kreslavsky MA. , Head JW. , Neumann GA. , Zuber MT. , Smith DE. . 2014.. Kilometer-scale topographic roughness of Mercury: correlation with geologic features and units. . Geophys. Res. Lett. 41::824551 [Google Scholar]
  77. Kreslavsky MA. , Ivanov MA. , Head JW. . 2015.. The resurfacing history of Venus: constraints from buffered crater densities. . Icarus 250::43850 [Google Scholar]
  78. Ksanfomality L. , Harmon J. , Petrova E. , Thomas N. , Veselovsky N. , Warell J. . 2008.. Earth-based visible near-IR imaging of Mercury. . Space Sci. Rev. 132::24 [Google Scholar]
  79. Langevin Y. , Arnold JR. . 1977.. The evolution of the lunar regolith. . Annu. Rev. Earth Planet. Sci. 5::44989 [Google Scholar]
  80. Le Feuvre M. , Wieczorek MA. . 2008.. Nonuniform cratering of the terrestrial planets. . Icarus 197::291306 [Google Scholar]
  81. Lindstrom MM. , Lindstrom DJ. . 1986.. Lunar granulites and their precursor anorthositic norites of the early lunar crust. . J. Geophys. Res. 91:(B4):26376 [Google Scholar]
  82. Liu AJ. , Nagel SR. . 2001.. Jamming and Rheology. London:: Taylor & Francis [Google Scholar]
  83. Lu F. , Cai Q. , Zhou X. , Xue H. . 1999.. The study of shock-activation and sintering of silicon nitride powder materials. . J. Mater. Process. 89–90::399404 [Google Scholar]
  84. Lu Y. , Huang YH. , Wang C. , Sun S. , Lou J. . 2010.. Cold welding of ultrathin gold nanowires. . Nat. Nanotechnol. 5::21824 [Google Scholar]
  85. Lucey P. , Korotev RL. , Gillis JJ. , Taylor LA. , Lawrence D. , et al. 2006.. Understanding the lunar surface and space-Moon interactions. . Rev. Mineral. Geochem. 60::83219 [Google Scholar]
  86. MacCarthy KA. , Spray JG. , Ryder G. . 2002.. Mechanisms of lithification of some lunar and HED breccias. . Lunar Planet. Sci. Conf. Abstr. 33::1720 [Google Scholar]
  87. McKay DS. , Heiken GH. , Basu A. , Blanford G. , Simon S. , et al. 1991.. The lunar regolith. . See Heiken et al. 1991 , pp. 285356
  88. McKay DS. , Morrison DA. . 1971.. Lunar breccias. . J. Geophys. Res. 76::565869 [Google Scholar]
  89. McKinnon WB. , Zahnle KJ. , Ivanov BA. , Melosh HJ. . 1997.. Cratering on Venus: models and observations. . See Bougher et al. 1997 , pp. 9691014
  90. McSween HY. , Labotka TC. , Viviano-Beck CE. . 2015.. Metamorphism in the Martian crust. . Meteorit. Planet. Sci. 50::590603 [Google Scholar]
  91. Melosh HJ. , Ivanov BA. . 1999.. Impact crater collapse. . Annu. Rev. Earth Planet. Sci. 27::385415 [Google Scholar]
  92. Menikoff R. . 2011.. Hot spot formation from shock reflections. . Shock Waves 21::14148 [Google Scholar]
  93. Merrill GP. . 1897.. A Treatise on Rocks, Rock-Weathering and Soils. New York:: MacMillan [Google Scholar]
  94. Merstallinger A. , Sales M. , Semerad E. , Dunn BD. . 2009.. Assessment of Cold Welding Between Separable Contact Surfaces due to Impact and Fretting Under Vacuum. Eur. Space Agency (ESA) STM-279. Noordwijk, Neth.: ESA Commun. Prod. Office [Google Scholar]
  95. Meyer C. . 1994.. Catalog of Apollo 17 Rocks, Vol. 4: North Massif . Houston:: Johnson Space Cent. [Google Scholar]
  96. Miljković K. , Wieczorek MA. , Collins GS. , Solomon SC. , Smith DE. , Zuber MT. . 2015.. Excavation of the lunar mantle by basin-forming impact events on the Moon. . Earth Planet. Sci. Lett. 409::24351 [Google Scholar]
  97. Minkin JA. , Thompson CL. , Chao ECT. . 1977.. Apollo 16 white boulder consortium samples 67455 and 67475—petrologic investigation. . Proc. Lunar Sci. Conf. 8::196786 [Google Scholar]
  98. Minton DA. , Malhotra R. . 2010.. Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System.. Icarus 207::74457 [Google Scholar]
  99. Molaro J. , Byrne S. . 2012.. Rates of temperature change of airless landscapes and implications for thermal stress weathering. . J. Geophys. Res. 117::E10011 [Google Scholar]
  100. Moser DE. , Chamberlain KR. , Tait KR. , Schmitt AK. , Darling JR. , et al. 2013.. Solving the martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. . Nature 499::45457 [Google Scholar]
  101. Nakamura Y. , Dorman J. , Duennebier F. , Lammlein D. , Lathan G. . 1975.. Shallow lunar structure determined from the passive seismic experiment. . Moon 13::315 [Google Scholar]
  102. Oberbeck VR. , Quaide WL. . 1967.. Estimated thickness of a fragmental surface layer of Oceanus Procellarum. . J. Geophys. Res. 72::4697704 [Google Scholar]
  103. Oberbeck VR. , Quaide WL. . 1968.. Genetic implications of lunar regolith thickness variations. . Icarus 9::44665 [Google Scholar]
  104. O'Keefe JD. , Ahrens TJ. . 1977.. Impact-induced energy partitioning, melting, and vaporization on terrestrial planets. . Proc. Lunar Sci. Conf. 8::335774 [Google Scholar]
  105. Padovan S. , Wieczorek MA. , Margot JL. , Tosi N. , Solomon SC. . 2015.. Thickness of the crust of Mercury from geoid-to-topography ratios. . Geophys. Res. Lett. 42::102938 [Google Scholar]
  106. Park J. , Lui Y. , Kihm K. , Taylor LA. . 2008.. Characterization of lunar dust for toxicological studies. I: Particle size distribution. . J. Aerosp. Eng. 21::266271 [Google Scholar]
  107. PASSC (Planet. Space Sci. Cent.). 2015.. Earth Impact Database. Updated March 2015, accessed July 15, 2015. Fredericton, Can.: PASSC. http://www.passc.net/EarthImpactDatabase/index.html [Google Scholar]
  108. Quaide WL. , Oberbeck VR. . 1968.. Thickness determinations of the lunar surface layer from lunar impact craters. . J. Geophys. Res. 73::524770 [Google Scholar]
  109. Riley FL. . 2009.. Structural Ceramics. Cambridge, UK:: Cambridge Univ. Press [Google Scholar]
  110. Ryder G. . 1990.. Lunar samples, lunar accretion and the early bombardment of the Moon. . EoS Trans. AGU 71::31318 [Google Scholar]
  111. Salisbury JW. , Smalley VG. . 1964.. The lunar surface layer. . In The Lunar Surface Layer: Materials and Characteristics, ed. JW Salisbury, P Glaser , pp. 41133. New York:: Academic [Google Scholar]
  112. Schaal RB. , Hörz F. . 1980.. Experimental shock metamorphism of lunar soil. . Geochim. Cosmochim. Acta 14::167996 [Google Scholar]
  113. Schaal RB. , Hörz F. , Thompson TD. , Bauer JF. . 1979.. Shock metamorphism of granulated lunar basalt. . Lunar Planet. Sci. Conf. Abstr. 10::254771 [Google Scholar]
  114. Schwartz LS. . 2008.. Pack set and the effect on pneumatic conveying of cement. . In IEEE Cement Industry Technical Conference Record 2008, pp. 18794. Piscataway, NJ:: IEEE [Google Scholar]
  115. Scott ERD. , Wilson L. . 2005.. Meteoritic and other constraints on the internal structure and impact history of small asteroids. . Icarus 174::4653 [Google Scholar]
  116. Scott KM. , Palin CF. , eds. 2009.. Regolith Science. Dordrecht, Neth.:: Springer [Google Scholar]
  117. Shalygin EV. , Markiewicz WJ. , Basilevsky AT. , Titov DV. , Ignatiev NI. , Head JW. . 2015.. Active volcanism on Venus in the Ganiki Chasma rift zone. . Geophys. Res. Lett. 42::476269 [Google Scholar]
  118. Shearer CK. , Hess PC. , Wieczorek MA. , Pritchard ME. , Parmentier M. , et al. 2006.. Thermal and magmatic evolution of the Moon. . Rev. Mineral. Geochem. 60::1365518 [Google Scholar]
  119. Shkuratov YG. , Bondarenko NV. . 2001.. Regolith layer thickness mapping of the Moon by radar and optical data. . Icarus 149::32938 [Google Scholar]
  120. Shoemaker EM. , Batson RM. , Holt HE. , Morris EC. , Rennilson JJ. , Whitaker EA. . 1968.. Television observations from Surveyor 3. . J. Geophys. Res. 73::39894043 [Google Scholar]
  121. Short NM. , Foreman ML. . 1972.. Thickness of impact crater ejecta on the lunar surface. . Mod. Geol. 3::6991 [Google Scholar]
  122. Siegel RW. , Ramasamy S. , Hahn H. , Zongquan L. , Ting L. , Grinsky R. . 1988.. Synthesis, characterization, and properties of nanophase TiO2. . J. Mater. Res. 3::136772 [Google Scholar]
  123. Simonds CH. . 1975.. Thermal regimes in impact melts and the petrology of Apollo 17 station 6 boulder. . Proc. Lunar. Sci. Conf. 6::64172 [Google Scholar]
  124. Simonds CH. , Warner JL. , Phinney WC. , McGee PE. . 1976.. Thermal model for impact breccia lithification: Manicouagan and the Moon. . Proc. Lunar Sci. Conf. 7::250928 [Google Scholar]
  125. Spray JG. . 1997.. Superfaults. . Geology 25::57982 [Google Scholar]
  126. Spray JG. . 1999.. Shocking rocks by cavitation and bubble implosion. . Geology 27::69598 [Google Scholar]
  127. Spray JG. . 2010.. Frictional melting of planetary materials: from hypervelocity impact to earthquakes. . Annu. Rev. Earth Planet. Sci. 38::22154 [Google Scholar]
  128. Spray JG. . 2015.. Post-shock oscillatory slip: displacement and vibration melting without offset. Presented at AGU Joint Assem., May 3–7, Montreal, Abstr . P12A10 [Google Scholar]
  129. Stöffler D. , Grieve RAF. . 2011.. Impactites. . In Metamorphic Rocks: A Classification and Glossary of Terms, ed. D Fettes, J Desmons , pp. 8291. Cambridge, UK:: Cambridge Univ. Press [Google Scholar]
  130. Stöffler D. , Knoll HD. , Marvin UB. , Simonds CH. , Warren PH. . 1980.. Recommended classification and nomenclature of lunar highland rocks—a committee report. . In Proceedings of the Conference on the Lunar Highlands Crust, ed. JJ Papike, RB Merill , pp. 5170. New York:: Pergamon [Google Scholar]
  131. Strangway DW. , Pearce GW. , Olhoeft GR. . 1975.. Magnetic and dielectric properties of lunar samples. . In Proceedings of the Soviet-American Conference on Cosmochemistry of the Moon and Planets, ed. AP Vinogradov , pp. 71228. Moscow:: Nauka [Google Scholar]
  132. Strom RG. , Schaber GG. , Dawson DD. . 1994.. The global resurfacing of Venus. . J. Geophys. Res. 99:(E5):10899926 [Google Scholar]
  133. Syal MB. , Schultz PH. , Riner MA. . 2015.. Darkening of Mercury's surface by cometary carbon. . Nat. Geosci. 8::35256 [Google Scholar]
  134. Taylor GJ. , Warren P. , Ryder G. , Delano J. , Pieters C. , Lofgren G. . 1991.. Lunar Rocks. . See Heiken et al. 1991 , pp. 183284
  135. Taylor SR. . 2001.. Solar System Evolution: A New Perspective. Cambridge, UK:: Cambridge Univ. Press [Google Scholar]
  136. Taylor SR. , McLennan SM. . 2010.. Planetary Crusts: Their Composition, Origin and Evolution. Cambridge, UK:: Cambridge Univ. Press [Google Scholar]
  137. Thompson LM. , Spray JG. . 2016.. Dynamic interaction between impact melt and fractured basement at Manicouagan: the suevite connection. . Meteorit. Planet. Sci. Submitted [Google Scholar]
  138. Thompson TW. , Campbell BA. , Ghent RR. , Hawke BR. . 2009.. Rugged crater ejecta as a guide to megaregolith thickness in the southern nearside of the Moon. . Geology 37::65558 [Google Scholar]
  139. Toksoz MN. , Dainty S. , Solomon SC. , Anderson KR. . 1973.. Velocity structure and evolution of the Moon. . Proc. Lunar. Sci. Conf. 4::252947 [Google Scholar]
  140. Vaughan WM. , Head JW. , Wilson L. , Hess PC. . 2013.. Geology and petrology of enormous volumes of impact melt on the Moon: a case study of the Orientale basin impact melt sea. . Icarus 223::74965 [Google Scholar]
  141. Warren PH. . 1993.. A concise compilation of petrologic information on possible pristine nonmare Moon rocks. . Am. Mineral. 78::36076 [Google Scholar]
  142. Warren PH. . 2001.. Porosities of lunar meteorites: strength, porosity, and petrologic screening during the meteorite delivery process. . J. Geophys. Res. Planets 106::1010111 [Google Scholar]
  143. Warren PH. . 2011.. Ejecta-megaregolith accumulation on planetesimals and large asteroids. . Meteorit. Planet. Sci. 46::5378 [Google Scholar]
  144. Warren PH. , Rasmussen KL. . 1987.. Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon. . J. Geophys. Res. 92:(B5):345365 [Google Scholar]
  145. Wentworth CK. . 1922.. A scale of grade and class terms for clastic sediments. . J. Geol. 30::37792 [Google Scholar]
  146. Wieczorek MA. , Neumann GA. , Nimmo F. , Kiefer WS. , Taylor GJ. , et al. 2013.. The crust of the Moon as seen by GRAIL. . Science 339::67175 [Google Scholar]
  147. Wieczorek MA. , Zuber MT. . 2004.. The thickness of the Martian crust: improved constraints from geoid-to-topography ratios. . J. Geophys. Res. 109::E01009 [Google Scholar]
  148. Wilcox BB. , Robinson MS. , Thomas PC. , Hawkes BR. . 2005.. Constraints on the depth and variability of the lunar regolith. . Meteorit. Planet. Sci. 40::695710 [Google Scholar]
  149. Wilde SA. , Valley JW. , Peck WH. , Graham CM. . 2001.. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. . Nature 409::17578 [Google Scholar]
  150. Xiao Z. , Strom RG. , Chapman CR. , Head JW. , Klimzak C. , et al. 2014.. Comparisons of fresh complex impact craters on Mercury and the Moon: implications for controlling factors in impact excavation processes. . Icarus 228::26075 [Google Scholar]
  151. Zhang J. , Yang W. , Hu S. , Lin Y. , Fang G. , et al. 2015.. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu. . PNAS 112::534247 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012203
Loading
/content/journals/10.1146/annurev-earth-060115-012203
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error