Annual Review of Earth and Planetary Sciences - Volume 44, 2016
Volume 44, 2016
-
-
Body Size Evolution Across the Geozoic
Vol. 44 (2016), pp. 523–553More LessThe Geozoic encompasses the 3.6 Ga interval in Earth history when life has existed. Over this time, life has diversified from exclusively tiny, single-celled organisms to include large, complex multicellular forms. Just how and why this diversification occurred has been a major area of interest for paleontologists and evolutionary biologists for centuries. Here, we compile data on organism size throughout the Geozoic fossil record for the three domains of life. We describe canonical trends in the evolution of body size, synthesize current understanding of the patterns and causal mechanisms at various hierarchical scales, and discuss the biological and geological consequences of variation in organismal size.
-
-
-
Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control
Vol. 44 (2016), pp. 555–579More LessNuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.
-
-
-
Biomarker Records Associated with Mass Extinction Events
Vol. 44 (2016), pp. 581–612More LessThe history of life on Earth is punctuated by a series of mass extinction episodes that vary widely in their magnitude, duration, and cause. Biomarkers are a powerful tool for the reconstruction of historical environmental conditions and can therefore provide insights into the cause and responses to ancient extinction events. In examining the five largest mass extinctions in the geological record, investigators have used biomarkers to elucidate key processes such as eutrophy, euxinia, ocean acidification, changes in hydrological balance, and changes in atmospheric CO2. By using these molecular fossils to understand how Earth and its ecosystems have responded to unusual environmental activity during these extinctions, models can be made to predict how Earth will respond to future changes in its climate.
-
-
-
Impacts of Climate Change on the Collapse of Lowland Maya Civilization
Vol. 44 (2016), pp. 613–645More LessPaleoclimatologists have discovered abundant evidence that droughts coincided with collapse of the Lowland Classic Maya civilization, and some argue that climate change contributed to societal disintegration. Many archaeologists, however, maintain that drought cannot explain the timing or complex nature of societal changes at the end of the Classic Period, between the eighth and eleventh centuries ce. This review presents a compilation of climate proxy data indicating that droughts in the ninth to eleventh century were the most severe and frequent in Maya prehistory. Comparison with recent archaeological evidence, however, indicates an earlier beginning for complex economic and political processes that led to the disintegration of states in the southern region of the Maya lowlands that precedes major droughts. Nonetheless, drought clearly contributed to the unusual severity of the Classic Maya collapse, and helped to inhibit the type of recovery seen in earlier periods of Maya prehistory. In the drier northern Maya Lowlands, a later political collapse at ca. 1000 ce appears to be related to ongoing extreme drought. Future interdisciplinary research should use more refined climatological and archaeological data to examine the relationship between climate and social processes throughout the entirety of Maya prehistory.
-
-
-
Evolution of Oxygenic Photosynthesis
Vol. 44 (2016), pp. 647–683More LessThe origin of oxygenic photosynthesis was the most important metabolic innovation in Earth history. It allowed life to generate energy and reducing power directly from sunlight and water, freeing it from the limited resources of geochemically derived reductants. This greatly increased global primary productivity and restructured ecosystems. The release of O2 as an end product of water oxidation led to the rise of oxygen, which dramatically altered the redox state of Earth's atmosphere and oceans and permanently changed all major biogeochemical cycles. Furthermore, the biological availability of O2 allowed for the evolution of aerobic respiration and novel biosynthetic pathways, facilitating much of the richness we associate with modern biology, including complex multicellularity. Here we critically review and synthesize information from the geological and biological records for the origin and evolution of oxygenic photosynthesis. Data from both of these archives illustrate that this metabolism first appeared in early Paleoproterozoic time and, despite its biogeochemical prominence, is a relatively late invention in the context of our planet's history.
-
-
-
Crustal Decoupling in Collisional Orogenesis: Examples from the East Greenland Caledonides and Himalaya
Vol. 44 (2016), pp. 685–708More LessMature orogenic systems built by continent-continent collision feature orogenic plateaus flanked by accretionary wedges. Thermal-mechanical models of these systems predict the development of a thermally weakened orogenic infrastructure that is capable of lateral flow toward the orogenic foreland. Such flow, if it occurs, strongly influences the evolutionary pathway of a wedge. Although the architecture of a wedge features numerous large-displacement faults, three are preeminent in mature orogens: one that marks the base of the wedge and two others that mark the base and top, respectively, of the weakened infrastructure. These structures represent major decoupling horizons separating domains with distinctive deformational and thermal histories. Reviews of the geology of orogenic wedges in two mature orogenic systems—the Cenozoic Himalaya and the Paleozoic East Greenland Caledonides—show how this simple conceptual model provides a valuable context for studies of how collisional orogenic systems develop and how they interact with the surrounding lithosphere.
-
-
-
Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies
Vol. 44 (2016), pp. 709–783More LessIsotopic variations usually follow mass-dependent fractionation, meaning that the relative variations in isotopic ratios scale with the difference in mass of the isotopes involved (e.g., δ17O ≈ 0.5×δ18O). In detail, however, the mass dependence of isotopic variations is not always the same, and different natural processes can define distinct slopes in three-isotope diagrams. These variations are subtle, but improvements in analytical capabilities now allow precise measurement of these effects and make it possible to draw inferences about the natural processes that caused them (e.g., reaction kinetics versus equilibrium isotope exchange). Some elements, in some sample types, do not conform to the regularities of mass-dependent fractionation. Oxygen and sulfur display a rich phenomenology of mass-independent fractionation, documented in the laboratory, in the rock record, and in the modern atmosphere. Oxygen in meteorites shows isotopic variations that follow a slope-one line (δ17O ≈ δ18O) whose origin may be associated with CO photodissociation. Sulfur mass-independent fractionation in ancient sediments provides the tightest constraint on the oxygen partial pressure in the Archean and the timing of Earth's surface oxygenation. Heavier elements also show departures from mass fractionation that can be ascribed to exotic effects associated with chemical reactions such as magnetic effects (e.g., Hg) or the nuclear field shift effect (e.g., U or Tl). Some isotopic variations in meteorites and their constituents cannot be related to the terrestrial composition by any known process, including radiogenic, nucleogenic, and cosmogenic effects. Those variations have a nucleosynthetic origin, reflecting the fact that the products of stellar nucleosynthesis were not fully homogenized when the Solar System formed. Those anomalies are found at all scales, from nanometer-sized presolar grains to bulk terrestrial planets. They can be used to learn about stellar nucleosynthesis, mixing in the solar nebula, and genetic relationships between planetary bodies (e.g., the origin of the Moon). They can also confound interpretations based on dating techniques (e.g., 146Sm-142Nd) when they are misidentified as isotopic variations of radiogenic origin. To summarize, there is a world to explore outside of mass-dependent fractionation whose impact is promised to expand as analytical capabilities to measure ever-subtler isotopic anomalies on ever-smaller samples continue to improve.
-
Previous Volumes
-
Volume 52 (2024)
-
Volume 51 (2023)
-
Volume 50 (2022)
-
Volume 49 (2021)
-
Volume 48 (2020)
-
Volume 47 (2019)
-
Volume 46 (2018)
-
Volume 45 (2017)
-
Volume 44 (2016)
-
Volume 43 (2015)
-
Volume 42 (2014)
-
Volume 41 (2013)
-
Volume 40 (2012)
-
Volume 39 (2011)
-
Volume 38 (2010)
-
Volume 37 (2009)
-
Volume 36 (2008)
-
Volume 35 (2007)
-
Volume 34 (2006)
-
Volume 33 (2005)
-
Volume 32 (2004)
-
Volume 31 (2003)
-
Volume 30 (2002)
-
Volume 29 (2001)
-
Volume 28 (2000)
-
Volume 27 (1999)
-
Volume 26 (1998)
-
Volume 25 (1997)
-
Volume 24 (1996)
-
Volume 23 (1995)
-
Volume 22 (1994)
-
Volume 21 (1993)
-
Volume 20 (1992)
-
Volume 19 (1991)
-
Volume 18 (1990)
-
Volume 17 (1989)
-
Volume 16 (1988)
-
Volume 15 (1987)
-
Volume 14 (1986)
-
Volume 13 (1985)
-
Volume 12 (1984)
-
Volume 11 (1983)
-
Volume 10 (1982)
-
Volume 9 (1981)
-
Volume 8 (1980)
-
Volume 7 (1979)
-
Volume 6 (1978)
-
Volume 5 (1977)
-
Volume 4 (1976)
-
Volume 3 (1975)
-
Volume 2 (1974)
-
Volume 1 (1973)
-
Volume 0 (1932)