Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allison G. 2008. Nuclear deterrence in the age of nuclear terrorism. MIT Technology Review68–73 [Google Scholar]
  2. Badaut V, Wallenius M, Mayer K. 2009. Anion analysis in uranium ore concentrates by ion chromatography. J. Radioanal. Nucl. Chem. 280:57–61 [Google Scholar]
  3. Baude S. 2008. HEU seized in July 2001 in Paris: analytical investigations performed on the material. Illicit Nuclear Trafficking: Collective Experience and the Way Forward. Proceedings of an International Conference, Edinburgh, 19–22 November 2007397–98 Vienna: Int. At. Energy Agency [Google Scholar]
  4. Baude S, Chartier B, Kimmel D, Marriotte F, Masse D. et al. 2008. The French response in cases of illicit nuclear trafficking: lessons learned from a real case. Illicit Nuclear Trafficking: Collective Experience and the Way Forward. Proceedings of an International Conference, Edinburgh, 19–22 November 2007363–71 Vienna: Int. At. Energy Agency [Google Scholar]
  5. Bayne CK, Begovich J, Bostick DA, Carter J, Giaquinto JM. et al. 2009. Statistical investigation of sample characteristics needed for establishing the origin of uranium ore concentrates/yellowcake. Proceedings of the Institute of Nuclear Materials Management 50th Annual Meeting, Tucson, Arizona12–16 Oakbrook Terrace, IL: Inst. Nucl. Mater. Manag. [Google Scholar]
  6. Brennecka GA, Borg LE, Hutcheon ID, Sharp MA, Anbar AD. 2010. Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238U/235U fractionation mechanism. Earth Planet. Sci. Lett. 291:228–33 [Google Scholar]
  7. Budinger PA, Drenski TL, Varnes AW, Mooney JR. 1980. The case of the Great Yellow Cake Caper. Anal. Chem. 52:942A–48A [Google Scholar]
  8. Chen Y, Chang ZY, Zhao YG, Zhang JL, Li JH, Shu FJ. 2009. Studies on the age determination of trace plutonium. J. Radioanal. Nucl. Chem. 281:675–78 [Google Scholar]
  9. Christofano E, Harris WB. 1960. The industrial hygiene of uranium refining. Arch. Environ. Health 1:438–60 [Google Scholar]
  10. Cowan GA. 1976. A natural fission reactor. Scientific American July 1 36–47 [Google Scholar]
  11. Cowan GA, Adler HH. 1976. The variability of the natural abundance of 235U. Geochim. Cosmochim. Acta. 40:1487–90 [Google Scholar]
  12. Dolgov Y, Bibilashvili Y, Chorokhov N, Koch L, Schenkel R, Schubert A. 1997. Case studies with a relational database system for identification of nuclear material of unknown origin. Proceedings of the Russian International Conference on Nuclear Material Protection, Control, and Accounting116–20 Obinsk, Russ: Inst. Phys. Power Eng. [Google Scholar]
  13. Dudder GB, Hanlen RC, Herbillon GM. 2003a. Final report: international interlaboratory forensics exercise with a highly enriched uranium sample (HEU Round-Robin Exercise). Rep. PNNL-14698, Pac. Northwest Natl. Lab. (PNNL), Richland, WA [Google Scholar]
  14. Dudder GB, Hanlen RC, Herbillion GM. 2003b. International Technical Working Group round robin tests. Advances in Destructive and Non-Destructive Analysis for Environmental Monitoring and Nuclear Forensics. Proceedings of an International Conference, Karlsruhe, 21–23 October 200241–51 Vienna: Int. At. Energy Agency [Google Scholar]
  15. Eglinger A, André-Mayer A, Vanderhaeghe O, Mercadier J, Cuney M. et al. 2013. Geochemical signatures of uranium oxides in the Lufilian belt: from unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle. Ore Geol. Rev. 54:197–213 [Google Scholar]
  16. Eppich GR, Williams RW, Gaffney AM, Schorzman KC. 2013. 235U-231Pa age dating of uranium materials for nuclear forensic investigations. J. Anal. At. Spectrom. 28:666–74 [Google Scholar]
  17. Fryer BJ, Taylor RP. 1987. Rare-earth element distributions in uraninites: implications for ore genesis. Chem. Geol. 63:101–8 [Google Scholar]
  18. Gaffney AM, Hubert A, Kinman WS, Magara M, Okubo A. 2015. Round-robin 230Th-234U age dating of bulk uranium for nuclear forensics. J. Radioanal. Nucl. Chem. 307:2055–60 [Google Scholar]
  19. Grant PM, Moody KJ, Hutcheon ID, Phinney DL, Whipple RE. et al. 1998. Nuclear forensics in law enforcement applications. J. Radioanal. Nucl. Chem. 235:129–32 [Google Scholar]
  20. Han SH, Varga Z, Krajkó J, Wallenius M, Song K, Mayer K. 2013. Measurement of the sulphur isotope ratio (34S/32S) in uranium ore concentrates (yellow cakes) for origin assessment. J. Anal. At. Spectrom. 28:1919–25 [Google Scholar]
  21. Hanlen R. 2011. Round Robin 3 exercise after action and lessons learned report. Rep. PNNL-20079, Pac. Northwest Natl. Lab. (PNNL), Richland, WA. [Google Scholar]
  22. Harrington CD, Ruehle AE. 1959. Uranium Production Technology Princeton, NJ: Van Nostrand [Google Scholar]
  23. Hausen DM. 1998. Characterizing and classifying uranium yellow cakes: a background. J. Miner. Met. Mater. Soc. 50:45–47 [Google Scholar]
  24. IAEA (Int. At. Energy Agency) 2006. Nuclear Forensics Support. IAEA Nucl. Secur. Ser. No. 2 Vienna: IAEA [Google Scholar]
  25. IAEA (Int. At. Energy Agency) 2015. Nuclear Forensics in Support of Investigations IAEA Nucl. Secur. Ser. No. 2-G (Rev. 1) Vienna: IAEA [Google Scholar]
  26. Kaufman A, Broecker W. 1965. Comparison of Th230 and C14 ages for carbonate materials from Lakes Lahontan and Bonneville. J. Geophys. Res. 70:4039–54 [Google Scholar]
  27. Kayzar TM, Williams RW. 2016. Developing radium-226 and actinium-227 age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers. J. Radioanal. Nucl. Chem. In press [Google Scholar]
  28. Keegan RP, Gehrke RJ. 2003. A method to determine the time since last purification of weapons grade plutonium. Appl. Radiat. Isot. 59:137–43 [Google Scholar]
  29. Keegan E, Kristo MJ, Colella M, Robel M, Williams R. et al. 2014. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia. Forensic Sci. Int. 240:111–21 [Google Scholar]
  30. Keegan E, Richter S, Kelly I, Wong H, Gadd P. et al. 2008. The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Appl. Geochem. 23:765–77 [Google Scholar]
  31. Keegan E, Wallenius M, Mayer K, Varga Z, Rasmussen G. 2012. Attribution of uranium ore concentrates using elemental and anionic data. Appl. Geochem. 27:1600–9 [Google Scholar]
  32. Kennedy AK, Bostick DA, Hexel CR, Smith RR, Giaquinto JM. 2013. Non-volatile organic analysis of uranium ore concentrates. J. Radioanal. Nucl. Chem. 296:817–21 [Google Scholar]
  33. Klunder GL, Plaue JW, Spackman PE, Grant PM, Lindvall RE, Hutcheon ID. 2013. Application of visible/near-infrared reflectance spectroscopy to uranium ore concentrates for nuclear forensic analysis and attribution. Appl. Spectrosc. 67:1049–56 [Google Scholar]
  34. Krajkó J, Varga Z, Yalcintas E, Wallenius M, Mayer K. 2014. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates. Talanta 129:499–504 [Google Scholar]
  35. Kristo MJ, Keegan E, Colella M, Williams R, Lindvall R. et al. 2015. Nuclear forensic analysis of uranium oxide powders interdicted in Victoria, Australia. Radiochim. Acta 103:487–500 [Google Scholar]
  36. Kristo MJ, Tumey SJ. 2013. The state of nuclear forensics. Nucl. Instrum. Methods B 294:656–61 [Google Scholar]
  37. Lin D, Manara D, Varga Z, Berlizov A, Fanghänel T, Mayer K. 2013. Applicability of Raman spectroscopy as a tool in nuclear forensics for analysis of uranium ore concentrates. Radiochim. Acta 101:779–84 [Google Scholar]
  38. Mayer K, Wallenius M, Fanghanel T. 2007. Nuclear forensic science—from cradle to maturity. J. Alloys Compounds 444–45:50–56 [Google Scholar]
  39. Mayer K, Wallenius M, Lützenkirchen K, Galy J, Varga Z. et al. 2011a. Nuclear forensics: a methodology applicable to nuclear security and to non-proliferation. J. Phys. Conf. Ser. 312:062003 [Google Scholar]
  40. Mayer K, Wallenius M, Lützenkirchen K, Horta J, Nicholl A. et al. 2015. Uranium from German nuclear power projects of the 1940s—a nuclear forensic investigation. Angew. Chem. Int. Ed. 54:13452–56 [Google Scholar]
  41. Mayer K, Wallenius M, Varga Z. 2013. Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem. Rev. 113:884–900 [Google Scholar]
  42. Mayer K, Wallenius M, Varga Z, Wiss T, Fanghänel T. 2011b. Investigative radiochemistry—a key element in nuclear forensics. Proc. Radiochim. 1:145–49 [Google Scholar]
  43. Mercadier J, Cuney M, Lach P, Boiron MC, Bonhoure J. et al. 2011. Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 23:264–69 [Google Scholar]
  44. Meyers LA, Glover SE, LaMont SP, Stalcup AM, Spitz HB. 2014. Radiological chronometry of uranium metal samples. J. Radioanal. Nucl. Chem. 299:1833–37 [Google Scholar]
  45. Meyers LA, Williams RW, Glover SE, LaMont SP, Stalcup AM, Spitz HB. 2013. Radiochronological age of a uranium metal sample from an abandoned facility. J. Radioanal. Nucl. Chem. 296:669–74 [Google Scholar]
  46. Moody KJ, Grant PM. 1999. Nuclear forensic analysis of thorium. J. Radioanal. Nucl. Chem. 241:157–67 [Google Scholar]
  47. Moody KJ, Grant PM, Hutcheon ID. 2014. Nuclear Forensic Analysis Boca Raton, FL: CRC Press, 2nd ed.. [Google Scholar]
  48. Moorthy AR, Kato WY. 1997. HEU age determination Rep. BNL-52535, Brookhaven Natl. Lab. (BNL), Upton, NY [Google Scholar]
  49. Morgenstern A, Apostolidis C, Mayer K. 2002. Age determination of highly enriched uranium: separation and analysis of 231Pa. Anal. Chem. 74:5513–16 [Google Scholar]
  50. Murphy MJ, Froehlich MB, Fifield LK, Turner SP, Schaefer BF. 2015. In-situ production of natural 236U in groundwaters and ores in high-grade uranium deposits. Chem. Geol. 410:213–22 [Google Scholar]
  51. Nguyen CT. 2005. Age-dating of highly enriched uranium by gamma-spectrometry. Nucl. Instrum. Methods B 229:103–10 [Google Scholar]
  52. Nguyen CT. 2006. Verification of the 239Pu content, isotopic composition and age of plutonium in Pu-Be neutron sources by gamma-spectrometry. Nucl. Instrum. Methods B 251:227–36 [Google Scholar]
  53. Nguyen CT, Zsigrai J. 2006a. Basic characterization of highly enriched uranium by gamma spectrometry. Nucl. Instrum. Methods B 246:417–24 [Google Scholar]
  54. Nguyen CT, Zsigrai J. 2006b. Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration. Nucl. Instrum. Methods B 243:187–92 [Google Scholar]
  55. Niemeyer S, Hutcheon I. 2002. Forensic analysis of a smuggled HEU sample interdicted in Bulgaria. Advances in Destructive and Non-Destructive Analysis for Environmental Monitoring and Nuclear Forensics. Proceedings of an International Conference, Karlsruhe, 21–23 October 200227–28 Vienna: Int. At. Energy Agency [Google Scholar]
  56. Nuclear Forensics Working Group 2008. Nuclear Forensics: Role, State of the Art, and Program Needs.. Washington, DC: Am. Phys. Soc./Am. Assoc. Adv. Sci. [Google Scholar]
  57. Nygren U, Ramebäck H, Nilsson C. 2007. Age determination of plutonium using inductively coupled plasma mass spectrometry. J. Radioanal. Nucl. Chem. 272:45–51 [Google Scholar]
  58. Plaue JW, Klunder GL, Hutcheon ID, Czerwinski KR. 2013. Near infrared reflectance spectroscopy as a process signature in uranium oxides. J. Radioanal. Nucl. Chem. 296:551–55 [Google Scholar]
  59. Pointurier F, Hubert A, Roger G. 2013. A method for dating small amounts of uranium. J. Radioanal. Nucl. Chem. 296:593–98 [Google Scholar]
  60. Ramebäck H, Nygren U, Lagerkvist P, Verbruggen A, Wellum R, Skarnemark G. 2008. Basic characterization of 233U: determination of age and 232U content using sector field ICP-MS, gamma spectrometry and alpha spectrometry. Nucl. Instrum. Methods B 266:807–12 [Google Scholar]
  61. Richter S, Alonso A, De Bolle W, Wellum R, Taylor PDP. 1999. Isotopic “fingerprints” for natural uranium ore samples. Int. J. Mass Spectrom. 193:9–14 [Google Scholar]
  62. Richter S, Alonso A, De Bolle W, Kuhn H, Verbruggen A. et al. 2005. Re-certification of a series of uranium isotope reference materials: IRMM-183, IRMM-184, IRMM-185, IRMM-186 and IRMM-187. Int. J. Mass Spectrom. 247:37–39 [Google Scholar]
  63. Richter S, Alonso-Munoz A, Eykens R, Jacobsson U, Kuehn H. et al. 2008. The isotopic composition of natural uranium samples—measurements using the new n(233U)/n(236U) double spike IRMM-3636. Int. J. Mass Spectrom. 269:145–48 [Google Scholar]
  64. Robel M, Hutcheon ID, Kristo MJ, Borg LE, Ramon EC. et al. 2011. The Uranium Sourcing Database project: a comprehensive international nuclear forensics collaboration from ore to attribution. Proceedings of the 52nd Annual Meeting of the Institute of Nuclear Materials Management, Desert Springs, California 25 Oakbrook Terrace, IL: Inst. Nucl. Mater. Manag. [Google Scholar]
  65. Robel M, Kristo MJ, Heller M. 2009. Nuclear Forensic Inferences Using Iterative Multidimensional Statistics Livermore, CA: Lawrence Livermore Natl. Lab. [Google Scholar]
  66. Roth E. 1977. The discovery and study of the nuclear reactor in Oklo. J. Radioanal. Chem. 37:65–78 [Google Scholar]
  67. Schwantes JM, Douglas M, Bonde SE, Briggs JD, Farmer OT. 2009. Nuclear archaeology in a bottle: evidence of pre-Trinity U.S. weapons activities from a waste burial site. Anal. Chem. 81:1297–306 [Google Scholar]
  68. Shinonaga T, Donohue D, Ciurapinski A, Klose D. 2009. Age determination of single plutonium particles after chemical separation. Spectrochim. Acta B 64:95–98 [Google Scholar]
  69. Sirven JB, Pailloux A, M'Baye Y, Coulon N, Alpettaz T, Gosse S. 2009. Towards the determination of the geographical origin of yellow cake samples by laser-induced breakdown spectroscopy and chemometrics. J. Anal. At. Spectrom. 24:451–59 [Google Scholar]
  70. Spencer KJ, Tandon L, Gallimore D, Xu N, Kuhn K. 2009. Refinement of Pu parent-daughter isotopic and concentration analysis for forensic (dating) purposes. J. Radioanal. Nucl. Chem. 282:549–54 [Google Scholar]
  71. Srncik M, Mayer K, Hrnecek E, Wallenius M, Varga Z. et al. 2011. Investigation of the 236U/238U isotope abundance ratio in uranium ores and yellow cake samples. Radiochim. Acta 99:335–39 [Google Scholar]
  72. Stacey JT, Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26:207–21 [Google Scholar]
  73. Sturm M, Richter S, Aregbe Y, Wellum R, Mialle S. 2014. Evaluation of chronometers in plutonium age determination for nuclear forensics: What if the ‘Pu/U clocks’ do not match?. J. Radioanal. Nucl. Chem. 302:399–411 [Google Scholar]
  74. Švedkauskaitė-LeGore J, Mayer K, Millet S, Nicholl A, Rasmussen G, Baltrunas D. 2007. Investigation of the isotopic composition of lead and of trace elements concentrations in natural uranium materials as a signature in nuclear forensics. Radiochim. Acta 95:601–5 [Google Scholar]
  75. Švedkauskaitė-LeGore J, Rasmussen G, Abousahl S. Belle P. , Van 2008. Investigation of the sample characteristics needed for the determination of the origin of uranium-bearing materials. J. Radioanal. Nucl. Chem. 278:201–9 [Google Scholar]
  76. Szabo BJ, Rosholt JN. 1969. Uranium-series dating of Pleistocene molluscan shells from southern California—an open system model. J. Geophys. Res. 74:3253–60 [Google Scholar]
  77. Tandon L, Kuhn K, Martinez P, Banar J, Walker L. et al. 2009. Establishing reactor operations from uranium targets used for the production of plutonium. J. Radioanal. Nucl. Chem. 282:573–79 [Google Scholar]
  78. Varga Z, Katona R, Stefánka Z, Wallenius M, Mayer K, Nicholl A. 2010a. Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta 80:1744–49 [Google Scholar]
  79. Varga Z, Mayer K, Bonamici CE, Hubert A, Hutcheon I. et al. 2015. Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations. Appl. Radiat. Isot. 102:81–86 [Google Scholar]
  80. Varga Z, Öztürk B, Meppen M, Mayer K, Wallenius M, Apostolidis C. 2011a. Characterization and classification of uranium ore concentrates (yellow cakes) using infrared spectrometry. Radiochim. Acta 99:807–13 [Google Scholar]
  81. Varga Z, Surányi G. 2007. Production date determination of uranium-oxide materials by inductively coupled plasma mass spectrometry. Anal. Chim. Acta 599:16–23 [Google Scholar]
  82. Varga Z, Wallenius M, Mayer K. 2010b. Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern. Radiochim. Acta 98:771–78 [Google Scholar]
  83. Varga Z, Wallenius M, Mayer K, Keegan E, Millet S. 2009. Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates. Anal. Chem. 81:8327–34 [Google Scholar]
  84. Varga Z, Wallenius M, Mayer K. 2010. Age determination of uranium samples by inductively coupled plasma mass spectrometry using direct measurement and spectral deconvolution. J. Anal. At. Spectrom. 25:1958–62 [Google Scholar]
  85. Varga Z, Wallenius M, Mayer K, Hrnecek E. 2011b. Alternative method for the production date determination of impure uranium ore concentrate samples. J. Radioanal. Nucl. Chem. 290:485–92 [Google Scholar]
  86. Wallenius M, Mayer K. 2000. Age determination of plutonium material in nuclear forensics by thermal ionisation mass spectrometry. Fresenius J. Anal. Chem. 366:234–38 [Google Scholar]
  87. Wallenius M, Mayer K, Ray I. 2006. Nuclear forensic investigations: two case studies. Forensic Sci. Int. 156:55–62 [Google Scholar]
  88. Wallenius M, Lutzenkirchen K, Mayer K, Ray I, Aldave de las Heras L. et al. 2007. Nuclear forensic investigations with a focus on plutonium. J. Alloys Compounds 444–45:57–62 [Google Scholar]
  89. Wallenius M, Morgenstern A, Apostolidis C, Mayer K. 2002. Determination of the age of highly enriched uranium. Anal. Bioanal. Chem. 374:379–84 [Google Scholar]
  90. Wallenius M, Tamborini G, Koch L. 2001. The “age” of plutonium particles. Radiochim. Acta 89:55–58 [Google Scholar]
  91. West D, Sherwood AC. 1981. Gamma-rays from an unirradiated plutonium uranium oxide fuel pin and a method of measuring the age of plutonium since chemical-processing. Ann. Nucl. Energy 8:441–53 [Google Scholar]
  92. Weyer S, Anbar AD, Gerdes A, Gordon GW, Algeo TJ, Boyle EA. 2008. Natural fractionation of 238U/235U. Geochim. Cosmochim. Acta 72:345–59 [Google Scholar]
  93. Wilcken KM, Fifield LK, Barrows TT, Tims SG, Gladkis LG. 2008. Nucleogenic 36Cl, 236U and 239Pu in uranium ores. Nucl. Instrum. Methods B 266:3614–24 [Google Scholar]
  94. Williams RW, Gaffney AM. 2011. 230Th-234U model ages of some uranium standard reference materials. Proc. Radiochim. Acta 1:31–35 [Google Scholar]
  95. Zaitseva L, Steinhäusler F. 2014. Nuclear trafficking issues in the Black Sea region Non-Prolif. Pap. No. 39, EU Non-Prolif. Consort., Paris [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error