The Geozoic encompasses the 3.6 Ga interval in Earth history when life has existed. Over this time, life has diversified from exclusively tiny, single-celled organisms to include large, complex multicellular forms. Just how and why this diversification occurred has been a major area of interest for paleontologists and evolutionary biologists for centuries. Here, we compile data on organism size throughout the Geozoic fossil record for the three domains of life. We describe canonical trends in the evolution of body size, synthesize current understanding of the patterns and causal mechanisms at various hierarchical scales, and discuss the biological and geological consequences of variation in organismal size.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alexander RM. 1982. Optima for Animals London: Edward Arnold
  2. Algeo TJ, Scheckler SE. 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. B 353:113–30 [Google Scholar]
  3. Alroy J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–34 [Google Scholar]
  4. Alroy J. 1999. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48:107–18 [Google Scholar]
  5. Angilletta MJ, Steury TD, Sears MW. 2004. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44:498–509 [Google Scholar]
  6. Archibald JD. 1996. Dinosaur Extinction and the End of an Era New York: Columbia Univ. Press
  7. Aristotle. 347–334 bc (1984) De partibus animalium. The Complete Works of Aristotle J Barnes Princeton, NJ: Princeton Univ. Press [Google Scholar]
  8. Atkinson D, Sibly RM. 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12:235–39 [Google Scholar]
  9. Ausich WI, Bottjer DJ. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173–74 [Google Scholar]
  10. Bambach RK. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372–97 [Google Scholar]
  11. Barnosky AD, Hadly EA, Bell CJ. 2003. Mammalian response to global warming on varied temporal scales. J. Mammal. 84:354–68 [Google Scholar]
  12. Bechly G. 2004. Evolution and systematics. Grzimek's Animal Life Encyclopedia 3 Insects M Hutchins 7–16 Detroit, MI: Gale, 2nd ed.. [Google Scholar]
  13. Benson RB, Campione NE, Carrano MT, Mannion PD, Sullivan C. et al. 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLOS Biol 12:e1001853 [Google Scholar]
  14. Bergmann C. 1847. Ueber die verhältnisse der wärmeökonomie der thiere zu ihrer grösse. Göttinger Stud. 3:595–708 [Google Scholar]
  15. Berner RA. 2006. Carbon, sulfur and O2 across the Permian–Triassic boundary. J. Geochem. Explor. 88:416–18 [Google Scholar]
  16. Berner RA, Kothavala Z. 2001. Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301:182–204 [Google Scholar]
  17. Berner RA, VandenBrooks JM, Ward PD. 2007. Oxygen and evolution. Science 316:557–58 [Google Scholar]
  18. Bianchi D, Stock C, Galbraith ED, Sarmiento JL. 2013. Diel vertical migration: ecological controls and impacts on the biological pump in a one-dimensional ocean model. Glob. Biogeochem. Cycles 27:478–91 [Google Scholar]
  19. Blankenhorn WU. 2000. The evolution of body size: What keeps organisms small?. Q. Rev. Biol. 75:385–407 [Google Scholar]
  20. Bonner JT. 1988. The Evolution of Complexity by Means of Natural Selection Princeton, NJ: Princeton Univ. Press
  21. Bonner JT. 2006. Why Size Matters: From Bacteria to Blue Whales Princeton, NJ: Princeton Univ. Press
  22. Bottjer DJ, Hagadorn JW, Dornbos SQ. 2000. The Cambrian substrate revolution. GSA Today 10:1–7 [Google Scholar]
  23. Boyce CK, Lee JE. 2010. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proc. R. Soc. B doi: 10.1098/rspb.2010.0485
  24. Boyer AG. 2010. Consistent ecological selectivity through time in Pacific island avian extinctions. Conserv. Biol. 24:511–19 [Google Scholar]
  25. Boyle R, Dahl TW, Dale AW, Shields-Zhou G, Zhu MY. et al. 2014. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nat. Geosci. 7:671–76 [Google Scholar]
  26. Brasier M, Cowie J, Taylor M. 1994. Decision on the Precambrian–Cambrian boundary stratotype. Episodes 17:3–8 [Google Scholar]
  27. Brasier MD, Green OR, Jephcoat AP, Kleppe AK. Kranendonk MJ. , Van et al. 2002. Questioning the evidence for Earth's oldest fossils. Nature 416:76–81 [Google Scholar]
  28. Bromham L. 2009. Why do species vary in their rate of molecular evolution. Biol. Lett. doi: 10.1098/rsbl.2009.0136
  29. Brown JH. 1995. Macroecology Chicago: Univ. Chicago Press
  30. Brown JH, Marquet PA, Taper ML. 1993. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142:573–84 [Google Scholar]
  31. Brown JH, Maurer BA. 1989. Macroecology: the division of food and space among species on continents. Science 243:1145–50 [Google Scholar]
  32. Brown JH, Nicoletto PF. 1991. Spatial scaling of species composition: body masses of North American land mammals. Am. Nat. 138:1478–512 [Google Scholar]
  33. Brown WL, Wilson EO. 1956. Character displacement. Syst. Zool. 5:49–64 [Google Scholar]
  34. Buick R. 2012. Geobiology of the Archean Eon. Fundamentals of Geobiology AH Knoll, DE Canfield, KO Konhauser 351–70 Hoboken, NJ: Wiley-Blackwell [Google Scholar]
  35. Bush AM, Bambach RK, Daley G. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and the late Cenozoic. Paleobiology 33:76–97 [Google Scholar]
  36. Butterfield N. 2009. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:1–7 [Google Scholar]
  37. Calder WA. 1984. Size, Function, and Life History Cambridge, MA: Harvard Univ. Press
  38. Campbell KE Jr, Tonni E. 1980. A new genus of teratorn from the Huayquerian of Argentina (Aves: Teratornithidae). Contrib. Sci. Nat. Hist. Mus. Los Angel. Cty. 330:59–68 [Google Scholar]
  39. Canfield DE, Farquhar J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. PNAS 106:8123–27 [Google Scholar]
  40. Carlquist SJ. 1965. Island Life: A Natural History of the Islands of the World Garden City, NJ: Nat. Hist. Press
  41. Chapelle G, Peck LS. 1999. Polar gigantism dictated by oxygen availability. Nature 399:114–15 [Google Scholar]
  42. Charnov EL. 1993. Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology Oxford, UK: Oxford Univ. Press
  43. Clapham ME, Karr JA. 2012. Environmental and biotic controls on the evolutionary history of insect body size. PNAS 109:10927–30 [Google Scholar]
  44. Codron D, Carbone C, Clauss M. 2013. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories. PLOS ONE 8e77110
  45. Cope ED. 1887. The Origin of the Fittest: Essays on Evolution Boston, MA: Appleton
  46. Courties C, Vaquer A, Troussellier M, Lautier J, Chrétiennot-Dinet MJ. et al. 1994. Smallest eukaryotic organism. Nature 370:255 [Google Scholar]
  47. Cross AT, Phillips TL. 1990. Coal-forming through time in North America. Int. J. Coal Geol. 16:1–46 [Google Scholar]
  48. Crutzen PJ, Aselmann I, Seiler W. 1986. Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus B 38:271–84 [Google Scholar]
  49. Dai YC, Cui BK. 2011. Fomitiporia ellipsoidea has the largest fruiting body among the fungi. Fungal Biol 115:813–14 [Google Scholar]
  50. Damuth J. 1981. Population density and body size in mammals. Nature 290:699–700 [Google Scholar]
  51. Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G. 2009. Multiple ecological pathways to extinction in mammals. PNAS 106:10702–5 [Google Scholar]
  52. Davis SJM. 1981. The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology 7:101–14 [Google Scholar]
  53. DeLong JP, Okie JG, Moses ME, Sibly RM, Brown JH. 2010. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. PNAS 107:12941–45 [Google Scholar]
  54. Dial KP, Marzluff JM. 1988. Are the smallest organisms the most diverse?. Ecology 69:1620–24 [Google Scholar]
  55. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B. 2014. Defaunation in the Anthropocene. Science 345:401–6 [Google Scholar]
  56. Downhower JF, Blumer LS. 1988. Calculating just how small a whale can be. Nature 335:675 [Google Scholar]
  57. Enquist BJ, Brown JH, West GB. 1998. Allometric scaling of plant energetics and population density. Nature 395:163–65 [Google Scholar]
  58. Ernest S, Enquist BJ, Brown JH, Charnov EL, Gillooly JF. et al. 2003. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6:990–95 [Google Scholar]
  59. Erwin TL. 1982. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36:74–75 [Google Scholar]
  60. Evans AR, Jones D, Boyer AG, Brown JH, Costa DP. et al. 2012. The maximum rate of mammal evolution. PNAS 109:4187–90 [Google Scholar]
  61. Falconer D. 1973. Replicated selection for body weight in mice. Genet. Res. 22:291–321 [Google Scholar]
  62. Finnegan S, Droser ML. 2008. Body size, energetics, and the Ordovician restructuring of marine ecosystems. Paleobiology 34:342–59 [Google Scholar]
  63. Finnegan S, McClain C, Kosnik MA, Payne JL. 2011. Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology 37:252–69 [Google Scholar]
  64. Finnegan S, Wang SC, Boyer AG, Clapham ME, Finkel ZV. et al. 2009. No general relationship between body size and extinction risk in the fossil record of marine invertebrates and phytoplankton. Geol. Soc. Am. Abstr. Programs 41:7506 [Google Scholar]
  65. Forster J, Hirst AG, Atkinson D. 2012. Warming-induced reductions in body size are greater in aquatic than terrestrial species. PNAS 109:19310–14 [Google Scholar]
  66. Foster JB. 1964. Evolution of mammals on islands. Nature 202:234–35 [Google Scholar]
  67. Friedman M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. PNAS 106:5218–23 [Google Scholar]
  68. Fry W, White JR. 1938. Big Trees Stanford, CA: Stanford Univ. Press
  69. Galileo G. 1638. Discorsi e Dimostrazioni Matematiche, Intorno à Due Nuove Scienze Leiden: Elsevier
  70. Gingerich PD. 1993. Quantification and comparison of evolutionary rates. Am. J. Sci. 293:453–78 [Google Scholar]
  71. Gomi Y, Fukuchi M, Taniguchi A. 2010. Diatom assemblages at subsurface chlorophyll maximum layer in the eastern Indian sector of the Southern Ocean in summer. J. Plankton Res. 32:1039–50 [Google Scholar]
  72. Gould SJ, Vrba ES. 1982. Exaptation—a missing term in the science of form. Paleobiology 8:4–15 [Google Scholar]
  73. Grady JM, Enquist BJ, Dettweiler-Robinson E, Wright NA, Smith FA. 2014. Evidence for mesothermy in dinosaurs. Science 344:1268–72 [Google Scholar]
  74. Graham JB, Dudley R, Aguilar NM, Gans C. 1995. Implications of the late Paleozoic oxygen pulse for physiology and evolution. Nature 375:117–20 [Google Scholar]
  75. Grotzinger JP, Watters WA, Knoll AH. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Neoproterozoic Nama Group, Namibia. Paleobiology 26:334–59 [Google Scholar]
  76. Haldane JBS. 1928. Possible Worlds and Other Essays London: Chatto & Windus
  77. Haldane JBS. 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution 3:51–56 [Google Scholar]
  78. Harnik PG, Lotze HK, Anderson SC, Finkel ZV, Finnegan S. et al. 2012. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27:608–17 [Google Scholar]
  79. Harrison J, Frazier MR, Henry JR, Kaiser A, Klok CJ, Rascon B. 2006. Responses of terrestrial insects to hypoxia or hyperoxia. Respir. Physiol. Neurobiol. 154:4–17 [Google Scholar]
  80. Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM. et al. 2008. Mineral evolution. Am. Mineral. 93:1693–720 [Google Scholar]
  81. Heim NA, Knope ML, Schaal EK, Wang SC, Payne JL. 2015a. Cope's rule in the evolution of marine animals. Science 347:867–70 [Google Scholar]
  82. Heim NA, Payne JL, Balk MA, Finnegan S, Kowalewski M. et al. 2015b. Hierarchical complexity and the limits of organism size. Geol. Soc. Am. Abstr. Programs 47:7670 [Google Scholar]
  83. Held AA. 1981. Rozella and Rozellopsis: naked endoparasitic fungi which dress-up as their hosts. Bot. Rev. 47:451–515 [Google Scholar]
  84. Hone D, Keesey T, Pisani D, Purvis A. 2005. Macroevolutionary trends in the Dinosauria: Cope's rule. J. Evol. Biol. 18:587–95 [Google Scholar]
  85. Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L. 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–9 [Google Scholar]
  86. Hunt G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578–601 [Google Scholar]
  87. Hunt G. 2008. Evolutionary patterns within fossil lineages: model-based assessment of modes, rates, punctuations and process. Paleontol. Soc. Pap. 14:117–31 [Google Scholar]
  88. Hunt G, Hopkins MJ, Lidgard S. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. PNAS 112:4885–90 [Google Scholar]
  89. Hunt G, Roy K. 2006. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. PNAS 103:1347–52 [Google Scholar]
  90. Hutchinson G, MacArthur RH. 1959. A theoretical ecological model of size distributions among species of animals. Am. Nat. 93:117–25 [Google Scholar]
  91. Jablonski D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360–63 [Google Scholar]
  92. Jablonski D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature 385:250–52 [Google Scholar]
  93. Jablonski D, Raup DM. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389–91 [Google Scholar]
  94. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW. et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37 [Google Scholar]
  95. Kaiser A, Klok CJ, Socha JJ, Lee WK, Quinlan MC, Harrison JF. 2007. Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. PNAS 104:13198–203 [Google Scholar]
  96. Katija K, Dabiri JO. 2009. A viscosity-enhanced mechanism for biogenic ocean mixing. Nature 460:624–26 [Google Scholar]
  97. Kerr SR, Dickie LM. 2001. The Biomass Spectrum: A Predator-Prey Theory of Aquatic Production New York: Columbia Univ. Press
  98. Kidwell SM, Brenchley PJ. 1994. Patterns in bioclastic accumulation through the Phanerozoic: changes in input or in destruction?. Geology 22:1139–43 [Google Scholar]
  99. Kingsolver JG, Huey RB. 2008. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10:251–68 [Google Scholar]
  100. Kleiber M. 1932. Body size and metabolism. Hilgardia 6:315–53 [Google Scholar]
  101. Klompmaker A, Schweitzer C, Feldmann R, Kowalewski M. 2015. Environmental and scale-dependent evolutionary trends in the body size of crustaceans. Proc. R. Soc. B 282:20150440 [Google Scholar]
  102. Knoll AH. 2003. The geological consequences of evolution. Geobiology 1:3–14 [Google Scholar]
  103. Kowalewski M, Payne JL, Smith FA, Wang SC, McShea DW. et al. 2011. The Geozoic Supereon. Palaios 26:251–55 [Google Scholar]
  104. Leamy L. 1988. Genetic and maternal influences on brain and body size in randombred house mice. Evolution 42:42–53 [Google Scholar]
  105. Lee JJ, Leedale GF, Bradbury TC. 2000. An Illustrated Guide to the Protozoa: Organisms Traditionally Referred To as Protozoa, or Newly Discovered Groups Lawrence, KS: Soc. Protozool.
  106. Li X, Droser ML. 1999. Lower and Middle Ordovician shell beds from the Basin and Range province of the western United States (California, Nevada, and Utah). Palaios 14:215–33 [Google Scholar]
  107. Lillegraven JA, Kielan-Jaworowska Z, Clemens WA. 1979. Mesozoic Mammals: The First Two-Thirds of Mammalian History Berkeley: Univ. Calif. Press
  108. Liow LH, Fortelius M, Bingham E, Lintulaakso K, Mannila H. et al. 2008. Higher origination and extinction rates in larger mammals. PNAS 105:6097–102 [Google Scholar]
  109. Lockwood R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries?. Paleobiology 31:578–90 [Google Scholar]
  110. Logan GA, Hayes J, Hieshima GB, Summons RE. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:53–56 [Google Scholar]
  111. Lomolino MV. 1985. Body size of mammals on islands: the island rule reexamined. Am. Nat. 125:310–16 [Google Scholar]
  112. Luef B, Frischkorn KR, Wrighton KC, Holman HN, Birarda G. et al. 2015. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun. 6:6372 [Google Scholar]
  113. Lyons SK, Heim NA, Smith F, Balk MA, Finnegan S. et al. 2015. Body size evolution and ecological replacement in terrestrial vertebrates. Geol. Soc. Am. Abstr. Programs 47:7670 [Google Scholar]
  114. Lyons SK, Smith FA, Brown JH. 2004. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6:339–58 [Google Scholar]
  115. Marden JH. 1994. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size. Am. J. Physiol. Regul. Integr. Comp. Physiol. 266:R1077–84 [Google Scholar]
  116. Marshall CP, Emry JR, Marshall AO. 2011. Haematite pseudomicrofossils present in the 3.5-billion-year-old Apex Chert. Nat. Geosci. 4:240–43 [Google Scholar]
  117. Martin AP, Palumbi SR. 1993. Body size, metabolic rate, generation time, and the molecular clock. PNAS 90:4087–91 [Google Scholar]
  118. May R. 1978. Diversity of Insect Faunas London: Blackwell
  119. Mayr E. 1956. Geographical character gradients and climatic adaptation. Evolution 10:105–8 [Google Scholar]
  120. McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR. 2015. Marine defaunation: animal loss in the global ocean. Science 347:1255641 [Google Scholar]
  121. McClain CR, Balk MA, Benfield MC, Branch TA, Chen C. et al. 2015. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ 3e715
  122. McMahon T. 1973. Size and shape in biology. Science 179:1201–4 [Google Scholar]
  123. McRoberts CA, Newton CR. 1995. Selective extinction among end-Triassic European bivalves. Geology 23:102–4 [Google Scholar]
  124. McShea D. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:1747–63 [Google Scholar]
  125. Millien V, Lyons SK, Olson L, Smith FA, Wilson AB, Yom-Tov Y. 2006. Ecotypic variation in the context of global climate change: revisiting the rules. Ecol. Lett. 9:853–69 [Google Scholar]
  126. Novack-Gottshall PM. 2008a. Ecosystem-wide body-size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology 34:210–28 [Google Scholar]
  127. Novack-Gottshall PM. 2008b. Using simple body-size metrics to estimate fossil body volume: empirical validation using diverse Paleozoic invertebrates. Palaios 23:163–73 [Google Scholar]
  128. Novack-Gottshall PM, Lanier MA. 2008. Scale-dependence of Cope's rule in body size evolution of Paleozoic brachiopods. PNAS 105:5430–34 [Google Scholar]
  129. Olden JD, Hogan ZS, Zanden M. 2007. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes. Glob. Ecol. Biogeogr. 16:694–701 [Google Scholar]
  130. Pauly D, Kinne O. 2010. Gasping fish and panting squids: oxygen, temperature and the growth of water-breathing animals. Fish Fisher. 13:359 [Google Scholar]
  131. Payne JL. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269–90 [Google Scholar]
  132. Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M. et al. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. PNAS 106:24–27 [Google Scholar]
  133. Payne JL, Groves JR, Jost AB, Nguyen T, Myhre S. et al. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66:2929–39 [Google Scholar]
  134. Payne JL, Heim NA, Knope ML, McClain C. 2014. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proc. R. Soc. B 281:20133122 [Google Scholar]
  135. Peters RH. 1983. The Ecological Implications of Body Size New York: Cambridge Univ. Press
  136. Pyenson ND, Goldbogen JA, Vogl AW, Szathmary G, Drake RL, Shadwick RE. 2012. Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. Nature 485:498–501 [Google Scholar]
  137. Raup DM, Gould SJ, Schopf TJ, Simberloff DS. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525–42 [Google Scholar]
  138. Rensch B. 1938. Some problems of geographical variation and species-formation. Proc. Linn. Soc. Lond. 150:275–85 [Google Scholar]
  139. Retallack GJ, Veevers JJ, Morante R. 1996. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geol. Soc. Am. Bull. 108:195–207 [Google Scholar]
  140. Rosenberg E. 2014. The Prokaryotes New York: Springer
  141. Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F. 2006. The rise of continents—an essay on the geologic consequences of photosynthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232:99–113 [Google Scholar]
  142. Rutledge JJ, Eisen E, Legates J. 1973. An experimental evaluation of genetic correlation. Genetics 75:709–26 [Google Scholar]
  143. Saarinen JJ, Boyer AG, Brown JH, Costa DP, Ernest SM. et al. 2014. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. R. Soc. B 281:20132049 [Google Scholar]
  144. Sander PM, Clauss M. 2008. Sauropod gigantism. Science 322:200–1 [Google Scholar]
  145. Schmidt-Nielsen K. 1984. Scaling: Why Is Animal Size So Important? New York: Cambridge Univ. Press
  146. Schopf JW. 1993. Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–46 [Google Scholar]
  147. Schopf JW. 2006. The first billion years: When did life emerge?. Elements 2:229–33 [Google Scholar]
  148. Schulz HN, Jørgensen BB. 2001. Big bacteria. Annu. Rev. Microbiol. 55:105–37 [Google Scholar]
  149. Secord R, Bloch JI, Chester SG, Boyer DM, Wood AR. et al. 2012. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene Thermal Maximum. Science 335:959–62 [Google Scholar]
  150. Seymour RS. 1979. Dinosaur eggs: gas conductance through the shell, water loss during incubation and clutch size. Paleobiology 5:1–11 [Google Scholar]
  151. Shear WA, Kukalová-Peck J. 1990. The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can. J. Zool. 68:1807–34 [Google Scholar]
  152. Simpson GG. 1953. Evolution and Geography: An Essay on Historical Biogeography with Special Reference to Mammals Eugene, OR: Or. State Syst. High. Educ.
  153. Smith FA. 1992. Evolution of body size among woodrats from Baja California, Mexico. Funct. Ecol. 6:265–73 [Google Scholar]
  154. Smith FA, Betancourt JL. 2003. The effect of Holocene temperature fluctuations on the evolution and ecology to Neotoma (woodrats) in Idaho and northwestern Utah. Quat. Res 59:160–71 [Google Scholar]
  155. Smith FA, Betancourt JL, Brown JH. 1995. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270:2012–14 [Google Scholar]
  156. Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T. et al. 2010a. The evolution of maximum body size of terrestrial mammals. Science 330:1216–19 [Google Scholar]
  157. Smith FA, Brown JH, Haskell JP, Lyons SK, Alroy J. et al. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am. Nat. 163:672–91 [Google Scholar]
  158. Smith FA, Browning H, Shepherd UL. 1998. The influence of climatic change on the body mass of woodrats (Neotoma albigula) in an arid region of New Mexico, USA. Ecography 21:140–48 [Google Scholar]
  159. Smith FA, Elliott SM, Lyons SK. 2010b. Methane emissions from extinct megafauna. Nat. Geosci. 3:374–75 [Google Scholar]
  160. Smith FA, Hammond JI, Balk MA, Elliott SM, Lyons SK. et al. 2015. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. PNAS 113:874–79 [Google Scholar]
  161. Smith FA, Lyons SK. 2011. How big should a mammal be? A macroecological look at mammalian body size over space and time. Proc. R. Soc. B 366:2364–78 [Google Scholar]
  162. Smith FA, Lyons SK. 2013. Animal Body Size: Linking Pattern and Process Across Space, Time and Taxonomy Chicago: Univ. Chicago Press
  163. Smith FA, Lyons SK, Jones K, Maurer BA. 2013. The influence of flight on patterns of body size diversity and heritability. See Smith & Lyons 2013 187–205
  164. Sperling EA, Peterson KJ, Laflamme M. 2011. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology 9:24–33 [Google Scholar]
  165. Stanley SM. 1973. Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals. Syst. Biol. 22:486–506 [Google Scholar]
  166. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM. et al. 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29:436–59 [Google Scholar]
  167. Tarhan LG, Droser ML. 2014. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399:310–22 [Google Scholar]
  168. Templin R. 2000. The spectrum of animal flight: insects to pterosaurs. Prog. Aerosp. Sci. 36:393–436 [Google Scholar]
  169. Thayer CW. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458–61 [Google Scholar]
  170. Thompson DW. 1942. On Growth and Form London: Cambridge Univ. Press
  171. Van Roy P, Daley AC, Briggs DE. 2015. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature 522:77–80 [Google Scholar]
  172. Van Valen L. 1973. Body size and numbers of plants and animals. Evolution 27:27–35 [Google Scholar]
  173. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of Earth's ecosystems. Science 277:494–99 [Google Scholar]
  174. Vizcaíno SF, Fariña RA. 1999. On the flight capabilities and distribution of the giant Miocene bird Argentavis magnificens (Teratornithidae). Lethaia 32:271–78 [Google Scholar]
  175. Vrba ES, Gould SJ. 1986. The hierarchical expansion of sorting and selection: Sorting and selection cannot be equated. Paleobiology 12:217–28 [Google Scholar]
  176. Wang SC. 2001. Quantifying passive and driven large-scale evolutionary trends. Evolution 55:849–58 [Google Scholar]
  177. Wilkinson BH. 2005. Humans as geologic agents: a deep-time perspective. Geology 33:161–64 [Google Scholar]
  178. Wilkinson DM, Nisbet EG, Ruxton GD. 2012. Could methane produced by sauropod dinosaurs have helped drive Mesozoic climate warmth?. Curr. Biol. 22:R292–93 [Google Scholar]
  179. Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM. et al. 2005. Body size in ecological networks. Trends Ecol. Evol. 20:402–9 [Google Scholar]
  180. Yokoyama H, Kawakami H, Yasuda H, Tanaka S. 2003. Henneguya lateolabracis sp. n. (Myxozoa: Myxosporea), the causative agent of cardiac henneguyosis in Chinese sea bass Lateolabrax sp. Fish. Sci. 69:1116–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error