Isotopic variations usually follow mass-dependent fractionation, meaning that the relative variations in isotopic ratios scale with the difference in mass of the isotopes involved (e.g., δ17O ≈ 0.5×δ18O). In detail, however, the mass dependence of isotopic variations is not always the same, and different natural processes can define distinct slopes in three-isotope diagrams. These variations are subtle, but improvements in analytical capabilities now allow precise measurement of these effects and make it possible to draw inferences about the natural processes that caused them (e.g., reaction kinetics versus equilibrium isotope exchange). Some elements, in some sample types, do not conform to the regularities of mass-dependent fractionation. Oxygen and sulfur display a rich phenomenology of mass-independent fractionation, documented in the laboratory, in the rock record, and in the modern atmosphere. Oxygen in meteorites shows isotopic variations that follow a slope-one line (δ17O ≈ δ18O) whose origin may be associated with CO photodissociation. Sulfur mass-independent fractionation in ancient sediments provides the tightest constraint on the oxygen partial pressure in the Archean and the timing of Earth's surface oxygenation. Heavier elements also show departures from mass fractionation that can be ascribed to exotic effects associated with chemical reactions such as magnetic effects (e.g., Hg) or the nuclear field shift effect (e.g., U or Tl). Some isotopic variations in meteorites and their constituents cannot be related to the terrestrial composition by any known process, including radiogenic, nucleogenic, and cosmogenic effects. Those variations have a nucleosynthetic origin, reflecting the fact that the products of stellar nucleosynthesis were not fully homogenized when the Solar System formed. Those anomalies are found at all scales, from nanometer-sized presolar grains to bulk terrestrial planets. They can be used to learn about stellar nucleosynthesis, mixing in the solar nebula, and genetic relationships between planetary bodies (e.g., the origin of the Moon). They can also confound interpretations based on dating techniques (e.g., 146Sm-142Nd) when they are misidentified as isotopic variations of radiogenic origin. To summarize, there is a world to explore outside of mass-dependent fractionation whose impact is promised to expand as analytical capabilities to measure ever-subtler isotopic anomalies on ever-smaller samples continue to improve.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abe M, Suzuki T, Fujii Y, Hada M. 2008a. An ab initio study based on a finite nucleus model for isotope fractionation in the U(III)-U(IV) exchange reaction system. J. Chem. Phys. 128:144309 [Google Scholar]
  2. Abe M, Suzuki T, Fujii Y, Hada M, Hirao K. 2008b. An ab initio molecular orbital study of the nuclear volume effects in uranium isotope fractionations. J. Chem. Phys. 129:164309 [Google Scholar]
  3. Abe M, Suzuki T, Fujii Y, Hada M, Hirao K. 2010. Ligand effect on uranium isotope fractionations caused by nuclear volume effects: an ab initio relativistic molecular orbital study. J. Chem. Phys. 133:044309 [Google Scholar]
  4. Akram W, Schönbächler M, Bisterzo S, Gallino R. 2015. Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system. Geochim. Cosmochim. Acta 165:484–500 [Google Scholar]
  5. Akram W, Schönbächler M, Sprung P, Vogel N. 2013. Zirconium-hafnium isotope evidence from meteorites for the decoupled synthesis of light and heavy neutron-rich nuclei. Astrophys. J. 777:169 [Google Scholar]
  6. Amari S, Anders E, Virag A, Zinner E. 1990. Interstellar graphite in meteorites. Nature 345:238–40 [Google Scholar]
  7. Amari S, Lewis RS, Anders E. 1994. Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 58:459–70 [Google Scholar]
  8. Amari S, Zinner E, Gallino R. 2014. Presolar graphite from the Murchison meteorite: an isotopic study. Geochim. Cosmochim. Acta 133:479–522 [Google Scholar]
  9. Amelin Y. 2008. U-Pb ages of angrites. Geochim. Cosmochim. Acta 72:221–32 [Google Scholar]
  10. Amelin Y, Kaltenbach A, Iizuka T, Stirling CH, Ireland TR. et al. 2010. U–Pb chronology of the Solar System's oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300:343–50 [Google Scholar]
  11. Anders E, Grevesse N. 1989. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53:197–214 [Google Scholar]
  12. Anders E, Zinner E. 1993. Interstellar grains in primitive meteorites: diamond, silicon carbide, and graphite. Meteoritics 28:490–514 [Google Scholar]
  13. Andersen MB, Elliott T, Freymuth H, Sims KWW, Niu Y, Kelley KA. 2015. The terrestrial uranium cycle. Nature 517:356–59 [Google Scholar]
  14. Andreasen R, Sharma M. 2006. Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science 314:806–9 [Google Scholar]
  15. Andreasen R, Sharma M. 2007. Mixing and homogenization in the early solar system: clues from Sr, Ba, Nd, and Sm isotopes in meteorites. Astrophys. J. 665:874 [Google Scholar]
  16. Angeli I. 2004. A consistent set of nuclear rms charge radii: properties of the radius surface R(N,Z). At. Data Nucl. Data Tables 87:185–296 [Google Scholar]
  17. Angeli I, Marinova KP. 2013. Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99:69–95 [Google Scholar]
  18. Angert A, Rachmilevitch S, Barkan E, Luz B. 2003. Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2. Glob. Biogeochem. Cycles 17:1030 [Google Scholar]
  19. Arlandini C, Käppeler F, Wisshak K, Gallino R, Lugaro M. et al. 1999. Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525:886 [Google Scholar]
  20. Armstrong J, Hutcheon I, Wasserburg G. 1984. Disturbed Mg isotopic systematics in Allende CAI. Lunar Planet. Sci. Conf. Abstr. 15:15–16 [Google Scholar]
  21. Armytage R, Georg R, Williams H, Halliday A. 2012. Silicon isotopes in lunar rocks: implications for the Moon's formation and the early history of the Earth. Geochim. Cosmochim. Acta 77:504–14 [Google Scholar]
  22. Assonov SS, Brenninkmeijer CAM. 2005. Reporting small Δ17O values: existing definitions and concepts. Rapid Commun. Mass Spectrom. 19:627–36 [Google Scholar]
  23. Audi G, Wapstra AH, Thibault C. 2003. The AME2003 atomic mass evaluation. Nucl. Phys. A 729:337–676 [Google Scholar]
  24. Bally J, Langer WD. 1982. Isotope-selective photodestruction of carbon monoxide. Astrophys. J. 255:143–48 [Google Scholar]
  25. Bao H, Lyons JR, Zhou C. 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453:504–6 [Google Scholar]
  26. Bao Z, Beer H, Käppeler F, Voss F, Wisshak K, Rauscher T. 2000. Neutron cross sections for nucleosynthesis studies. At. Data Nucl. Data Tables 76:70–154 [Google Scholar]
  27. Barkan E, Luz B. 2005. High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun. Mass Spectrom. 19:3737–42 [Google Scholar]
  28. Barkan E, Luz B. 2012. High precision measurements of 17O/16O and 18O/16O ratios in CO2. Rapid Commun. Mass Spectrom. 26:2733–38 [Google Scholar]
  29. Baroni M, Thiemens MH, Delmas RH, Savarino J. 2007. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science 315:84–87 [Google Scholar]
  30. Barrat JA, Dauphas N, Gillet P, Bollinger C, Etoubleau J. et al. 2016. Evidence from Tm anomalies for non-CI refractory lithophile element proportions in terrestrial planets and achondrites. Geochim. Cosmochim. Acta 176:1–17 [Google Scholar]
  31. Beckett JR. 1986. The origin of calcium-, aluminum-rich inclusions from carbonaceous chondrites: an experimental study. PhD Diss., Dep. Geophys. Sci., Univ. Chicago [Google Scholar]
  32. Bergquist BA, Blum JD. 2007. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318:417–20 [Google Scholar]
  33. Bernatowicz T, Fraundorf G, Ming T, Anders E, Wopenka B. et al. 1987. Evidence for interstellar SiC in the Murray carbonaceous meteorite. Nature 330:728–30 [Google Scholar]
  34. Bigeleisen J. 1962. Correlation of tritium and deuterium isotope effects. Tritium in the Physical and Biological Sciences161–68 Vienna: Int. At. Energy Agency [Google Scholar]
  35. Bigeleisen J. 1996a. Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J. Am. Chem. Soc. 118:3676–80 [Google Scholar]
  36. Bigeleisen J. 1996b. Temperature dependence of the isotopes chemistry of heavy elements. PNAS 93:9393–96 [Google Scholar]
  37. Bigeleisen J, Mayer MG. 1947. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15:261–67 [Google Scholar]
  38. Bindeman IN, Eiler JM, Wing BA, Farquhar J. 2007. Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochim. Cosmochim. Acta 71:2326–43 [Google Scholar]
  39. Birck JL. 2004. An overview of isotopic anomalies in extraterrestrial materials and their nucleosynthetic heritage. Rev. Mineral. Geochem. 55:25–64 [Google Scholar]
  40. Birck JL, Allègre CJ. 1984. Anomalous isotopic composition of chromium in Allende inclusions. Meteoritics 19:190–92 [Google Scholar]
  41. Birck JL, Allègre CJ. 1988. Manganese-chromium isotope systematics and the development of the early Solar System. Nature 331:579–84 [Google Scholar]
  42. Birck JL, Lugmair GW. 1988. Nickel and chromium isotopes in Allende inclusions. Earth Planet. Sci. Lett. 90:131–43 [Google Scholar]
  43. Black D, Pepin R. 1969. Trapped neon in meteorites: II. Earth Planet. Sci. Lett. 6:395–405 [Google Scholar]
  44. Blöchl PE. 1994. Projector augmented-wave method. Phys. Rev. B 50:17953–79 [Google Scholar]
  45. Blum JD, Sherman LS, Johnson MW. 2014. Mercury isotopes in Earth and environmental sciences. Annu. Rev. Earth Planet. Sci. 42:249–69 [Google Scholar]
  46. Bogdanovski O, Papanastassiou D, Wasserburg G. 2002. Cr isotopes in Allende Ca-Al-rich inclusions. Lunar Planet. Sci. Conf. Abstr. 23:1802 [Google Scholar]
  47. Bopp CJ IV, Lundstrom CC, Johnson TM, Glessner JJG. 2009. Variations in 238U/235U in uranium ore deposits: isotopic signatures of the U reduction process?. Geology 37:611–14 [Google Scholar]
  48. Bopp CJ IV, Lundstrom CC, Johnson TM, Sanford RA, Long PE, Williams KH. 2010. Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A. Environ. Sci. Technol. 44:5927–33 [Google Scholar]
  49. Boss AP. 2004. Evolution of the solar nebula. VI. Mixing and transport of isotopic heterogeneity. Astrophys. J. 616:1265 [Google Scholar]
  50. Bouvier A, Wadhwa M. 2010. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat. Geosci. 3:637–41 [Google Scholar]
  51. Boyet M, Carlson R. 2005. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309:576–81 [Google Scholar]
  52. Boyet M, Gannoun A. 2013. Nucleosynthetic Nd isotope anomalies in primitive enstatite chondrites. Geochim. Cosmochim. Acta 121:652–66 [Google Scholar]
  53. Brandon A, Humayun M, Puchtel I, Leya I, Zolensky M. 2005. Osmium isotope evidence for an s-process carrier in primitive chondrites. Science 309:1233–36 [Google Scholar]
  54. Brennecka GA, Borg LE, Hutcheon ID, Sharp MA, Anbar AD. 2010a. Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238U/235U fractionation mechanism. Earth Planet. Sci. Lett. 291:228–33 [Google Scholar]
  55. Brennecka GA, Borg LE, Wadhwa M. 2013. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis. PNAS 110:17241–46 [Google Scholar]
  56. Brennecka GA, Wadhwa M. 2012. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. PNAS 109:9299–303 [Google Scholar]
  57. Brennecka GA, Wasylenki LE, Bargar JR, Weyer S, Abar AD. 2011. Uranium isotope fractionation during adsorption to Mn-oxyhydroxides. Environ. Sci. Technol. 45:1370–75 [Google Scholar]
  58. Brennecka GA, Weyer S, Wadhwa M, Janney PE, Zipfel J, Anbar AD. 2010b. 238U/235U variations in meteorites: extant 247Cm and implications for Pb-Pb dating. Science 327:449–51 [Google Scholar]
  59. Brigham CA. 1990. Isotopic heterogeneity in calcium-aluminum-rich meteoritic inclusions PhD Diss., Div. Geol. Planet. Sci., Calif. Inst. Technol. [Google Scholar]
  60. Bron J, Chang CF, Wolfsberg M. 1973. Isotopic partition function ratios involving H2, H2O, H2S, H2Se and NH3. Z.. Naturforsch. A 28:129–36 [Google Scholar]
  61. Brown SM, Elkins-Tanton LT, Walker RJ. 2014. Effects of magma ocean crystallization and overturn on the development of 142Nd and 182W isotopic heterogeneities in the primordial mantle. Earth Planet. Sci. Lett. 408:319–30 [Google Scholar]
  62. Buchachenko AL. 1995. Magnetic isotope effect. Theor. Exp. Chem. 31:118–26 [Google Scholar]
  63. Buchachenko AL. 2013. Mass-independent isotope effects. J. Phys. Chem. B 117:2231–38 [Google Scholar]
  64. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F. 1957. Synthesis of the elements in stars. Rev. Mod. Phys. 29:547 [Google Scholar]
  65. Burkhardt C, Borg LE, Brennecka GA, Shollenberger QR, Dauphas N, Kleine T. 2016. A nucleosynthetic origin of the Earth's anomalous 142Nd composition. Nature. In press [Google Scholar]
  66. Burkhardt C, Kleine T, Bourdon B, Palme H, Zipfel J. et al. 2008. Hf–W mineral isochron for Ca,Al-rich inclusions: age of the solar system and the timing of core formation in planetesimals. Geochim. Cosmochim. Acta 72:6177–97 [Google Scholar]
  67. Burkhardt C, Kleine T, Dauphas N, Wieler R. 2012a. Nucleosynthetic tungsten isotope anomalies in acid leachates of the Murchison chondrite: implications for hafnium-tungsten chronometry. Astrophys. J. Lett. 753:L6 [Google Scholar]
  68. Burkhardt C, Kleine T, Dauphas N, Wieler R. 2012b. Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust. Earth Planet. Sci. Lett. 357:298–307 [Google Scholar]
  69. Burkhardt C, Kleine T, Oberli F, Pack A, Bourdon B, Wieler R. 2011. Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett. 312:390–400 [Google Scholar]
  70. Burkhardt C, Schönbächler M. 2015. Intrinsic W nucleosynthetic isotope variations in carbonaceous chondrites: implications for W nucleosynthesis and nebular vs. parent body processing of presolar materials. Geochim. Cosmochim. Acta 165:361–75 [Google Scholar]
  71. Cameron AGW 1957. Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis Chalk River, Can: At. Energy Can. [Google Scholar]
  72. Cameron AGW, Ward WR. 1976. The origin of the Moon. Lunar Planet. Sci. Conf. Abstr. 7:120–22 [Google Scholar]
  73. Canup RM. 2012. Forming a Moon with an Earth-like composition via a giant impact. Science 338:1052–55 [Google Scholar]
  74. Canup RM. 2014. Lunar-forming impacts: processes and alternatives. Philos. Trans. R. Soc. A 372:20130175 [Google Scholar]
  75. Canup RM, Asphaug E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412:708–12 [Google Scholar]
  76. Canup RM, Barr AC, Crawford DA. 2013. Lunar-forming impacts: high-resolution SPH and AMR-CTH simulations. Icarus 222:200–19 [Google Scholar]
  77. Cao X, Liu Y. 2011. Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes. Geochim. Cosmochim. Acta 75:7435–45 [Google Scholar]
  78. Carlson RW, Boyet M, Horan M. 2007. Chondrite barium, neodymium, and samarium isotopic heterogeneity and early earth differentiation. Science 316:1175–78 [Google Scholar]
  79. Caro G. 2015. Chemical geodynamics in a non-chondritic Earth. The Earth's Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective A Khan, F Deschamps 329–66 Cham, Switz: Springer [Google Scholar]
  80. Caro G, Bourdon B, Birck JL, Moorbath S. 2003. 146Sm-142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. Nature 423:428–32 [Google Scholar]
  81. Caro G, Bourdon B, Halliday AN, Quitté G. 2008. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452:336–39 [Google Scholar]
  82. Chabot N, Haack H. 2006. Evolution of asteroidal cores. Meteorites and the Early Solar System II DS Lauretta, HY McSween Jr. 747–71 Tucson: Univ. Ariz. Press [Google Scholar]
  83. Chakraborty S, Davis RD, Ahmed M, Jackson TL, Thiemens MH. 2012. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: wavelength, pressure, and temperature dependency. J. Chem. Phys. 137:024309 [Google Scholar]
  84. Chakraborty S, Yanchulova P, Thiemens MH. 2013. Mass independent oxygen isotopic partitioning during gas-phase SiO2 formation. Science 342:463–66 [Google Scholar]
  85. Chambers JE, Wetherill GW. 1998. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136:304–27 [Google Scholar]
  86. Chen HW, Chen JC, Lee T, Shen JJ. 2010. Calcium isotopic anomalies in the Allende CAIs and the angrite Angra dos Reis. Lunar Planet. Sci. Conf. Abstr. 41:2088 [Google Scholar]
  87. Chen HW, Lee T, Lee DC, Shen JJ, Chen JC. 2011. 48Ca heterogeneity in differentiated meteorites. Astrophys. J. Lett. 743:L23 [Google Scholar]
  88. Chen J, Papanastassiou D, Wasserburg G. 2010. Ruthenium endemic isotope effects in chondrites and differentiated meteorites. Geochim. Cosmochim. Acta 74:3851–62 [Google Scholar]
  89. Choi BG, McKeegan KD, Krot AN, Wasson JT. 1998. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature 392:577–79 [Google Scholar]
  90. Chou CL. 1978. Fractionation of siderophile elements in the Earth's upper mantle. Lunar Planet. Sci. Conf. Abstr. 9:219–30 [Google Scholar]
  91. Cioslowski J. 1989. A new population analysis based on atomic polar tensors. J. Am. Chem. Soc. 111:8333–36 [Google Scholar]
  92. Clayton DD. 1988. Nuclear cosmochronology within analytic models of the chemical evolution of the solar neighbourhood. MNRAS 234:1–36 [Google Scholar]
  93. Clayton DD, Nittler LR. 2004. Astrophysics with presolar stardust. Annu. Rev. Astron. Astrophys. 42:38–78 [Google Scholar]
  94. Clayton RN. 1978. Isotopic anomalies in the early solar system. Annu. Rev. Nucl. Part. Sci. 28:501–22 [Google Scholar]
  95. Clayton RN. 1993. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21:115–49 [Google Scholar]
  96. Clayton RN. 2002. Self-shielding in the solar nebula. Nature 415:860–61 [Google Scholar]
  97. Clayton RN. 2003. Oxygen isotopes in meteorites. Treatise on Geochemistry 1 Meteorites, Comets, and Planets AM Davis 129–42 Oxford, UK: Elsevier-Pergamon, 1st ed.. [Google Scholar]
  98. Clayton RN, Grossman L, Mayeda TK. 1973. A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–88 [Google Scholar]
  99. Clayton RN, Mayeda T. 1975. Genetic relations between the Moon and meteorites. Lunar Sci. Conf. Abstr. 6:1761–69 [Google Scholar]
  100. Clayton RN, Onuma N, Mayeda TK. 1976. A classification of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett. 30:10–18 [Google Scholar]
  101. Coggon RM, Rehkämper M, Atteck C, Teagle DAH, Alt JC, Cooper MJ. 2014. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust. Geochim. Cosmochim. Acta 144:25–42 [Google Scholar]
  102. Connelly JN, Bizzarro M, Krot AN, Nordlund Å, Wielandt D, Ivanova MA. 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651–55 [Google Scholar]
  103. Connelly JN, Bizzarro M, Thrane K, Baker J. 2008. The Pb-Pb age of angrite Sah99555 revisited. Geochim. Cosmochim. Acta 72:4813–24 [Google Scholar]
  104. Craig H, Horibe Y, Sowers T. 1988. Gravitational separation of gases and isotopes in polar ice caps. Science 242:1675–78 [Google Scholar]
  105. Croat TK, Bernatowicz TJ, Daulton TL. 2014. Presolar graphitic carbon spherules: rocks from stars. Elements 10:441–46 [Google Scholar]
  106. Ćuk M, Stewart ST. 2012. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–52 [Google Scholar]
  107. Daulton T, Bernatowicz T, Lewis R, Messenger S, Stadermann F, Amari S. 2003. Polytype distribution of circumstellar silicon carbide: microstructural characterization by transmission electron microscopy. Geochim. Cosmochim. Acta 67:4743–67 [Google Scholar]
  108. Dauphas N, Burkhardt C, Warren PH, Fang-Zhen T. 2014a. Geochemical arguments for an Earth-like Moon-forming impactor. Philos. Trans. R. Soc. A 372:20130244 [Google Scholar]
  109. Dauphas N, Chaussidon M. 2011. A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk. Annu. Rev. Earth Planet. Sci. 39:351–86 [Google Scholar]
  110. Dauphas N, Chen JH, Papanastassiou DA. 2015a. Testing Earth-Moon isotopic homogenization with calcium-48. Lunar Planet. Sci. Conf. Abstr. 46:2436 [Google Scholar]
  111. Dauphas N, Chen JH, Zhang J, Papanastassiou DA, Davis AM, Travaglio C. 2014b. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet. Sci. Lett. 407:96–108 [Google Scholar]
  112. Dauphas N, Davis AM, Marty B, Reisberg L. 2004. The cosmic molybdenum-ruthenium isotope correlation. Earth Planet. Sci. Lett. 226:465–75 [Google Scholar]
  113. Dauphas N, Marty B. 2002. Inference on the nature and mass of Earth's late veneer from noble metals and gases. J. Geophys. Res. 197:E125129 [Google Scholar]
  114. Dauphas N, Marty B, Reisberg L. 2002a. Inference on terrestrial genesis from molybdenum isotope systematics. Geophys. Res. Lett. 29: 1084 [Google Scholar]
  115. Dauphas N, Marty B, Reisberg L. 2002b. Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula. Astrophys. J. 565:640 [Google Scholar]
  116. Dauphas N, Marty B, Reisberg L. 2002c. Molybdenum nucleosynthetic dichotomy revealed in primitive meteorites. Astrophys. J. 569:L139–42 [Google Scholar]
  117. Dauphas N, Poitrasson F, Burkhardt C, Kobayashi H, Kurosawa K. 2015b. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth Planet. Sci. Lett. 427:236–48 [Google Scholar]
  118. Dauphas N, Pourmand A. 2011. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–92 [Google Scholar]
  119. Dauphas N, Pourmand A. 2015. Thulium anomalies and rare earth element patterns in meteorites and Earth: nebular fractionation and the nugget effect. Geochim. Cosmochim. Acta 163:234–61 [Google Scholar]
  120. Dauphas N, Remusat L, Chen JH, Roskosz M, Papanastassiou DA. et al. 2010. Neutron-rich chromium isotope anomalies in supernova nanoparticles. Astrophys. J. 720:1577–91 [Google Scholar]
  121. Davis AM. 2011. Stardust in meteorites. PNAS 108:19142–46 [Google Scholar]
  122. Davis AM, McKeegan KD. 2014. Short-lived radionuclides and early solar system chronology. Treatise on Geochemistry 1 Meteorites and Cosmochemical Processes AM Davis 361–95 Oxford, UK: Elsevier-Pergamon, 2nd ed.. [Google Scholar]
  123. Davis AM, Richter FM, Mendybaev RA, Janney PE, Wadhwa M, McKeegan KD. 2015. Isotopic mass fractionation laws for magnesium and their effects on 26Al-26Mg systematics in solar system materials. Geochim. Cosmochim. Acta 158:245–61 [Google Scholar]
  124. Deines P. 2003. A note on intra-elemental isotope effects and the interpretation of non-mass-dependent isotope variations. Chem. Geol. 199:179–82 [Google Scholar]
  125. Diehl R, Halloin H, Kretschmer K, Lichti GG, Schonfelder V. et al. 2006. Radioactive 26Al from massive stars in the Galaxy. Nature 439:45–47 [Google Scholar]
  126. Diehl R, Lang MG, Martin P, Ohlendorf H, Preibisch T. et al. 2010. Radioactive 26Al from the Scorpius-Centaurus association. Astron. Astrophys. 522:A51 [Google Scholar]
  127. Douglas M, Kroll NM. 1974. Quantum electrodynamical corrections to the fine structures of helium. Ann. Phys. 82:89–155 [Google Scholar]
  128. Draine B. 2009. Interstellar dust models and evolutionary implications. Astron. Soc. Pac. Conf. Ser. 414:453–72 [Google Scholar]
  129. Drake MJ. 2001. The eucrite/Vesta story. Meteorit. Planet. Sci. 36:501–13 [Google Scholar]
  130. Eiler JM, Bergquist B, Bourg I, Cartigny P, Farquhar J. et al. 2014. Frontiers of stable isotope geoscience. Chem. Geol. 372:119–43 [Google Scholar]
  131. Esat T, Papanastassiou D, Wasserburg G. 1979. The trials and tribulations of 26Al: evidence for disturbed systems. Lunar Planet. Sci. Conf. Abstr. 10:361–63 [Google Scholar]
  132. Estrade N, Carignan J, Sonke JE, Donard OFX. 2009. Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim. Cosmochim. Acta 73:2693–711 [Google Scholar]
  133. Fahey A, Goswami J, McKeegan K, Zinner E. 1987a. 16O excesses in Murchison and Murray hibonites: a case against a late supernova injection origin of isotopic anomalies in O, Mg, Ca, and Ti.. Astrophys. J. 323:L91–95 [Google Scholar]
  134. Fahey A, Goswami J, McKeegan K, Zinner E. 1987b. 26Al, 244Pu, 50Ti, REE, and trace element abundances in hibonite grains from CM and CV meteorites. Geochim. Cosmochim. Acta 51:329–50 [Google Scholar]
  135. Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58 [Google Scholar]
  136. Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE. et al. 2003. Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36 [Google Scholar]
  137. Farquhar J, Savarino J, Airieau S, Thiemens MH. 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res. 106:E1232829–39 [Google Scholar]
  138. Farquhar J, Wing BA. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213:1–13 [Google Scholar]
  139. Fischer-Gödde M, Burkhardt C, Kruijer TS, Kleine T. 2015. Ru isotope heterogeneity in the solar protoplanetary disk. Geochim. Cosmochim. Acta 168:151–71 [Google Scholar]
  140. Fischer-Gödde M, Kleine T, Burkhardt C, Dauphas N. 2014. Origin of nucleosynthetic isotope anomalies in bulk meteorites: Evidence from coupled Ru and Mo isotopes in acid leachates of chondrites. Lunar Planet. Sci. Conf. Abstr. 45:2409 [Google Scholar]
  141. Franchi IA. 2008. Oxygen isotopes in asteroidal materials. Rev. Mineral. Geochem. 68:345–97 [Google Scholar]
  142. Franchi IA, Wright IP, Sexton AS, Pillinger CT. 1999. The oxygen-isotopic composition of Earth and Mars. Meteorit. Planet. Sci. 34:657–61 [Google Scholar]
  143. Fricke G, Heilig K. 2004. Nuclear Charge Radii Berlin: Springer [Google Scholar]
  144. Fujii Y, Higuchi N, Haruno Y, Nomura M, Suzuki T. 2006a. Temperature dependence of isotope effects in uranium chemical exchange reactions. J. Nucl. Sci. Technol. 43:400–6 [Google Scholar]
  145. Fujii T, Moynier F, Agranier A, Ponzevera E, Abe M. 2011a. Nuclear field shift effect of lead in ligand exchange reaction using a crown ether. Proc. Radiochem. 1:387–92 [Google Scholar]
  146. Fujii T, Moynier F, Albarède F. 2006b. Nuclear field versus. nucleosynthetic effects as cause of isotopic anomalies in the early Solar System. Earth Planet. Sci. Lett. 247:1–9 [Google Scholar]
  147. Fujii T, Moynier F, Albarède F. 2009. The nuclear field shift effect in chemical exchange reactions. Chem. Geol. 267:139–56 [Google Scholar]
  148. Fujii T, Moynier F, Dauphas N, Abe M. 2011b. Theoretical and experimental investigation of nickel isotopic fractionation in species relevant to modern and ancient oceans. Geochim. Cosmochim. Acta 75:469–82 [Google Scholar]
  149. Fujii T, Moynier F, Telouk P, Abe M. 2010. Experimental and theoretical investigation of isotope fractionation of zinc between aqua, chloro, and macrocyclic complexes. J. Phys. Chem. A 114:2543–52 [Google Scholar]
  150. Fujii T, Moynier F, Telouk P, Albarède F. 2006c. Mass-independent isotope fractionation of molybdenum and ruthenium and the origin of isotopic anomalies in Murchison. Astrophys. J. 647:1506–16 [Google Scholar]
  151. Fujii Y, Nomura M, Okamoto M, Onitsuka H, Kawakami F, Takeda K. 1989. An anomalous isotope effect of 235U in U(IV)–U(VI) chemical exchange. Z. Naturforsch. A 44:395–98 [Google Scholar]
  152. Gannoun A, Boyet M, Rizo H, El Goresy A. 2011. 146Sm-142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula. PNAS 108:7693–97 [Google Scholar]
  153. Gao YQ, Marcus RA. 2002. On the theory of the strange and unconventional isotopic effects in ozone formation. J. Chem. Phys. 116:137–54 [Google Scholar]
  154. Ghosh P, Adkins J, Affek H, Balta B, Guo W. et al. 2006. 13C-18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta 70:1439–56 [Google Scholar]
  155. Ghosh S, Schauble EA, Lacrampe Couloume G, Blum JD, Bergquist BA. 2013. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments. Chem. Geol. 336:5–12 [Google Scholar]
  156. Ghosh S, Xu Y, Humayun M, Odom L. 2008. Mass-independent fractionation of mercury isotopes in the environment. Geochem. Geophys. Geosyst. 9:Q03004 [Google Scholar]
  157. Glavin D, Kubny A, Jagoutz E, Lugmair G. 2004. Mn-Cr isotope systematics of the D'Orbigny angrite. Meteorit. Planet. Sci. 39:693–700 [Google Scholar]
  158. Goldmann A, Brennecka G, Noordman J, Weyer S, Wadhwa M. 2015. The uranium isotopic composition of the Earth and the Solar System. Geochim. Cosmochim. Acta 148:145–58 [Google Scholar]
  159. Göpel C, Birck J. 2010. Mn/Cr systematics: a tool to discriminate the origin of primitive meteorites. Geochim. Cosmochim. Acta 74:A348 [Google Scholar]
  160. Göpel C, Birck JL, Galy A, Barrat JA, Zanda B. 2015. Mn-Cr systematics in primitive meteorites: insights from mineral separation and partial dissolution. Geochim. Cosmochim. Acta 156:1–24 [Google Scholar]
  161. Gould IR, Turro NJ, Zimmt MB. 1984. Magnetic field and magnetic isotope effects on the products of organic reactions. Adv. Phys. Org. Chem. 20:1–53 [Google Scholar]
  162. Gounelle M, Meynet G. 2012. Solar system genealogy revealed by extinct short-lived radionuclides in meteorites. Astron. Astrophys. 545:A4 [Google Scholar]
  163. Grilly ER. 1951. The vapor pressures of hydrogen, deuterium and tritium up to three atmospheres. J. Am. Chem. Soc. 73:843–46 [Google Scholar]
  164. Grimm R, McSween H Jr. 1993. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259:653–55 [Google Scholar]
  165. Grossman L. 1972. Condensation in primitive solar nebula. Geochim. Cosmochim. Acta 36:597–619 [Google Scholar]
  166. Grossman L, Beckett JR, Fedkin AV, Simon SB, Ciesla FJ. 2008. Redox conditions in the solar nebula: observational, experimental, and theoretical constraints. Rev. Mineral. Geochem. 68:93–140 [Google Scholar]
  167. Hallis L, Anand M, Greenwood R, Miller MF, Franchi I, Russell S. 2010. The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for large-scale compositional variation in the lunar mantle. Geochim. Cosmochim. Acta 74:6885–99 [Google Scholar]
  168. Hans U, Kleine T, Bourdon B. 2013. Rb-Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth Planet. Sci. Lett. 374:204–14 [Google Scholar]
  169. Harper C, Wiesmann H, Nyquist L. 1991a. 135Cs-135Ba: very high precision isotopic investigations and a new cosmochronometric constraint on the astrophysical site of the origin of the solar system. Meteoritics 26:341 [Google Scholar]
  170. Harper C, Wiesmann H, Nyquist L, Hartmann D, Meyer B, Howard W. 1991b. Interpretation of the 50Ti-96Zr anomaly correlation in CAI: NNSE Zr production limits and S/R/P decomposition of the bulk solar system zirconium abundances. Lunar Planet. Sci. Conf. Abstr. 22:517–18 [Google Scholar]
  171. Harper C Jr., Wiesmann H, Nyquist L. 1992. The search for 135Cs in the early solar system: very high precision measurements of barium isotopes in bulk Allende and refractory inclusions. Meteoritics 27:230 [Google Scholar]
  172. Hart SR, Zindler A. 1989. Isotope fractionation laws: a test using calcium. Int. J. Mass Spectrom. Ion Process. 89:287–301 [Google Scholar]
  173. Hartmann WK, Davis DR. 1975. Satellite-sized planetesimals and lunar origin. Icarus 24:504–15 [Google Scholar]
  174. Heidenreich JE, Thiemens MH. 1986. A non-mass-dependent oxygen isotope effect in the production of ozone from molecular oxygen: the role of molecular symmetry in isotope chemistry. J. Chem. Phys. 84:2129–36 [Google Scholar]
  175. Herwartz D, Pack A, Friedrichs B, Bischoff A. 2014. Identification of the giant impactor Theia in lunar rocks. Science 344:1146–50 [Google Scholar]
  176. Hess BA. 1986. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33:3742–48 [Google Scholar]
  177. Hidaka H, Ohta Y, Yoneda S. 2003. Nucleosynthetic components of the early solar system inferred from Ba isotopic compositions in carbonaceous chondrites. Earth Planet. Sci. Lett. 214:455–66 [Google Scholar]
  178. Hidaka H, Yoneda S. 2011. Diverse nucleosynthetic components in barium isotopes of carbonaceous chondrites: incomplete mixing of s- and r-process isotopes and extinct 135Cs in the early solar system. Geochim. Cosmochim. Acta 75:3687–97 [Google Scholar]
  179. Hiess J, Condon DJ, McLean N, Noble SR. 2012. 238U/235U systematic in terrestrial uranium-bearing minerals. Science 335:1610–14 [Google Scholar]
  180. Hirose K, Labrosse S, Hernlund J. 2013. Composition and state of the core. Annu. Rev. Earth Planet. Sci. 41:657–91 [Google Scholar]
  181. Hofmann MEG, Horváth B, Pack A. 2012. Triple oxygen isotope equilibrium fractionation between carbon dioxide and water. Earth Planet. Sci. Lett. 319–20:159–64 [Google Scholar]
  182. Holst JC, Olsen MB, Paton C, Nagashima K, Schiller M. et al. 2013. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System. PNAS 110:8819–23 [Google Scholar]
  183. Horita J, Wesolowski DJ. 1994. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 58:3425–37 [Google Scholar]
  184. Hsu W, Guan Y, Leshin L, Ushikubo T, Wasserburg G. 2006. A late episode of irradiation in the early solar system: evidence from extinct 36Cl and 26Al in meteorites. Astrophys. J. 640:525 [Google Scholar]
  185. Huang S, Farkaš J, Yu G, Petaev MI, Jacobsen SB. 2012. Calcium isotopic ratios and rare earth element abundances in refractory inclusions from the Allende CV3 chondrite. Geochim. Cosmochim. Acta 77:252–65 [Google Scholar]
  186. Hulston JR, Thode HG. 1965. Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects. J. Geophys. Res. 70:3475–84 [Google Scholar]
  187. Humayun M, Brandon AD. 2007. s-Process implications from osmium isotope anomalies in chondrites. Astrophys. J. 664:L59 [Google Scholar]
  188. Huss GR, Lewis RS. 1995. Presolar diamond, SiC, and graphite in primitive chondrites: abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta 59:115–60 [Google Scholar]
  189. Hynes K, Gyngard F. 2009. The Presolar Grain Database: http://presolar.wustl.edu/∼pgd.. Lunar Planet. Sci. Conf. Abstr. 40:1198 [Google Scholar]
  190. Ireland TR. 1988. Correlated morphological, chemical, and isotopic characteristics of hibonites from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 52:2827–39 [Google Scholar]
  191. Ireland TR. 1990. Presolar isotopic and chemical signatures in hibonite-bearing refractory inclusions from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 54:3219–37 [Google Scholar]
  192. Ireland TR, Fahey AJ, Zinner EK. 1991. Hibonite-bearing microspherules: a new type of refractory inclusions with large isotopic anomalies. Geochim. Cosmochim. Acta 55:367–79 [Google Scholar]
  193. Jacobsen B, Yin Q, Moynier F, Amelin Y, Krot AN. et al. 2008. 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272:353–64 [Google Scholar]
  194. Javoy M. 1995. The integral enstatite chondrite model of the Earth. Geophys. Res. Lett. 22:2219–22 [Google Scholar]
  195. Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C. et al. 2010. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293:259–68 [Google Scholar]
  196. Jeffery P, Reynolds J. 1961. Origin of excess Xe129 in stone meteorites. J. Geophys. Res. 66:3582–83 [Google Scholar]
  197. Johnston DT. 2011. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle. Earth-Sci. Rev. 106:161–83 [Google Scholar]
  198. Johnston DT, Farquhar J, Habicht KS, Canfield DE. 2008. Sulphur isotopes and the search for life: strategies for identifying sulphur metabolisms in the rock record and beyond. Geobiology 6:425–35 [Google Scholar]
  199. Jungck M, Shimamura T, Lugmair G. 1984. Ca isotope variations in Allende. Geochim. Cosmochim. Acta 48:2651–58 [Google Scholar]
  200. Kaib NA, Cowan NB. 2015. The feeding zones of terrestrial planets and insights into Moon formation. Icarus 252:161–74 [Google Scholar]
  201. Kaminski E, Javoy M. 2013. A two-stage scenario for the formation of the Earth's mantle and core. Earth Planet. Sci. Lett. 365:97–107 [Google Scholar]
  202. King WH. 1984. Isotope Shifts in Atomic Spectra New York: Plenum [Google Scholar]
  203. Kleine T, Hans U, Irving AJ, Bourdon B. 2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochim. Cosmochim. Acta 84:186–203 [Google Scholar]
  204. Knyazev DA, Myasoedov NF. 2001. Specific effects of heavy nuclei in chemical equilibirum. Sep. Sci. Technol. 36:1677–96 [Google Scholar]
  205. Kobayashi S, Imai H, Yurimoto H. 2003. New extreme 16O-rich chondrule in the early solar system. Geochem. J. 37:663–69 [Google Scholar]
  206. Kokubo E, Ida S. 1998. Oligarchic growth of protoplanets. Icarus 131:171–78 [Google Scholar]
  207. Kööp L, Davis AM, Nakashima D, Park C, Krot AN. et al. 2016. A link between oxygen, calcium and titanium isotopes in 26Al-depleted hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim. Cosmochim. Acta. Submitted [Google Scholar]
  208. Krankowsky D, Lämmerzahl P, Mauersberger K, Janssen C, Tuzson B, Röckmann T. 2007. Scollected samples. J. Geophys. Res. 112:D08301 [Google Scholar]
  209. Krot AN, Keil K, Scott ERD, Goodrich CA, Weisberg MK. 2014. Classification of meteorites. Treatise on Geochemistry 1 Meteorites, Comets, and Planets AM Davis 1–63 Oxford, UK: Elsevier-Pergamon., 2nd ed.. [Google Scholar]
  210. Kruijer TS, Kleine T, Fischer-Gödde M, Burkhardt C, Wieler R. 2014a. Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth Planet. Sci. Lett. 403:317–27 [Google Scholar]
  211. Kruijer TS, Kleine T, Fischer-Gödde M, Sprung P. 2015. Lunar tungsten isotopic evidence for the late veneer. Nature 520:534–37 [Google Scholar]
  212. Kruijer TS, Touboul M, Fischer-Gödde M, Bermingham KR, Walker RJ, Kleine T. 2014b. Protracted core formation and rapid accretion of protoplanets. Science 344:1150–54 [Google Scholar]
  213. Landais A, Barkan E, Luz B. 2008. The record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys. Res. Lett. 35:L02709 [Google Scholar]
  214. Landais A, Steen-Larsen HC, Guillevic M, Masson-Delmotte V, Vinther B, Winkler R. 2012. Triple isotopic composition of oxygen in surface snow and water vapor at NEEM (Greenland). Geochim. Cosmochim. Acta 77:304–16 [Google Scholar]
  215. Larsen KK, Trinquier A, Paton C, Schiller M, Wielandt D. et al. 2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J. 735:L37 [Google Scholar]
  216. Lee DC, Halliday AN, Leya I, Wieler R, Wiechert U. 2002. Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth Planet. Sci. Lett. 198:267–74 [Google Scholar]
  217. Lee T, Papanastassiou DA. 1974. Mg isotopic anomalies in the Allende meteorite and correlation with O and Sr effects. Geophys. Res. Lett. 1:225–28 [Google Scholar]
  218. Lee T, Papanastassiou DA, Wasserburg GJ. 1976. Demonstration of Mg-26 excess in Allende and evidence for Al-26. Geophys. Res. Lett. 3:41–44 [Google Scholar]
  219. Lee T, Papanastassiou DA, Wasserburg GJ. 1977. Aluminum-26 in the early solar system: fossil or fuel?. Astrophys. J. 211:L107–10 [Google Scholar]
  220. Lee T, Russell W, Wasserburg G. 1979. Calcium isotopic anomalies and the lack of aluminum-26 in an unusual Allende inclusion. Astrophys. J. 228:L93–98 [Google Scholar]
  221. Levin NE, Raub TD, Dauphas N, Eiler JM. 2014. Triple oxygen isotope variations in sedimentary rocks. Geochim. Cosmochim. Acta 139:173–89 [Google Scholar]
  222. Lewis R, Tang M, Wacker JF, Anders E, Steel E. 1987. Interstellar diamonds in meteorites. Nature 326:160–62 [Google Scholar]
  223. Leya I, Schönbächler M, Krähenbühl U, Halliday AN. 2009. New titanium isotope data for Allende and Efremovka CAIs. Astrophys. J. 702:1118 [Google Scholar]
  224. Liu MC, McKeegan KD, Goswami JN, Marhas KK, Sahijpal S. et al. 2009. Isotopic records in CM hibonites: implications for timescales of mixing of isotope reservoirs in the solar nebula. Geochim. Cosmochim. Acta 73:5051–79 [Google Scholar]
  225. Liu Q, Tossell JA, Liu Y. 2010. On the proper use of the Bigeleisen–Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants. Geochim. Cosmochim. Acta 74:6965–83 [Google Scholar]
  226. Lodders K, Amari S. 2005. Presolar grains from meteorites: remnants from the early times of the solar system. Chem. Erde Geochem. 65:93–166 [Google Scholar]
  227. Lodders K, Fegley B. 1997. An oxygen isotope model for the composition of Mars. Icarus 126:373–94 [Google Scholar]
  228. Loss R, Lugmair G. 1990. Zinc isotope anomalies in Allende meteorite inclusions. Astrophys. J. 360:L59–62 [Google Scholar]
  229. Loss R, Lugmair G, Davis A, MacPherson G. 1994. Isotopically distinct reservoirs in the solar nebula: isotope anomalies in Vigarano meteorite inclusions. Astrophys. J. 436:L193–96 [Google Scholar]
  230. Lugmair G, Shukolyukov A. 1998. Early solar system timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62:2863–86 [Google Scholar]
  231. Luz B, Barkan E. 2000. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288:2028–31 [Google Scholar]
  232. Luz B, Barkan E. 2010. Variations of 17O/16O and 18O/16O in meteoric waters. Geochim. Cosmochim. Acta 74:6276–86 [Google Scholar]
  233. Luz B, Barkan E, Bender M, Thiemens MH, Boering KA. 1999. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Science 400:547–50 [Google Scholar]
  234. Lyons JR. 2001. Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere. Geophys. Res. Lett. 28:3231–34 [Google Scholar]
  235. Lyons JR. 2007. Mass-independent fractionation of sulfur isotopes by isotope-selective dissociation of SO2. Geophys. Res. Lett. 34:L22811 [Google Scholar]
  236. Lyons JR, Young ED. 2005. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435:317–20 [Google Scholar]
  237. MacPherson G, Bullock E, Janney P, Davis A, Wadhwa M, Krot A. 2007. High precision Al-Mg isotope studies of condensate CAIs. Lunar Planet. Sci. Conf. Abstr. 38:1378 [Google Scholar]
  238. Marcus RA. 2004. Mass-independent isotope effect in the earliest processed solids in the solar system: a possible mechanism. J. Chem. Phys. 121:8201–11 [Google Scholar]
  239. Maréchal CN, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 156:251–73 [Google Scholar]
  240. Markowski A, Quitté G, Halliday A, Kleine T. 2006. Tungsten isotopic compositions of iron meteorites: chronological constraints versus. cosmogenic effects. Earth Planet. Sci. Lett. 242:1–15 [Google Scholar]
  241. Martin E, Bindeman I. 2009. Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California. Earth Planet. Sci. Lett. 282:102–14 [Google Scholar]
  242. Mason B, Taylor SR. 1982. Inclusions in the Allende meteorite. Smithson. Contrib. Earth Sci. 1:30 [Google Scholar]
  243. Mastrobuono-Battisti A, Perets HB, Raymond SN. 2015. A primordial origin for the compositional similarity between the Earth and the Moon. Nature 520:212–15 [Google Scholar]
  244. Matsuhisa Y, Goldsmith JR, Clayton RN. 1978. Mechanisms of hydrothermal crystallization of quartz at 250ºC and 15 kbar. Geochim. Cosmochim. Acta 42:173–82 [Google Scholar]
  245. Mauersberger K. 1987. Ozone isotope measurements in the stratosphere. Geophys. Res. Lett. 14:80–83 [Google Scholar]
  246. Mauersberger K, Erbacer B, Krankowsky D, Günther J, Nickel R. 1999. Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283:370–72 [Google Scholar]
  247. Mayer B, Wittig N, Humayun M, Leya I. 2015. Palladium isotopic evidence for nucleosynthetic and cosmogenic isotope anomalies in IVB iron meteorites. Astrophys. J. 809:180 [Google Scholar]
  248. McCulloch M, Wasserburg G. 1978a. Barium and neodymium isotopic anomalies in the Allende meteorite. Astrophys. J. 220:L15–19 [Google Scholar]
  249. McCulloch M, Wasserburg G. 1978b. More anomalies from the Allende meteorite: samarium. Geophys. Res. Lett. 5:599–602 [Google Scholar]
  250. McKeegan K, Kallio A, Heber V, Jarzebinski G, Mao P. et al. 2011. The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:1528–32 [Google Scholar]
  251. McSween HY, Binzel RP, De Sanctis MC, Ammannito E, Prettyman TH. et al. 2013. Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteorit. Planet. Sci. 48:2090–104 [Google Scholar]
  252. Meijer HAJ, Li WJ. 1998. The use of electrolysis for accurate δ17O and δ18O isotope measurements of water. Isotop. Environ. Health Stud. 34:349 [Google Scholar]
  253. Merrill P. 1952. Technetium in the stars. Science 115:479–89 [Google Scholar]
  254. Messenger S, Keller LP, Stadermann FJ, Walker RM, Zinner E. 2003. Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300:105–8 [Google Scholar]
  255. Miller CA, Peucker-Ehrenbrink B, Schauble EA. 2015. Theoretical modeling of rhenium isotope fractionation, natural variations across a black shale weathering profile, and potential as a paleoredox proxy. Earth Planet. Sci. Lett. 430:339–48 [Google Scholar]
  256. Miller MF. 2002. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66:1881–89 [Google Scholar]
  257. Ming T, Anders E. 1988. Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: carriers of exotic noble gases. Geochim. Cosmochim. Acta 52:1235–44 [Google Scholar]
  258. Mioduski T. 1999. Comment to the Bigeleisen's theory of isotope chemistry of the heavy elements. Comments Inorg. Chem. 21:175–96 [Google Scholar]
  259. Mittlefehldt DW. 2005. Ibitira: a basaltic achondrite from a distinct parent asteroid and implications for the Dawn mission. Meteorit. Planet. Sci. 40:665–77 [Google Scholar]
  260. Mook WG. 2000. Environmental Isotopes in the Hydrological Cycle: Principles and Applications 1 Introduction—Theory, Methods, Review Geneva: Int. At. Energy Agency [Google Scholar]
  261. Morton J, Barnes J, Schueler B, Mauersberger K. 1990. Laboratory studies of heavy ozone. J. Geophys. Res. 95:D1901–7 [Google Scholar]
  262. Mosconi M, Fujii K, Mengoni A, Domingo-Pardo C, Käppeler F. et al. 2010. Neutron physics of the Re/Os clock. I. Measurement of the (n, γ) cross sections of 186,187,188Os at the CERN n_TOF facility. Phys. Rev. C 82:015802 [Google Scholar]
  263. Moynier F, Day JM, Okui W, Yokoyama T, Bouvier A. et al. 2012. Planetary-scale strontium isotopic heterogeneity and the age of volatile depletion of early Solar System materials. Astrophys. J. 758:45 [Google Scholar]
  264. Moynier F, Fujii T, Albarède F. 2009. Nuclear field shift effect as a possible cause of Te isotopic anomalies in the early solar system—an alternative explanation of Fehr et al. (2006 and 2009). Meteorit. Planet. Sci. 44:1735–42 [Google Scholar]
  265. Moynier F, Fujii T, Brennecka GA, Nielsen SG. 2013. Nuclear field shift in natural environments. C.R. Geosci. 345:150–59 [Google Scholar]
  266. Moynier F, Simon JI, Podosek FA, Meyer BS, Brannon J, DePaolo DJ. 2010. Ca isotope effects in Orgueil leachates and the implications for the carrier phases of 54Cr anomalies. Astrophys. J. 718:L7 [Google Scholar]
  267. Münker C. 2010. A high field strength element perspective on early lunar differentiation. Geochim. Cosmochim. Acta 74:7340–61 [Google Scholar]
  268. Murphy MJ, Stirling CH, Kaltenbach A, Turner SP, Schaefer BF. 2014. Fractionation of 238U/235U by reduction during low temperature uranium mineralisation processes. Earth Planet. Sci. Lett. 388:306–17 [Google Scholar]
  269. Nemoto K, Abe M, Seino J, Hada M. 2015. An ab initio study of nuclear volume effects for isotope fractionations using two-component relativistic methods. J. Comput. Chem. 36:816–20 [Google Scholar]
  270. Nguyen AN, Zinner E. 2004. Discovery of ancient silicate stardust in a meteorite. Science 303:1496–99 [Google Scholar]
  271. Nicolussi G, Pellin M, Lewis R, Davis A, Amari S, Clayton R. 1998. Molybdenum isotopic composition of individual presolar silicon carbide grains from the Murchison meteorite. Geochim. Cosmochim. Acta 62:1093–104 [Google Scholar]
  272. Niederer FR, Papanastassiou DA. 1984. Ca isotopes in refractory inclusions. Geochim. Cosmochim. Acta 48:1279–93 [Google Scholar]
  273. Niederer FR, Papanastassiou DA, Wasserburg GJ. 1981. The isotopic composition of titanium in the Allende and Leoville meteorites. Geochim. Cosmochim. Acta 45:1017–31 [Google Scholar]
  274. Niederer FR, Papanastassiou DA, Wasserburg GJ. 1985. Absolute isotopic abundances of Ti in meteorites. Geochim. Cosmochim. Acta 49:835–51 [Google Scholar]
  275. Nielsen SG, Rehkämper M, Norman MD, Halliday AN, Harrison D. 2006a. Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439:314–17 [Google Scholar]
  276. Nielsen SG, Rehkämper M, Teagle DAH, Butterfield DA, Alt JC, Halliday AN. 2006b. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet. Sci. Lett. 251:120–33 [Google Scholar]
  277. Nielsen SG, Wasylenki LE, Rehkämper M, Peacock CL, Xue Z, Moon EM. 2013. Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim. Cosmochim. Acta 117:252–65 [Google Scholar]
  278. Niemeyer S. 1988. Isotopic diversity in nebular dust: the distribution of Ti isotopic anomalies in carbonaceous chondrites. Geochim. Cosmochim. Acta 52:2941–54 [Google Scholar]
  279. Niemeyer S, Lugmair G. 1981. Ubiquitous isotopic anomalies in Ti from normal Allende inclusions. Earth Planet. Sci. Lett. 53:211–25 [Google Scholar]
  280. Niemeyer S, Lugmair G. 1984. Titanium isotopic anomalies in meteorites. Geochim. Cosmochim. Acta 48:1401–16 [Google Scholar]
  281. Nishizawa K, Satoyama T, Miki T, Yamamoto T, Hosoe M. 1995. Strontium isotope effect in liquid-liquid extraction of strontium chloride using a crown ether. J. Nucl. Sci. Technol. 32:1230–35 [Google Scholar]
  282. Nittler LR, Alexander CMD, Gao X, Walker RM, Zinner EK. 1994. Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature 370:443–46 [Google Scholar]
  283. Nittler LR, Alexander CMD, Gao X, Walker RM, Zinner EK. 1997. Stellar sapphires: the properties and origins of presolar Al2O3 in meteorites. Astrophys. J. 483:475 [Google Scholar]
  284. Nittler LR, Hoppe P, Alexander CMD, Amari S, Eberhardt P. et al. 1995. Silicon nitride from supernovae. Astrophys. J. 453:L25 [Google Scholar]
  285. Nomura M, Higuchi N, Fujii Y. 1996. Mass dependence of uranium isotope effects in the U(IV)−U(VI) exchange reaction. J. Am. Chem. Soc. 118:9127–30 [Google Scholar]
  286. Nozawa T, Maeda K, Kozasa T, Tanaka M, Nomoto Ki, Umeda H. 2011. Formation of dust in the ejecta of type Ia supernovae. Astrophys. J. 736:45 [Google Scholar]
  287. Nyquist L, Kleine T, Shih CY, Reese Y. 2009. The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochim. Cosmochim. Acta 73:5115–36 [Google Scholar]
  288. Oduro H, Harms B, Sintim HO, Kaufman AJ, Cody G, Farquhar J. 2011. Evidence of magnetic isotope effects during thermochemical sulfate reduction. PNAS 108:17635–38 [Google Scholar]
  289. Ono S, Wing B, Johnston D, Farquhar J, Rumble D. 2006. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70:2238–52 [Google Scholar]
  290. Otake T, Lasaga AC, Ohmoto H. 2008. Ab initio calculations for equilibrium fractionations in multiple sulfur isotope systems. Chem. Geol. 249:357–76 [Google Scholar]
  291. Pack A, Gehler A, Süssenberger A. 2013. Exploring the usability of isotopically anomalous oxygen in bones and teeth as paleo-CO2-barometer. Geochim. Cosmochim. Acta 102:306–17 [Google Scholar]
  292. Pack A, Herwartz D. 2014. The triple oxygen isotope composition of the Earth mantle and understanding δ17O variations in terrestrial rocks and minerals. Earth Planet. Sci. Lett. 390:138–45 [Google Scholar]
  293. Pahlevan K, Stevenson DJ. 2007. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262:438–49 [Google Scholar]
  294. Pahlevan K, Stevenson DJ, Eiler JM. 2011. Chemical fractionation in the silicate vapor atmosphere of the Earth. Earth Planet. Sci. Lett. 301:433–43 [Google Scholar]
  295. Papanastassiou D. 1986. Chromium isotopic anomalies in the Allende meteorite. Astrophys. J. 308:L27–30 [Google Scholar]
  296. Papanastassiou D, Brigham C. 1989. The identification of meteorite inclusions with isotope anomalies. Astrophys. J. 338:L37–40 [Google Scholar]
  297. Papanastassiou D, Wasserburg G. 1978. Strontium isotopic anomalies in the Allende meteorite. Geophys. Res. Lett. 5:595–98 [Google Scholar]
  298. Park C, Nagashima K, Hutcheon I, Wasserburg G, Papanastassiou D. et al. 2013. Heterogeneity of Mg isotopes and variable 26Al/27Al Ratio in FUN CAIs. Meteorit. Planet. Sci. 76:Suppl.5085 [Google Scholar]
  299. Park C, Nagashima K, Wasserburg G, Papanastassiou D, Hutcheon I. et al. 2014. Calcium and titanium isotopic compositions of FUN CAIs: implications for their origin. Lunar Planet. Sci. Conf. Abstr. 45:2656 [Google Scholar]
  300. Passey BH, Hu H, Ji H, Montanari S, Li S. et al. 2014. Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochim. Cosmochim. Acta 141:1–25 [Google Scholar]
  301. Paton C, Schiller M, Bizzarro M. 2013. Identification of an 84Sr-depleted carrier in primitive meteorites and implications for thermal processing in the solar protoplanetary disk. Astrophys. J. 763:L40 [Google Scholar]
  302. Pavlov AA, Kasting JF. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41 [Google Scholar]
  303. Peacock CL, Moon EM. 2012. Oxidative scavenging of thallium by birnessite: controls on thallium sorption and stable isotope fractionation in marine ferromanganese precipitates. Geochim. Cosmochim. Acta 84:297–313 [Google Scholar]
  304. Pinella C, Blanchard M, Balan E, Natarajan SK, Vuilleumier R, Mauri F. 2015. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: insights from path integral molecular dynamics. Geochim. Cosmochim. Acta 163:126–39 [Google Scholar]
  305. Podosek F, Ott U, Brannon J, Neal C, Bernatowicz T. et al. 1997. Thoroughly anomalous chromium in Orgueil. Meteorit. Planet. Sci. 32:617–27 [Google Scholar]
  306. Pyper JW, Christensen LD. 1975. Equilibrium constants of hydrogen-deuterium-tritium self-exchange reactions in water vapor as studied with a pulsed molecular-beam quadrupole mass filter. J. Chem. Phys. 62:2596 [Google Scholar]
  307. Qin L, Alexander CMD, Carlson RW, Horan MF, Yokoyama T. 2010a. Contributors to chromium isotope variation of meteorites. Geochim. Cosmochim. Acta 74:1122–45 [Google Scholar]
  308. Qin L, Carlson RW, Alexander CMD. 2011a. Correlated nucleosynthetic isotopic variability in Cr, Sr, Ba, Sm, Nd and Hf in Murchison and QUE 97008. Geochim. Cosmochim. Acta 75:7806–28 [Google Scholar]
  309. Qin L, Dauphas N, Horan MF, Leya I, Carlson RW. 2015. Correlated cosmogenic W and Os isotopic variations in Carbo and implications for Hf-W chronology. Geochim. Cosmochim. Acta 153:91–104 [Google Scholar]
  310. Qin L, Dauphas N, Wadhwa M, Markowski A, Gallino R. et al. 2008a. Tungsten nuclear anomalies in planetesimal cores. Astrophys. J. 674:1234–41 [Google Scholar]
  311. Qin L, Dauphas N, Wadhwa M, Masarik J, Janney PE. 2008b. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth Planet. Sci. Lett. 273:94–104 [Google Scholar]
  312. Qin L, Nittler LR, Alexander CMD, Wang J, Stadermann FJ, Carlson RW. 2011b. Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil: implication for a late supernova injection into the solar system. Geochim. Cosmochim. Acta 75:629–44 [Google Scholar]
  313. Qin L, Rumble D, Alexander CMD, Carlson RW, Jenniskens P, Shaddad MH. 2010b. The chromium isotopic composition of Almahata Sitta. Meteorit. Planet. Sci. 45:1771–77 [Google Scholar]
  314. Quitté G, Markowski A, Latkoczy C, Gabriel A, Pack A. 2010. Iron-60 heterogeneity and incomplete isotope mixing in the early solar system. Astrophys. J. 720:1215 [Google Scholar]
  315. Rankenburg K, Brandon A, Neal C. 2006. Neodymium isotope evidence for a chondritic composition of the Moon. Science 312:1369–72 [Google Scholar]
  316. Rauscher T, Dauphas N, Dillmann I, Fröhlich C, Fülöp Z, Gyürky G. 2013. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 76:066201 [Google Scholar]
  317. Rauscher T, Heger A, Hoffman RD, Woosley SE. 2002. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576:323–48 [Google Scholar]
  318. Regelous M, Elliott T, Coath CD. 2008. Nickel isotope heterogeneity in the early Solar System. Earth Planet. Sci. Lett. 272:330–38 [Google Scholar]
  319. Rehkämper M, Frank M, Hein JR, Porcelli D, Halliday A. et al. 2002. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197:65–81 [Google Scholar]
  320. Rehkämper M, Halliday AN. 1999. The precise measurement of Tl isotopic compositions by MC-ICPMS: application to the analysis of geological materials and meteorites. Geochim. Cosmochim. Acta 63:935–44 [Google Scholar]
  321. Reisberg L, Dauphas N, Luguet A, Pearson D, Gallino R, Zimmermann C. 2009. Nucleosynthetic osmium isotope anomalies in acid leachates of the Murchison meteorite. Earth Planet. Sci. Lett. 277:334–44 [Google Scholar]
  322. Richet P, Bottinga Y, Javoy M. 1977. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5:65–110 [Google Scholar]
  323. Richter S, Ott U, Begemann F. 1998. Tellurium in pre-solar diamonds as an indicator for rapid separation of supernova ejecta. Nature 391:261–63 [Google Scholar]
  324. Rotaru M, Birck JL, Allegre CJ. 1992. Clues to early solar system history from chromium isotopes in carbonaceous chondrites. Nature 358:465–70 [Google Scholar]
  325. Rowe M, Kuroda P. 1965. Fissiogenic xenon from the Pasamonte meteorite. J. Geophys. Res. 70:709–14 [Google Scholar]
  326. Rubie DC, Frost DJ, Mann U, Asahara Y, Nimmo F. et al. 2011. Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301:31–42 [Google Scholar]
  327. Rumble D, Miller MF, Franchi IA, Greenwood RC. 2007. Oxygen three-isotope fractionation lines in terrestrial silicate minerals: an inter-laboratory comparison of hydrothermal quartz and eclogitic garnet Geochim. Cosmochim. Acta 71:3592–600 [Google Scholar]
  328. Russell W, Papanastassiou D, Tombrello T. 1978. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42:1075–90 [Google Scholar]
  329. Sahijpal S, Goswami J, Davis A. 2000. K, Mg, Ti and Ca isotopic compositions and refractory trace element abundances in hibonites from CM and CV meteorites: implications for early solar system processes. Geochim. Cosmochim. Acta 64:1989–2005 [Google Scholar]
  330. Sakamoto N, Seto Y, Itoh S, Kuramoto K, Fujino K. et al. 2008. Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317:231–33 [Google Scholar]
  331. Sanloup C, Jambon A, Gillet P. 1999. A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112:43–54 [Google Scholar]
  332. Savarino J, Romero A, Cole-Dai JH, Bekki S, Thiemens MH. 2003. UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys. Res. Lett. 30:2131 [Google Scholar]
  333. Savina MR, Davis AM, Tripa CE, Pellin MJ, Gallino R. et al. 2004. Extinct technetium in silicon carbide stardust grains: implications for stellar nucleosynthesis. Science 303:649–52 [Google Scholar]
  334. Schauble EA. 2004. Applying stable isotope fractionation theory to new systems. Rev. Mineral. Geochem. 55:65–111 [Google Scholar]
  335. Schauble EA. 2006. Equilibrium uranium isotope fractionation by nuclear volume and mass-dependent processes. Eos Trans. AGU 87:Fall Meet. Suppl.V21B–0570 (Abstr.) [Google Scholar]
  336. Schauble EA. 2007. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium and other very heavy elements. Geochim. Cosmochim. Acta 71:2170–89 [Google Scholar]
  337. Schauble EA. 2008. Mass-dependent and independent fractionation of Mo and Re. Eos Trans. AGU 89:Fall Meet. Suppl.V43G–2212 (Abstr.) [Google Scholar]
  338. Schauble EA. 2011. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium2+ crystals. Geochim. Cosmochim. Acta 75:844–69 [Google Scholar]
  339. Schauble EA. 2013a. Modeling nuclear field shift isotope fractionation in crystals Presented at AGU Fall Meet., Dec. 1–9, San Francisco, Abstr. V51A-2645 [Google Scholar]
  340. Schauble EA. 2013b. Modeling nuclear volume isotope effects in crystals. PNAS 110:17714–19 [Google Scholar]
  341. Scherstén A, Elliott T, Hawkesworth C, Russell S, Masarik J. 2006. Hf-W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241:530–42 [Google Scholar]
  342. Schiller M, Baker JA, Bizzarro M. 2010. 26Al–26Mg dating of asteroidal magmatism in the young Solar System. Geochim. Cosmochim. Acta 74:4844–64 [Google Scholar]
  343. Schiller M, Paton C, Bizzarro M. 2015. Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events. Geochim. Cosmochim. Acta 149:88–102 [Google Scholar]
  344. Schiller M, Van Kooten E, Holst JC, Olsen MB, Bizzarro M. 2014. Precise measurement of chromium isotopes by MC-ICPMS. J. Anal. At. Spectrom. 29:1406–16 [Google Scholar]
  345. Schönbächler M, Lee DC, Rehkämper M, Halliday AN, Fehr MA. et al. 2003. Zirconium isotope evidence for incomplete admixing of r-process components in the solar nebula. Earth Planet. Sci. Lett. 216:467–81 [Google Scholar]
  346. Schönbächler M, Rehkämper M, Fehr MA, Halliday AN, Hattendorf B, Günther D. 2005. Nucleosynthetic zirconium isotope anomalies in acid leachates of carbonaceous chondrites. Geochim. Cosmochim. Acta 69:5113–22 [Google Scholar]
  347. Schueler B, Morton J, Mauersberger K. 1990. Measurement of isotopic abundances in collected stratospheric ozone samples. Geophys. Res. Lett. 17:1295–98 [Google Scholar]
  348. Scott ERD, Greenwood RC, Franchi IA, Sanders IS. 2009. Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim. Cosmochim. Acta 73:5835–53 [Google Scholar]
  349. Scott ERD, Krot AN. 2005. Chondritic meteorites and the high-temperature nebular origins of their components. Astron. Soc. Pac. Conf. Ser. 341:15–53 [Google Scholar]
  350. Severinghaus JP, Bender ML, Keeling RF, Broecker WS. 1996. Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion. Geochim. Cosmochim. Acta 60:1005–18 [Google Scholar]
  351. Shollenberger Q, Brennecka G, Borg L. 2015. The strontium, barium, neodymium, and samarium isotopic compositions of non-Allende CAIs. Lunar Planet. Sci. Conf. Abstr. 46:2593 [Google Scholar]
  352. Shukolyukov A, Lugmair G. 2006a. Manganese-chromium isotope systematics of carbonaceous chondrites. Earth Planet. Sci. Lett. 250:200–13 [Google Scholar]
  353. Shukolyukov A, Lugmair G. 2006b. The Mn-Cr isotope systematics in the ureilites Kenna and LEW 85440. Lunar Planet. Sci. Conf. Abstr. 37:1478 [Google Scholar]
  354. Skaron S, Wolfsberg M. 1980. Anomalies in the fractionation by chemical equilibrium of 18O/16O relative to 17O/16O. J. Chem. Phys. 72:6810–11 [Google Scholar]
  355. Smith RL, Pontoppidan KM, Young ED, Morris MR, van Dishoeck EF. 2009. High-precision C17O, C18O, and C16O measurements in young stellar objects: analogues for CO self-shielding in the early solar system. Astrophys. J. 701:163–75 [Google Scholar]
  356. Spicuzza MJ, Day J, Taylor LA, Valley JW. 2007. Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253:254–65 [Google Scholar]
  357. Spivak-Birndorf L, Wadhwa M, Janney P. 2009. 26Al-26Mg systematics in D'Orbigny and Sahara 99555 angrites: implications for high-resolution chronology using extinct chronometers. Geochim. Cosmochim. Acta 73:5202–11 [Google Scholar]
  358. Sprung P, Scherer EE, Upadhyay D, Leya I, Mezger K. 2010. Non-nucleosynthetic heterogeneity in non-radiogenic stable Hf isotopes: implications for early solar system chronology. Earth Planet. Sci. Lett. 295:1–11 [Google Scholar]
  359. Steele RC, Coath CD, Regelous M, Russell S, Elliott T. 2012. Neutron-poor nickel isotope anomalies in meteorites. Astrophys. J. 758:59 [Google Scholar]
  360. Steele RC, Elliott T, Coath CD, Regelous M. 2011. Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim. Cosmochim. Acta 75:7906–25 [Google Scholar]
  361. Stirling CH, Andersen MB, Potter EK, Halliday AN. 2007. Low-temperature isotopic fractionation of uranium. Earth Planet. Sci. Lett. 264:208–25 [Google Scholar]
  362. Stroud RM, Chisholm MF, Heck PR, Alexander CMD, Nittler LR. 2011. Supernova shock-wave-induced co-formation of glassy carbon and nanodiamond. Astrophys. J. 738:L27 [Google Scholar]
  363. Sugiura N, Miyazaki A, Yanai K. 2005. Widespread magmatic activities on the angrite parent body at 4562 Ma ago. Earth Planets Space 57:e13–16 [Google Scholar]
  364. Sun T, Bao H. 2011. Non-mass-dependent 17O anomalies generated by a superimposed thermal gradient on a rarefied O2 gas in a closed system. Rapid Commun. Mass Spectrom. 25:20–24 [Google Scholar]
  365. Tang H, Dauphas N. 2012. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet. Sci. Lett. 359:248–63 [Google Scholar]
  366. Tang H, Dauphas N. 2014. 60Fe-60Ni chronology of core formation on Mars. Earth Planet. Sci. Lett. 390:264–74 [Google Scholar]
  367. Tang H, Dauphas N. 2015. Low 60Fe abundance in Semarkona and Sahara 99555. Astrophys. J. 802:22 [Google Scholar]
  368. Thiemens MH. 2006. History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet. Sci. 34:217–62 [Google Scholar]
  369. Thiemens MH, Chakraborty S, Dominguez G. 2012. The physical chemistry of mass-independent isotope effects and their observation in nature. Annu. Rev. Phys. Chem. 63:155–77 [Google Scholar]
  370. Tissot FLH, Dauphas N. 2015. Uranium isotopic compositions of the crust and ocean: age corrections, U budget and global extent of modern anoxia. Geochim. Cosmochim. Acta 167:113–43 [Google Scholar]
  371. Tissot FLH, Dauphas N, Grossman L. 2016. Origin of uranium isotope variations in early solar nebula condensates. Sci. Adv. 2:e1501400 [Google Scholar]
  372. Touboul M, Puchtel IS, Walker RJ. 2015. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon. Nature 520:530–33 [Google Scholar]
  373. Touboul M, Walker RJ. 2012. High precision tungsten isotope measurement by thermal ionization mass spectrometry. Int. J. Mass Spectrom. 309:109–17 [Google Scholar]
  374. Trinquier A, Birck JL, Allègre CJ. 2007. Widespread 54Cr heterogeneity in the inner solar system. Astrophys. J. 655:1179 [Google Scholar]
  375. Trinquier A, Birck JL, Allègre C, Göpel C, Ulfbeck D. 2008. 53Mn-53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72:5146–63 [Google Scholar]
  376. Trinquier A, Elliott T, Ulfbeck D, Coath C, Krot AN, Bizzarro M. 2009. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324:374–76 [Google Scholar]
  377. Turro NJ. 1983. Influence of nuclear spin on chemical reactions: magnetic isotope and magnetic field effects (a review). PNAS 80:609–21 [Google Scholar]
  378. Uemura R, Barkan E, Abe O, Luz B. 2010. Triple isotope composition of oxygen in atmospheric water vapor. Geophys. Res. Lett. 37:L04402 [Google Scholar]
  379. Urey H. 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947:562–81 [Google Scholar]
  380. Villeneuve J, Chaussidon M, Libourel G. 2009. Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science 325:985–88 [Google Scholar]
  381. Visser R, van Dishoeck E, Doty S, Dullemond C. 2009. The chemical history of molecules in circumstellar disks. Astron. Astrophys. 495:881–97 [Google Scholar]
  382. Völkening J, Papanastassiou D. 1989. Iron isotope anomalies. Astrophys. J. 347:L43–46 [Google Scholar]
  383. Völkening J, Papanastassiou D. 1990. Zinc isotope anomalies. Astrophys. J. 358:L29–32 [Google Scholar]
  384. Walker RJ. 2009. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde Geochem. 69:101–25 [Google Scholar]
  385. Wanajo S, Janka HT, Müller B. 2013. Electron-capture supernovae as origin of 48Ca. Astrophys. J. 767:L26 [Google Scholar]
  386. Wang W, Harris MJ, Diehl R, Halloin H, Cordier B. et al. 2007. SPI observations of the diffuse 60Fe emission in the Galaxy. Astron. Astrophys. 469:1005–12 [Google Scholar]
  387. Wang X, Johnson TM, Lundstrom CC. 2015a. Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. Geochim. Cosmochim. Acta 150:160–70 [Google Scholar]
  388. Wang X, Johnson TM, Lundstrom CC. 2015b. Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI). Geochim. Cosmochim. Acta 158:262–75 [Google Scholar]
  389. Warren PH. 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311:93–100 [Google Scholar]
  390. Wasserburg GJ, Lee T, Papanastassiou DA. 1977. Correlated O and Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophys. Res. Lett. 4:299–302 [Google Scholar]
  391. Wasserburg GJ, Wimpenny J, Yin QZ. 2012. Mg isotopic heterogeneity, Al-Mg isochrons, and canonical 26Al/27Al in the early solar system. Meteorit. Planet. Sci. 47:1980–97 [Google Scholar]
  392. Webb MA, Miller TF. 2014. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane. J. Phys. Chem. A 118:467–74 [Google Scholar]
  393. Weston RE Jr. 1999. Anomalous or mass-independent isotope effects. Chem. Rev. 99:2115–36 [Google Scholar]
  394. Wetherill GW, Stewart GR. 1989. Accumulation of a swarm of small planetesimals. Icarus 77:330–57 [Google Scholar]
  395. Weyer S, Anbar AD, Gerdes A, Gordon GW, Algeo TJ, Boyle EA. 2008. Natural fractionation of 238U/235U. Geochim. Cosmochim. Acta 72:345–59 [Google Scholar]
  396. Widanagamage IH, Schauble EA, Scher HD, Griffith EM. 2014. Stable strontium istope fractionation in synthetic barite. Geochim. Cosmochim. Acta 147:58–75 [Google Scholar]
  397. Wiechert U, Halliday A, Lee DC, Snyder G, Taylor L, Rumble D. 2001. Oxygen isotopes and the Moon-forming giant impact. Science 294:345–48 [Google Scholar]
  398. Wiechert U, Halliday A, Palme H, Rumble D. 2004. Oxygen isotope evidence for rapid mixing of the HED meteorite parent body. Earth Planet. Sci. Lett. 221:373–82 [Google Scholar]
  399. Wiederhold JG, Cramer CJ, Daniel K, Infante I, Bourdon B, Kretzschmar R. 2010. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg. Environ. Sci. Technol. 44:4191–97 [Google Scholar]
  400. Wiederhold JG, Skyllberg U, Drott A, Jiskra M, Jonsson S. et al. 2015. Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources. Environ. Sci. Technol. 49:177–85 [Google Scholar]
  401. Wiederhold JG, Smith RS, Siebner H, Jew AD, Brown GE Jr.. et al. 2013. Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg mine. Environ. Sci. Technol. 18:6137–45 [Google Scholar]
  402. Wilson M. 1968. Ab initio calculation of screening effects on |ψ(0)|2 for heavy atoms. Phys. Rev. 176:58–63 [Google Scholar]
  403. Wisdom J, Tian Z. 2015. Early evolution of the Earth-Moon system with a fast-spinning Earth. Icarus 256:138–46 [Google Scholar]
  404. Wittig N, Humayun M, Brandon A, Huang S, Leya I. 2013. Coupled W–Os–Pt isotope systematics in IVB iron meteorites: in situ neutron dosimetry for W isotope chronology. Earth Planet. Sci. Lett. 361:152–61 [Google Scholar]
  405. Wombacher F, Rehkämper M. 2003. Investigation of the mass discrimination of multiple collector ICP-MS using neodymium isotopes and the generalised power law. J. Anal. At. Spectrom. 18:1371–75 [Google Scholar]
  406. Woosley S. 1997. Neutron-rich nucleosynthesis in carbon deflagration supernovae. Astrophys. J. 476:801 [Google Scholar]
  407. Yamakawa A, Yamashita K, Makishima A, Nakamura E. 2010. Chromium isotope systematics of achondrites: chronology and isotopic heterogeneity of the inner solar system bodies. Astrophys. J. 720:150 [Google Scholar]
  408. Yamashita K, Ueda T, Nakamura N, Kita N, Heaman L. 2005. Chromium isotopic study of mesosiderite and ureilite: evidence for ε54Cr deficit in differentiated meteorites. NIPR Symp. Antarct. Meteorit. 29:100–1 [Google Scholar]
  409. Yang S, Liu Y. 2015. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead. Sci. Rep. 5:12626 [Google Scholar]
  410. Yeung LY, Young ED, Schauble EA. 2012. Measurements of 18O18O and 17O18O in the atmosphere and the influence of isotope-exchange reactions. J. Geophys. Res. 117:D18306 [Google Scholar]
  411. Yokoi K, Takahashi K, Arnould M. 1983. The 187Re–187Os chronology and chemical evolution of the Galaxy. Astron. Astrophys. 117:65–82 [Google Scholar]
  412. Yokoyama T, Alexander CMD, Walker RJ. 2010. Osmium isotope anomalies in chondrites: results for acid residues and related leachates. Earth Planet. Sci. Lett. 291:48–59 [Google Scholar]
  413. Yokoyama T, Fukami Y, Okui W, Ito N, Yamazaki H. 2015. Nucleosynthetic strontium isotope anomalies in carbonaceous chondrites. Earth Planet. Sci. Lett. 416:46–55 [Google Scholar]
  414. Young ED. 2014. Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth Planet. Sci. Lett. 392:16–27 [Google Scholar]
  415. Young ED, Galy A, Nagahara H. 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66:1095–104 [Google Scholar]
  416. Young ED, Kuramoto K, Marcus RA, Yurimoto H, Jacobsen SB. 2008. Mass-independent oxygen isotope variation in the solar nebula. Rev. Mineral. Geochem. 68:187–218 [Google Scholar]
  417. Young ED, Russell SS. 1998. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282:452–55 [Google Scholar]
  418. Young ED, Yeung LY, Kohl IE. 2014. On the δ17O budget of atmospheric O2. Geochim. Cosmochim. Acta 135:102–25 [Google Scholar]
  419. Yung YL, De Mone WB, Pinto JP. 1991. Isotopic exchange between carbon dioxide and ozone via O(1D) in the stratosphere. Geophys. Res. Lett. 18:13–16 [Google Scholar]
  420. Yurimoto H, Kuramoto K. 2004. Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305:1763–66 [Google Scholar]
  421. Zhang J. 2012. Titanium isotope cosmochemistry PhD Diss., Dep. Geophys. Sci., Univ. Chicago [Google Scholar]
  422. Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5:251–55 [Google Scholar]
  423. Zinner EK. 2003. Presolar grains. Treatise on Geochemistry 1 Meteorites, Comets, and Planets AM Davis 17–39 Oxford, UK: Elsevier-Pergamon, 1st ed.. [Google Scholar]
  424. Zinner EK, Fahey AJ, McKeegan KD, Goswami JN, Ireland TR. 1986. Large 48Ca anomalies are associated with 50Ti anomalies in Murchison and Murray hibonites. Astrophys. J. 311:L103–7 [Google Scholar]
  425. Zinner EK, Göpel C. 2002. Aluminum-26 in H4 chondrites: implications for its production and its usefulness as a fine-scale chronometer for early solar system events. Meteorit. Planet. Sci. 37:1001–13 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article