1932

Abstract

Mature orogenic systems built by continent-continent collision feature orogenic plateaus flanked by accretionary wedges. Thermal-mechanical models of these systems predict the development of a thermally weakened orogenic infrastructure that is capable of lateral flow toward the orogenic foreland. Such flow, if it occurs, strongly influences the evolutionary pathway of a wedge. Although the architecture of a wedge features numerous large-displacement faults, three are preeminent in mature orogens: one that marks the base of the wedge and two others that mark the base and top, respectively, of the weakened infrastructure. These structures represent major decoupling horizons separating domains with distinctive deformational and thermal histories. Reviews of the geology of orogenic wedges in two mature orogenic systems—the Cenozoic Himalaya and the Paleozoic East Greenland Caledonides—show how this simple conceptual model provides a valuable context for studies of how collisional orogenic systems develop and how they interact with the surrounding lithosphere.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012412
2016-06-29
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/earth/44/1/annurev-earth-060115-012412.html?itemId=/content/journals/10.1146/annurev-earth-060115-012412&mimeType=html&fmt=ahah

Literature Cited

  1. Ader T, Avouac J-P, Liu-Zeng J, Lyon-Caen H, Bollinger L. et al. 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J. Geophys. Res. Solid Earth 117:B04403 [Google Scholar]
  2. Andersen TB, Jamtveit B, Dewey JF, Swensson E. 1991. Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the southwest Norwegian Caledonides. Terra Nova 3:303–10 [Google Scholar]
  3. Andréasson PG, Gee DG, Whitehouse MJ, Schoberg H. 2003. Subduction-flip during Iapetus Ocean closure and Baltica-Laurentia collision, Scandinavian Caledonides. Terra Nova 15:362–69 [Google Scholar]
  4. Andresen A, Hartz EH, Vold J. 1998. A late orogenic extensional origin for the infracrustal gneiss domes of the East Greenland Caledonides (72–74°N). Tectonophysics 285:353–69 [Google Scholar]
  5. Andresen A, Rehnström EF, Holte M. 2007. Evidence for simultaneous contraction and extension at different structural levels during the Caledonian orogeny in NE Greenland. J. Geol. Soc. Lond. 164:869–80 [Google Scholar]
  6. Avouac J-P, Tapponnier P. 1993. Kinematic model of active deformation in Central Asia. Geophys. Res. Lett. 20:895–98 [Google Scholar]
  7. Beaumont C, Ellis S, Pfiffner A. 1999. Dynamics of sediment subduction-accretion at convergent margins: short-term modes, long-term deformation, and tectonic implications. J. Geophys. Res. 104:17573–601 [Google Scholar]
  8. Beaumont C, Jamieson R, Nguyen M. 2010. Models of large, hot orogens containing a collage of reworked and accreted terranes. Can. J. Earth Sci. 47:485–515 [Google Scholar]
  9. Beaumont C, Jamieson RA, Nguyen MH, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–42 [Google Scholar]
  10. Beaumont C, Nguyen MH, Jamieson RA, Ellis S. 2006. Crustal flow modes in large hot orogens. Channel Flow, Ductile Extrusion and Exhumation of Lower-Middle Crust in Continental Collision Zones RD Law, MP Searle, L Godin 91–145 London: Geol. Soc. Lond. [Google Scholar]
  11. Boyer SE, Elliott D. 1982. Thrust systems. Am. Assoc. Pet. Geol. Bull. 66:1196–230 [Google Scholar]
  12. Braun J. 2003. Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Comput. Geosci. 29:787–94 [Google Scholar]
  13. Burchfiel BC, Chen Z, Hodges KV, Liu Y, Royden LH. et al. 1992. The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt Boulder, CO: Geol. Soc. Am.
  14. Clark MK, Farley KA, Zheng DW, Wang ZC, Duvall AR. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth Planet. Sci. Lett. 296:78–88 [Google Scholar]
  15. Clark MK, Royden LH. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28:703–6 [Google Scholar]
  16. Cooper FJ, Adams BA, Edwards CS, Hodges KV. 2012. Large normal-sense displacement on the South Tibetan fault system in the eastern Himalaya. Geology 40:971–74 [Google Scholar]
  17. Cooper FJ, Hodges KV, Adams BA. 2013. Metamorphic constraints on the character and displacement of the South Tibetan fault system, central Bhutanese Himalaya. Lithosphere 5:67–81 [Google Scholar]
  18. Corfu F, Andersen TB, Gasser D. 2014. The Scandinavian Caledonides: main features, conceptual advances and critical questions. New Perspectives on the Caledonides of Scandinavia and Related Areas F Corfu, D Gasser, DM Chew 9–43 London: Geol. Soc. Lond. [Google Scholar]
  19. Cottle JM, Larson KP, Kellett DA. 2015. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. J. Struct. Geol. 78:119–33 [Google Scholar]
  20. Cottle JM, Waters DJ, Riley D, Beyssac O, Jessup MJ. 2011. Metamorphic history of the South Tibetan Detachment System, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modelling. J. Metamorph. Geol. 29:561–82 [Google Scholar]
  21. Culshaw NG, Beaumont C, Jamieson RA. 2006. The orogenic superstructure-infrastructure concept: revisited, quantified, and revived. Geology 34:733–36 [Google Scholar]
  22. Davis D, Suppe J, Dahlen FA. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88:1153–72 [Google Scholar]
  23. DeCelles PG, Gehrels GE, Quade J, Ojha TP. 1998. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 17:741–65 [Google Scholar]
  24. DeCelles PG, Robinson DM, Quade J, Ojha TP, Garzione CN. et al. 2001. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20:487–509 [Google Scholar]
  25. Denele Y, Olivier P, Gleizes G, Barbey P. 2009. Decoupling between the middle and upper crust during transpression-related lateral flow: Variscan evolution of the Aston gneiss dome (Pyrenees, France). Tectonophysics 477:244–61 [Google Scholar]
  26. Dewey JF, Strachan RA. 2003. Changing Silurian-Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension. J. Geol. Soc. Lond. 160:219–29 [Google Scholar]
  27. Duvall AR, Clark MK, van der Pluijm B, Li CY. 2011. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet. Sci. Lett. 304:520–26 [Google Scholar]
  28. Elvevold S, Thrane K, Gilotti JA. 2003. Metamorphic history of high-pressure granulites in Payer Land, Greenland Caledonides. J. Metamorph. Geol. 21:49–63 [Google Scholar]
  29. Froitzheim N, Plašienka D, Schuster R. 2008. Alpine tectonics of the Alps and Western Carpathians. Geol. Cent. Eur. 6:1141–232 [Google Scholar]
  30. Gasser D. 2014. The Caledonides of Greenland, Svalbard and other Arctic areas: status of research and open questions. New Perspectives on the Caledonides of Scandinavia and Related Areas F Corfu, D Gasser, DM Chew 93–129 London: Geol. Soc. Lond. [Google Scholar]
  31. Gilotti JA, Elvevold S. 2002. Extensional exhumation of a high-pressure granulite terrane in Payer Land, Greenland Caledonides: structural, petrologic, and geochronologic evidence from metapelites. Can. J. Earth Sci. 39:1169–87 [Google Scholar]
  32. Gilotti JA, Jones KA, Elvevold S. 2008. Caledonian metamorphic patterns in Greenland. Geol. Soc. Am. Mem. 202:201–25 [Google Scholar]
  33. Gilotti JA, McClelland WC. 2005. Leucogranites and the time of extension in the East Greenland Caledonides. J. Geol. 113:399–417 [Google Scholar]
  34. Gilotti JA, McClelland WC. 2008. Geometry, kinematics, and timing of extensional faulting in the Greenland Caledonides—a synthesis. Geol. Soc. Am. Mem. 202:251–71 [Google Scholar]
  35. Godin L. 2003. Structural evolution of the Tethyan sedimentary sequence in the Annapurna area, central Nepal. J. Asian Earth Sci. 22:307–28 [Google Scholar]
  36. Godin L, Grujic D, Law RD, Searle MP. 2006. Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. Channel Flow, Ductile Extrusion and Exhumation of Lower-Middle Crust in Continental Collision Zones RD Law, MP Searle, L Godin 1–24 London: Geol. Soc. Lond. [Google Scholar]
  37. Grujic D, Hollister LS, Parrish RR. 2002. Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth Planet. Sci. Lett. 198:177–91 [Google Scholar]
  38. Haller J. 1971. Geology of the East Greenland Caledonides New York: Interscience
  39. Harrison TM. 2006. Did the Himalayan Crystallines extrude partially molten from beneath the Tibetan Plateau?. Channel Flow, Ductile Extrusion and Exhumation of Lower-Middle Crust in Continental Collision Zones RD Law, MP Searle, L Godin 237–54 London: Geol. Soc. Lond. [Google Scholar]
  40. Hartz E, Andresen A. 1995. Caledonian sole thrust of central East Greenland: a crustal-scale Devonian extensional detachment?. Geology 23:637–40 [Google Scholar]
  41. Hartz EH, Andresen A, Hodges KV, Martin MW. 2001. Syncontractional extension and exhumation of deep crustal rocks in the east Greenland Caledonides. Tectonics 20:58–77 [Google Scholar]
  42. Hartz EH, Andresen A, Martin MW, Hodges KV. 2000. U-Pb and 40Ar/39Ar constraints on the Fjord Region detachment zone: a long-lived extensional fault in the East Greenland Caledonides. J. Geol. Soc. Lond. 157:795–809 [Google Scholar]
  43. Heim A, Gansser A. 1939. Central Himalaya: geological observations of the Swiss expedition, 1936. Mem. Soc. Helv. Sci. Nat. 73:1–245 [Google Scholar]
  44. Higgins AK, Elvevold S, Escher JC, Frederiksen KS, Gilotti JA. et al. 2004a. The foreland-propagating thrust architecture of the East Greenland Caledonides 72°–75°N. J. Geol. Soc. Lond. 161:1009–26 [Google Scholar]
  45. Higgins AK, Soper NJ, Smith MP, Rasmussen JA. 2004b. The Caledonian parautochthonous fold and thrust belt of Kronprins Christian Land, eastern North Greenland. Geol. Surv. Den. Greenl. Bull. 6:41–56 [Google Scholar]
  46. Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull. 112:324–50 [Google Scholar]
  47. Hodges KV. 2006. A synthesis of the Channel Flow-Extrusion hypothesis as developed for the Himalayan-Tibetan orogenic system. Channel Flow, Ductile Extrusion and Exhumation of Lower-Middle Crust in Continental Collision Zones RD Law, MP Searle, L Godin 71–90 London: Geol. Soc. Lond. [Google Scholar]
  48. Hodges KV, Burchfiel BC, Royden LH, Chen Z, Liu Y. 1993. The metamorphic signature of contemporaneous extension and shortening in the central Himalayan orogen: data from the Nyalam transect, southern Tibet. J. Metamorph. Geol. 11:721–37 [Google Scholar]
  49. Hodges KV, Hames WE, Olszewski WJ, Burchfiel BC, Royden LH, Chen Z. 1994. Thermobarometric and 40Ar/39Ar geochronologic constraints on Eohimalayan metamorphism in the Dinggyê area, southern Tibet. Contrib. Mineral. Petrol. 117:151–63 [Google Scholar]
  50. Hodges KV, Hurtado JM, Whipple KX. 2001. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics 20:799–809 [Google Scholar]
  51. Hodges KV, Parrish R, Housh T, Lux D, Burchfiel BC. et al. 1992. Simultaneous Miocene extension and shortening in the Himalayan orogen. Science 258:1466–70 [Google Scholar]
  52. Hodges KV, Parrish RR, Searle MP. 1996. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics 15:1264–91 [Google Scholar]
  53. Jamieson RA, Beaumont C. 2013. On the origin of orogens. Geol. Soc. Am. Bull. 125:1671–702 [Google Scholar]
  54. Jamieson RA, Beaumont C, Medvedev S, Nguyen MH. 2004. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J. Geophys. Res. 109:B06407 [Google Scholar]
  55. Johnston SM, Kylander-Clark ARC. 2013. Discovery of an Eo-Meso-Neoarchean terrane in the East Greenland Caledonides. Precambrian Res. 235:295–302 [Google Scholar]
  56. Kalsbeek F, Jepsen HF, Nutman AP. 2001. From source migmatites to plutons: tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogen. Lithos 57:1–21 [Google Scholar]
  57. Kind R, Yuan X, Saul J, Nelson D, Sobolev SV. et al. 2002. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science 298:1219–21 [Google Scholar]
  58. Klemperer SL. 2006. Crustal flow in Tibet: a review of geophysical evidence for the physical state of the Tibetan lithosphere. Channel Flow, Ductile Extrusion and Exhumation of Lower-Middle Crust in Continental Collision Zones RD Law, MP Searle, L Godin 39–70 London: Geol. Soc. Lond. [Google Scholar]
  59. Kohn MJ. 2008. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geol. Soc. Am. Bull. 120:259–73 [Google Scholar]
  60. Larsen P-H, Olsen H, Clack JA. 2008. The Devonian basin in East Greenland—review of basin evolution and vertebrate assemblages. Geol. Soc. Am. Mem. 202:273–92 [Google Scholar]
  61. Law RD, Jessup MJ, Searle MP, Francsis MK, Waters DJ, Cottle JM. 2011. Telescoping of isotherms beneath the South Tibetan Detachment System, Mount Everest Massif. J. Struct. Geol. 33:1569–94 [Google Scholar]
  62. Leslie AG, Higgins AK. 2008. Foreland-propagating Caledonian thrust systems in East Greenland. Geol. Soc. Am. Mem. 202:169–99 [Google Scholar]
  63. Leslie AG, Smith M, Soper NJ. 2008. Laurentian margin evolution and the Caledonian orogeny—a template for Scotland and East Greenland. Geol. Soc. Am. Mem. 202:307–43 [Google Scholar]
  64. Long S, McQuarrie N, Tobgay T, Grujic D. 2011. Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan. Geol. Soc. Am. Bull. 123:1427–47 [Google Scholar]
  65. McClay KR, Norton MG, Coney P, Davis GH. 1986. Collapse of the Caledonian orogen and the Old Red Sandstone. Nature 323:147–49 [Google Scholar]
  66. McDermott JA, Hodges KV, Whipple KX, van Soest MC, Hurtado JM. 2015. Evidence for Pleistocene low-angle normal faulting in the Annapurna-Dhaulagiri region, Nepal. J. Geol. 123:133–51 [Google Scholar]
  67. McDermott JA, Whipple KX, Hodges KV, van Soest MC. 2013. Evidence for Plio-Pleistocene north-south extension at the southern margin of the Tibetan Plateau, Nyalam region. Tectonics 32:317–33 [Google Scholar]
  68. Medvedev S, Beaumont C. 2006. Growth of continental plateaus by channel injection: models designed to address constraints and thermomechanical consistency. Channel Flow, Ductile Extrusion and Exhumation of Lower-Middle Crust in Continental Collision Zones RD Law, MP Searle, L Godin 147–64 London: Geol. Soc. Lond. [Google Scholar]
  69. Mosar J, Eide EA, Osmundsen PT, Sommaruga A, Torsvik TH. 2002. Greenland-Norway separation: a geodynamic model for the North Atlantic. Nor. J. Geol. 82:281–98 [Google Scholar]
  70. Murphy MA, Taylor MH, Gosse J, Silver CRP, Whipp DM, Beaumont C. 2014. Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal. Nat. Geosci. 7:38–42 [Google Scholar]
  71. Nelson KD, Zhao W, Brown LD, Kuo J, Che J. et al. 1996. Partially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Science 274:1684–88 [Google Scholar]
  72. Platt JP. 1986. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol. Soc. Am. Bull. 97:1037–53 [Google Scholar]
  73. Robinson DM, DeCelles PG, Copeland P. 2006. Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models. Geol. Soc. Am. Bull. 118:865–85 [Google Scholar]
  74. Roger F, Teyssier C, Respaut J-P, Rey PF, Jolivet M. et al. 2015. Timing of formation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 640:53–69 [Google Scholar]
  75. Royden LH. 1996. Coupling and decoupling of crust and mantle in convergent orogens: implications for strain partitioning in the crust. J. Geophys. Res. 101:17679–705 [Google Scholar]
  76. Schelling D. 1992. The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics 11:925–43 [Google Scholar]
  77. Schildgen TF, Hodges KV, Whipple KX, Pringle MS, van Soest MC, Cornell K. 2009. Late Cenozoic structural and tectonic development of the western margin of the Central Andean Plateau in southwest Peru. Tectonics 28:TC4007 [Google Scholar]
  78. Schlindwein V, Jokat W. 2000. Post-collisional extension of the East Greenland Caledonides: a geophysical perspective. Geophys. J. Int. 140:559–67 [Google Scholar]
  79. Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey MR, Sapkota S. et al. 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature 435:1222–25 [Google Scholar]
  80. Searle MP. 1996. Geological evidence against large-scale pre-Holocene offsets along the Karakoram Fault: implications for the limited extrusion of the Tibetan plateau. Tectonics 15:171–86 [Google Scholar]
  81. Smith MP, Rasmussen JA. 2008. Cambrian-Silurian development of the Laurentian margin of the Iapetus Ocean in Greenland and related areas. Geol. Soc. Am. Mem. 202:137–67 [Google Scholar]
  82. Sønderholm M, Frederiksen KS, Smith MP, Tirsgaard H. 2008. Neoproterozoic sedimentary basins with glacigenic deposits of the East Greenland Caledonides. Geol. Soc. Am. Mem. 202:99–136 [Google Scholar]
  83. Strachan RA. 1994. Evidence in North-East Greenland for Late Silurian–Early Devonian regional extension during the Caledonian orogeny. Geology 22:913–16 [Google Scholar]
  84. Strachan RA, Martin MW. 2001. Evidence for contemporaneous yet contrasting styles of granite magmatism during extensional collapse of the northeast Greenland Caledonides. Tectonics 20:458–73 [Google Scholar]
  85. Tobgay T, McQuarrie N, Long S, Kohn MJ, Corrie SL. 2012. The age and rate of displacement along the Main Central Thrust in the western Bhutan Himalaya. Earth Planet. Sci. Lett. 319:146–58 [Google Scholar]
  86. Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B. et al. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci. Rev. 114:325–68 [Google Scholar]
  87. Trümpy R. 2001. Why plate tectonics was not invented in the Alps. Int. J. Earth Sci. 90:477–83 [Google Scholar]
  88. Tseng TL, Chen WP, Nowack RL. 2009. Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys. Res. Lett. 36:L24304 [Google Scholar]
  89. van Hinsbergen DJJ, Lippert PC, Dupont-Nivet G, McQuarrie N, Doubrovine PV. et al. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. PNAS 109:7659–64 [Google Scholar]
  90. Vanderhaeghe O, Medvedev S, Fullsack P, Beaumont C, Jamieson RA. 2003. Evolution of orogenic wedges and continental plateaux: insights from crustal thermal–mechanical models overlying subducting mantle lithosphere. Geophys. J. Int. 153:27–51 [Google Scholar]
  91. Voss M, Jokat W. 2009. From Devonian extensional collapse to early Eocene continental break-up: an extended transect of the Kejser Franz Joseph Fjord of the East Greenland margin. Geophys. J. Int. 177:743–54 [Google Scholar]
  92. Watt GR, Kinny PD, Friderichsen JD. 2000. U-Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. J. Geol. Soc. Lond. 157:1031–48 [Google Scholar]
  93. Wegmann CE. 1935. Zur Deutung der Migmatite. Geol. Rundsch. 26:305–50 [Google Scholar]
  94. White AP, Hodges KV. 2002. Multistage extensional evolution of the central East Greenland Caledonides. Tectonics 21:1048 [Google Scholar]
  95. White AP, Hodges KV. 2003. Pressure-temperature-time evolution of the central East Greenland Caledonides: quantitative constraints on crustal thickening and synorogenic extension. J. Metamorph. Geol. 21:875–97 [Google Scholar]
  96. White AP, Hodges KV, Martin MW, Andresen A. 2002. Geologic constraints on middle-crustal behavior during broadly synorogenic extension in the central East Greenland Caledonides. Int. J. Earth Sci. 91:187–208 [Google Scholar]
  97. Willett S, Beaumont C, Fullsack P. 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21:371–74 [Google Scholar]
  98. Williams PF, Jiang DZ. 2005. An investigation of lower crustal deformation: evidence for channel flow and its implications for tectonics and structural studies. J. Struct. Geol. 27:1486–504 [Google Scholar]
  99. Yin A, Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28:211–80 [Google Scholar]
  100. Yin A, Rumelhart PE, Butler R, Cowgill E, Harrison TM. et al. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol. Soc. Am. Bull. 114:1257–95 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012412
Loading
/content/journals/10.1146/annurev-earth-060115-012412
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error