Paleoclimatologists have discovered abundant evidence that droughts coincided with collapse of the Lowland Classic Maya civilization, and some argue that climate change contributed to societal disintegration. Many archaeologists, however, maintain that drought cannot explain the timing or complex nature of societal changes at the end of the Classic Period, between the eighth and eleventh centuries . This review presents a compilation of climate proxy data indicating that droughts in the ninth to eleventh century were the most severe and frequent in Maya prehistory. Comparison with recent archaeological evidence, however, indicates an earlier beginning for complex economic and political processes that led to the disintegration of states in the southern region of the Maya lowlands that precedes major droughts. Nonetheless, drought clearly contributed to the unusual severity of the Classic Maya collapse, and helped to inhibit the type of recovery seen in earlier periods of Maya prehistory. In the drier northern Maya Lowlands, a later political collapse at ca. 1000 appears to be related to ongoing extreme drought. Future interdisciplinary research should use more refined climatological and archaeological data to examine the relationship between climate and social processes throughout the entirety of Maya prehistory.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU. 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–86 [Google Scholar]
  2. Anselmetti FS, Hodell DA, Ariztegui D, Brenner M, Rosenmeier MF. 2007. Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35:915–18 [Google Scholar]
  3. Asmerom Y, Polyak V, Burns S, Rassmussen J. 2007. Solar forcing of Holocene climate: new insights from a speleothem record, southwestern United States. Geology 35:1–4 [Google Scholar]
  4. Beach T, Dunning N, Luzzadder-Beach S, Cook DE, Lohse J. 2006. Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. Catena 65:166–78 [Google Scholar]
  5. Bianchi GG, McCave IN. 1999. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397:515–17 [Google Scholar]
  6. Binford MW, Kolata AL, Brenner M, Janusek JW, Seddon MT. et al. 1997. Climate variation and the rise and fall of an Andean civilization. Quat. Res. 47:235–48 [Google Scholar]
  7. Bond G, Kromer B, Beer J, Muscheler R, Evans MN. et al. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–36 [Google Scholar]
  8. Bond G, Showers W, Cheseby M, Lotti R, Almasi P. et al. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–66 [Google Scholar]
  9. Braswell GE. 2010. The rise and fall of market exchange: a dynamic approach to ancient Maya economy. Archaeological Approaches to Market Exchange in Pre-Capitalist Societies CP Garraty, B Stark 127–40 Salt Lake City: Univ. Utah Press [Google Scholar]
  10. Brenner M, Hodell DA, Curtis JH, Rosenmeier MF, Anselmetti FS, Ariztegui D. 2003. Paleolimnological approaches for inferring past climate change in the Maya region: recent advances and methodological limitations. Lowland Maya Area: Three Millennia at the Human-Wildland Interface A Gómez-Pompa, MF Allen, SL Fedick, JJ Jiménez-Osornio 45–75 Binghamton, NY: Haworth [Google Scholar]
  11. Buckley BM, Anchukaitis KJ, Penny D, Fletcher R, Cook ER. et al. 2010. Climate as a contributing factor in the demise of Angkor, Cambodia. PNAS 107:6748–52 [Google Scholar]
  12. Canuto MA, Barrientos Q. 2011. La Corona: un acercamiento a las políticas del Reino Kaan desde un centro secundario del Noroeste de Petén. Estud. Cult. Maya 38:14–43 [Google Scholar]
  13. Canuto MA, Bell EE. 2013. Archaeological investigations in the El Paraíso valley: the role of secondary centers in the multiethnic landscape of Classic Period Copan. Anc. Mesoam. 24:1–24 [Google Scholar]
  14. Chase AF, Chase DZ. 1998. Scale and intensity in Classic Period Maya agriculture: terracing and settlement at the “Garden City” of Caracol, Belize. Cult. Agric. 20:60–77 [Google Scholar]
  15. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X. et al. 2007. Regional climate projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis 847–940 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  16. Conroy JL, Overpeck JT, Cole JE, Shanahan TM, Steinitz-Kannan M. 2008. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quat. Sci. Rev. 27:1166–80 [Google Scholar]
  17. Cook BI, Anchukaitis KJ, Kaplan JO, Puma MJ, Kelley M, Gueyffier D. 2012. Pre-Columbian deforestation as an amplifier of drought in Mesoamerica. Geophys. Res. Lett. 39:L16706 [Google Scholar]
  18. Coombes P, Barber K. 2005. Environmental determinism in Holocene research: causality or coincidence?. Area 37:303–11 [Google Scholar]
  19. Covich A, Stuiver M. 1974. Changes in oxygen 18 as a measure of long-term fluctuations in tropical lake levels and molluscan populations. Limnol. Oceanogr. 19:682–91 [Google Scholar]
  20. Cowgill GL. 1988. Onward and upward with collapse. The Collapse of Ancient States and Civilizations N Yoffee, GL Cowgill 244–76 Tucson: Univ. Ariz. Press [Google Scholar]
  21. Culbert TP. 1973. Introduction. A prologue to Classic Maya culture and the problem of its collapse. The Classic Maya Collapse TP Culbert 1–19 Albuquerque: Univ. N.M. Press [Google Scholar]
  22. Culbert TP, Rice DS. 1990. Precolumbian Population History in the Maya Lowlands Albuquerque: Univ. N.M. Press [Google Scholar]
  23. Cullen HM, Hemming S, Hemming G, Brown F, Guilderson T, Sirocko F. 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28:379–82 [Google Scholar]
  24. Curtis JH, Hodell DA, Brenner M. 1996. Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat. Res. 46:37–47 [Google Scholar]
  25. Curtis JH, Brenner M, Hodell DA, Balser RA, Islebe GA, Hooghiemstra H. 1998. A multi-proxy study of Holocene environmental change in the Maya lowlands of Peten, Guatemala. J. Paleolimnol. 19:139–59 [Google Scholar]
  26. Dahl KA, Broccoli AJ, Stouffer RJ. 2005. Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Clim. Dyn. 24:325–46 [Google Scholar]
  27. Dahlin BH. 2002. Climate change and the end of the Classic Period in Yucatan: resolving a paradox. Anc. Mesoam. 13:327–40 [Google Scholar]
  28. Demarest AA. 1992. Ideology in ancient Maya cultural evolution: the dynamics of galactic polities. Ideology and Pre-Columbian Civilizations AA Demarest, G Conrad 135–57 Santa Fe, NM: School Am. Res. Press [Google Scholar]
  29. Demarest AA. 2004. Ancient Maya: The Rise and Fall of a Rainforest Civilization Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  30. Demarest AA. 2006. The Petexbatun Regional Archaeological Project: A Multidisciplinary Study of the Maya Collapse Nashville, TN: Vanderbilt Univ. Press [Google Scholar]
  31. Demarest AA. 2015. From apogee to collapse. Voices in Stone A Martinez de Velasco Cortina, ME Vega Villalobos 467–81 London: Turner/Distrib. Art. Publ. [Google Scholar]
  32. Demarest AA. 2016. Ancient Maya: The Rise and Fall of a Tropical Rainforest Civilization Cambridge, UK: Cambridge Univ. Press. In press [Google Scholar]
  33. Demarest AA, Quintanilla C, Suasnavar J. 2016. The collapses in the west and the violent ritual termination of the Classic Maya capital center of Cancuen: causes and consequences. See Iannone et al. 2016 159–86
  34. Demarest AA, Rice PM, Rice DS. 2004. The Terminal Classic in the Maya Lowland: Collapse, Transition, and Transformation Boulder: Univ. Press Colo. [Google Scholar]
  35. deMenocal PB. 2001. Cultural responses to climate change during the Late Holocene. Science 292:667–73 [Google Scholar]
  36. deMenocal PB, Ortiz J, Guilderson T, Sarnthein M. 2000. Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288:2198–202 [Google Scholar]
  37. Diamond JM. 2005. Collapse: How Societies Choose to Fail or Succeed New York: Viking [Google Scholar]
  38. Diaz HF, Bradley RS. 2004. The Hadley Circulation: Present, Past, and Future Dordrecht, Neth: Kluwer [Google Scholar]
  39. Douglas PMJ, Brenner M, Curtis JH. 2015a. Methods and future directions for paleoclimatology in the Maya Lowlands. Glob. Planet. Change 1383–24 [Google Scholar]
  40. Douglas PMJ, Pagani M, Brenner M, Hodell DA, Curtis JH. 2012. Aridity and vegetation composition are important determinants of leaf-wax δD values in southeastern Mexico and Central America. Geochim. Cosmochim. Acta 97:24–45 [Google Scholar]
  41. Douglas PMJ, Pagani M, Canuto MA, Brenner M, Hodell DA. et al. 2015b. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. PNAS 112:5607–12 [Google Scholar]
  42. Douglas PMJ, Pagani M, Eglinton TI, Brenner M, Hodell DA. et al. 2014. Pre-aged plant waxes in tropical lake sediments and their influence on the chronology of molecular paleoclimate proxy records. Geochim. Cosmochim. Acta 141:346–64 [Google Scholar]
  43. Dunning NP, Beach TP. 2011. Farms and forests: spatial and temporal perspectives on ancient Maya landscapes. Landscapes and Societies: Selected Cases IP Martini, W Chesworth 369–89 Dordrecht, Neth: Springer [Google Scholar]
  44. Dunning NP, Beach TP, Luzzadder-Beach S. 2012. Kax and kol: collapse and resilience in lowland Maya civilization. PNAS 109:3652–57 [Google Scholar]
  45. Dunning NP, Beach TP, Rue D. 1997. The paleoecology and ancient settlement of the Petexbatun region, Guatemala. Anc. Mesoam. 8:255–66 [Google Scholar]
  46. Dunning NP, Luzzadder-Beach S, Beach TP, Jones JG, Scarborough V, Culbert TP. 2002. Arising from the bajos: the evolution of a neotropical landscape and the rise of Maya civilization. Ann. Assoc. Am. Geogr. 92:267–83 [Google Scholar]
  47. Dunning NP, Rue DJ, Beach TP, Covich A, Traverse A. 1998. Human-environment interactions in a tropical watershed: the paleoecology of Laguna Tamarindito, El Petén, Guatemala. J. Field Archaeol. 25:139–51 [Google Scholar]
  48. Eberl M. 2014. Community and Difference: Change in Late Classic Maya Villages of the Petexbatun Region Nashville, TN: Vanderbilt Univ. Press [Google Scholar]
  49. Emery KF. 2008. A zooarchaeological test for dietary resource depression at the end of the Classic Period in the Petexbatun, Guatemala. Hum. Ecol. 36:617–34 [Google Scholar]
  50. Emery KF, Thornton EK. 2008. A regional perspective on biotic change during the Classic Maya occupation using zooarchaeological isotopic chemistry. Quat. Int. 191:131–43 [Google Scholar]
  51. Emery KF, Wright EL, Schwarcz H. 2000. Isotopic analysis of ancient deer done: biotic stability in Collapse Period Maya land-use. J. Archaeol. Sci. 27:537–50 [Google Scholar]
  52. Enfield DB, Alfaro EJ. 1999. The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Clim. 12:2093–103 [Google Scholar]
  53. Evangelista H, Gurgel M, Sifeddine A, Rigozo NR, Boussafir M. 2014. South Tropical Atlantic anti-phase response to Holocene Bond Events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 415:21–27 [Google Scholar]
  54. Fash WLE, Wyllys A, Manahan TK. 2004. Political decentralization, dynastic collapse, and the Early Postclassic in the urban center of Copan, Honduras. See Demarest et al. 2004 260–87
  55. Fedorov AV, Philander SG. 2000. Is El Niño changing?. Science 288:1997–2002 [Google Scholar]
  56. Feinman GM, Nicholas LM. 2004. Archaeological Perspectives on Political Economies Salt Lake City: Univ. Utah Press [Google Scholar]
  57. Fields VM. 1989. The origins of divine kingship among the Lowland Classic Maya PhD Diss., Univ. Texas Austin [Google Scholar]
  58. Foias AE. 2013. Ancient Maya Political Dynamics Gainesville: Univ. Press Fla. [Google Scholar]
  59. Frappier AB, Pyburn J, Pinkey-Drobnis AD, Wang X, Corbett DR, Dahlin BH. 2014. Two millennia of tropical cyclone-induced mud layers in a northern Yucatán stalagmite: multiple overlapping climatic hazards during the Maya Terminal Classic “megadroughts.”. Geophys. Res. Lett. 41:5148–57 [Google Scholar]
  60. Freidel DA. 2008. Maya divine kingship. Religion and Power: Divine Kingship in the Ancient World and Beyond N Brisch 191–206 Chicago: Orient. Inst. Univ. Chicago [Google Scholar]
  61. Giannini A, Kushnir Y, Cane MA. 2000. Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Clim. 13:297–311 [Google Scholar]
  62. Gill RB. 2000. The Great Maya Droughts: Water, Life and Death Albuquerque: Univ. N.M. Press [Google Scholar]
  63. Giosan L, Fuller DQ, Nicoll K, Flad RK, Clift PD. 2013. Climates, Landscapes, and Civilizations Washington, DC: AGU [Google Scholar]
  64. Gunn J, Adams REW. 1981. Climatic change, culture, and civilization in North America. World Archaeol. 13:87–100 [Google Scholar]
  65. Gupta AK, Das M, Anderson DM. 2005. Solar influence on the Indian summer monsoon during the Holocene. Geophys. Res. Lett. 32:L17703 [Google Scholar]
  66. Hansen RD. 2005. Perspectives on Olmec-Maya interaction in the middle formative period. New Perspectives on Formative Mesoamerican Cultures TG Powis 51–72 Oxford, UK: Br. Archaeol. Rep. [Google Scholar]
  67. Hansen RD. 2011. Ex lux terminus: orígenes, dinámicas y colapso del apogeo Preclásico en la Cuenca Mirador-Calakmul Presented at III Congreso Internacional de Cultura Maya, March 13–19, Mérida, Mex. [Google Scholar]
  68. Haug GH, Gunther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B. 2003. Climate and the collapse of Maya civilization. Science 299:1731–35 [Google Scholar]
  69. Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U. 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–8 [Google Scholar]
  70. Hodell DA, Brenner M, Curtis JH. 2005a. Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat. Sci. Rev. 24:1413–27 [Google Scholar]
  71. Hodell DA, Brenner M, Curtis JH, Guilderson T. 2001. Solar forcing of drought frequency in the Maya lowlands. Science 292:1367–70 [Google Scholar]
  72. Hodell DA, Brenner M, Curtis JH, Medina-Gonzalez R, Can EIC. et al. 2005b. Climate change on the Yucatan Peninsula during the Little Ice Age. Quat. Res. 63:109–21 [Google Scholar]
  73. Hodell DA, Curtis JH, Brenner M. 1995. Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391–94 [Google Scholar]
  74. Houston SD, Inomata T. 2009. The Classic Maya London: Cambridge Univ. Press [Google Scholar]
  75. Houston SD, Stuart D. 1996. Of gods, glyphs, and kings: divinity and rulership among the Classic Maya. Antiquity 70:289–312 [Google Scholar]
  76. Iannone G. 2014. The Great Maya Droughts in Cultural Context Boulder: Univ. Press Colo. [Google Scholar]
  77. Iannone G, Houk BA, Schwake SA. 2016. Ritual, Violence, and the Fall of the Classic Maya Kings. Gainesville: Univ. Press Fla. [Google Scholar]
  78. Inomata T. 2008. Warfare and the Fall of a Fortified Center: Archaeological Investigations at Aguateca Nashville, TN: Vanderbilt Univ. Press [Google Scholar]
  79. Inomata T, Houston SD. 2001a. Royal Courts of the Ancient Maya 1 Theory, Comparison, and Synthesis Boulder, CO: Westview [Google Scholar]
  80. Inomata T, Houston SD. 2001b. Royal Courts of the Ancient Maya 2 Data and Case Studies Boulder, CO: Westview [Google Scholar]
  81. Jackson S, Stuart D. 2001. The aj k'uhun title: deciphering a Classic Maya term of rank. Anc. Mesoam. 12:217–28 [Google Scholar]
  82. Karmalkar AV, Bradley RS, Diaz HF. 2011. Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim. Dyn. 37:605–29 [Google Scholar]
  83. Keigwin L, Boyle E. 2000. Detecting Holocene changes in thermohaline circulation. PNAS 97:1343–46 [Google Scholar]
  84. Kennett DJ, Breitenbach SFM, Aquino VV, Asmerom Y, Awe J. et al. 2012. Development and disintegration of Maya political systems in response to climate change. Science 338:788–91 [Google Scholar]
  85. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S. 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45:RG2001 [Google Scholar]
  86. Lachniet MS. 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev. 28:412–32 [Google Scholar]
  87. Lachniet MS. 2015. Are aragonite stalagmites reliable paleoclimate proxies? Tests for oxygen isotope time-series replication and equilibrium. Geol. Soc. Am. Bull. 127:1521–33 [Google Scholar]
  88. Lachniet MS, Bernal JP, Asmerom Y, Polyak V, Piperno D. 2012. A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change. Geology 40:259–62 [Google Scholar]
  89. Lachniet MS, Burns SJ, Piperno DR, Asmerom Y, Polyak VJ. et al. 2004. A 1500-year El Niño/Southern Oscillation and rainfall history for the Isthmus of Panama from speleothem calcite. J. Geophys. Res. 109:D20117 [Google Scholar]
  90. Lachniet MS, Patterson WP. 2009. Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth Planet. Sci. Lett. 284:435–46 [Google Scholar]
  91. Lau WK, Kim KM. 2015. Robust Hadley Circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. PNAS 112:3630–35 [Google Scholar]
  92. Lentz DL, Dunning NP, Scarborough VL, Magee KS, Thompson KM. et al. 2014. Forests, fields, and the edge of sustainability at the ancient Maya city of Tikal. PNAS 111:18513–18 [Google Scholar]
  93. Leyden BW. 2002. Pollen evidence for climatic variability and cultural disturbance in the Maya lowlands. Anc. Mesoam. 13:85–101 [Google Scholar]
  94. Leyden BW, Brenner M, Dahlin BH. 1998. Cultural and climatic history of Coba, a lowland Maya city in Quintana Roo, Mexico. Quat. Res. 49:111–22 [Google Scholar]
  95. Lucero LJ. 2002. The collapse of the Classic Maya: a case for the role of water control. Am. Anthropol. 104:814–26 [Google Scholar]
  96. Luzzadder-Beach S, Beach TP, Dunning NP. 2012. Wetland fields as mirrors of drought and the Maya abandonment. PNAS 109:3646–51 [Google Scholar]
  97. Marcus J. 1992. Dynamic cycles of Mesoamerican states. Natl. Geogr. Res. Explor. 8:392–411 [Google Scholar]
  98. Martin S, Grube N. 2008. Chronicle of the Maya Kings and Queens New York: Thames & Hudson [Google Scholar]
  99. Masson MA, Freidel DA. 2012. An argument for Classic era Maya market exchange. J. Anthropol. Archaeol. 31:455–84 [Google Scholar]
  100. Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA. et al. 2004. Holocene climate variability. Quat. Res. 62:243–55 [Google Scholar]
  101. McAnany PA. 2010. Ancestral Maya Economies in Archaeological Perspective Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  102. McAnany PA, Yoffee N. 2009. Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  103. McCormick M, Büntgen U, Cane MA, Cook ER, Harper K. et al. 2012. Climate change during and after the Roman Empire: reconstructing the past from scientific and historical evidence. J. Interdiscip. Hist. 43:169–220 [Google Scholar]
  104. McIntosh RJ, Tainter JA, McIntosh SK. 2000. The Way the Wind Blows: Climate, History, and Human Action New York: Columbia Univ. Press [Google Scholar]
  105. McKillop H. 2002. Salt, White Gold of the Ancient Maya Gainesville: Univ. Press Fla. [Google Scholar]
  106. McNeil CL, Burney DA, Burney LP. 2010. Evidence disputing deforestation as the cause for the collapse of the ancient Maya polity of Copan, Honduras. PNAS 107:1017–22 [Google Scholar]
  107. Medina-Elizalde M, Burns SJ, Lea DW, Asmerom Y, von Gunten L. et al. 2010. High resolution stalagmite climate record from the Yucatán Peninsula spanning the Maya terminal classic period. Earth Planet. Sci. Lett. 298:255–62 [Google Scholar]
  108. Medina-Elizalde M, Rohling EJ. 2012. Collapse of Classic Maya civilization related to modest reduction in precipitation. Science 335:956–59 [Google Scholar]
  109. Miller ME, Berrin K, Martin S. 2004. Courtly Art of the Ancient Maya London: Thames & Hudson [Google Scholar]
  110. Moy CM, Seltzer GO, Rodbell DT, Anderson DM. 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162–65 [Google Scholar]
  111. Mueller AD, Islebe GA, Anselmetti FS, Ariztegui D, Brenner M. et al. 2010. Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38:523–26 [Google Scholar]
  112. New M, Lister D, Hulme M, Makin I. 2002. A high-resolution data set of surface climate over global land areas. Clim. Res. 21:1–25 [Google Scholar]
  113. Oglesby RJ, Sever TL, Saturno W, Erickson DJ, Srikishen J. 2010. Collapse of the Maya: Could deforestation have contributed?. J. Geophys. Res. 115:D12106 [Google Scholar]
  114. O'Mansky M, Dunning NP. 2004. Settlement and Late Classical political disintegration in the Petexbatún region, Guatemala. See Demarest et al. 2004 83–101
  115. Perry E, Velazquez-Oliman G, Marin L. 2002. The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula, Mexico. Int. Geol. Rev. 44:191–221 [Google Scholar]
  116. Pohl MD. 1994. Late Classic Maya fauna from settlement in the Copan Valley, Honduras: assertion of social status through animal consumption. The Copan Residential Zone GR Willey, RM Leventhal, AA Demarest, WLJ Fash 459–76 Cambridge, MA: Peabody Mus. Archaeol. Ethnol., Harvard Univ. [Google Scholar]
  117. Richards DA, Dorale JA. 2003. Uranium-series chronology and environmental applications of speleothems. Rev. Mineral. Geochem. 52:407–60 [Google Scholar]
  118. Rosenmeier MF, Brenner M, Hodell DA, Martin JB, Curtis JH, Binford MW. 2015. A model of the 4,000-year paleohydrology (δ18O) record from Lake Salpetén, Guatemala. Glob. Planet. Change. In press [Google Scholar]
  119. Rosenmeier MF, Hodell DA, Brenner M, Curtis JH, Guilderson TP. 2002a. A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Petén, Guatemala. Quat. Res. 57:183–90 [Google Scholar]
  120. Rosenmeier MF, Hodell DA, Brenner M, Curtis JH, Martin JB. et al. 2002b. Influence of vegetation change on watershed hydrology: implications for paleoclimatic interpretation of lacustrine δ18O records. J. Paleolimnol. 27:117–31 [Google Scholar]
  121. Rozanski K, Araguás-Araguás L, Gonfiantini R. 1993. Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records PK Swart, KC Lohmann, J Mckenzie, S Savin 1–36 Washington, DC: AGU [Google Scholar]
  122. Rue DJ. 1987. Early agriculture and early Postclassic Maya occupation in western Honduras. Nature 326:285–86 [Google Scholar]
  123. Rue DJ, Webster D, Traverse A. 2002. Late Holocene fire and agriculture in the Copan Valley, Honduras. Anc. Mesoam. 13:267–72 [Google Scholar]
  124. Sabloff JA, Andrews EW V. 1986. Late Lowland Maya Civilization: Classic to Postclassic Albuquerque: Univ. N.M. Press [Google Scholar]
  125. Sandweiss DH, Maasch KA, Anderson DG. 1999. Climate and culture: transitions in the mid-Holocene. Science 283:499–500 [Google Scholar]
  126. Scarborough VL, Clark JE. 2007. The Political Economy of Ancient Mesoamerica: Transformations During the Formative and Classic Periods Albuquerque: Univ. N.M. Press [Google Scholar]
  127. Scarborough VL, Dunning NP, Tankersley KB, Carr C, Weaver E. et al. 2012. Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. PNAS 109:12408–13 [Google Scholar]
  128. Scarborough VL, Valdez F Jr., Dunning N. 2003. Heterarchy, Political Economy, and the Ancient Maya: The Three Rivers Region of the East-Central Yucatán Peninsula. Tucson: Univ. Ariz. Press [Google Scholar]
  129. Schmidt MW, Spero HJ. 2011. Meridional shifts in the marine ITCZ and the tropical hydrologic cycle over the last three glacial cycles. Paleoceanography 26:PA1206 [Google Scholar]
  130. Sharer RJ, Traxler LP. 2006. The Ancient Maya Stanford, CA: Stanford Univ. Press [Google Scholar]
  131. Shindell DT, Faluvegi G, Miller RL, Schmidt GA, Hansen JE, Sun S. 2006. Solar and anthropogenic forcing of tropical hydrology. Geophys. Res. Lett. 33:L24706 [Google Scholar]
  132. Shopov Y, Ford D, Schwarcz H. 1994. Luminescent microbanding in speleothems: high-resolution chronology and paleoclimate. Geology 22:407–10 [Google Scholar]
  133. Staubwasser M, Sirocko F, Grootes P, Segl M. 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys. Res. Lett. 30:1425 [Google Scholar]
  134. Steinhilber F, Abreu JA, Beer J, Brunner I, Christl M. et al. 2012. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. PNAS 109:5967–71 [Google Scholar]
  135. Taylor MA, Enfield DB, Chen AA. 2002. Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J. Geophys. Res. 107:C93127 [Google Scholar]
  136. Taylor MA, Stephenson TS, Owino A, Chen AA, Campbell JD. 2011. Tropical gradient influences on Caribbean rainfall. J. Geophys. Res. 116:D00Q08 [Google Scholar]
  137. Trabucco A, Zomer RJ, Bossio DA, van Straaten O, Verchot LV. 2008. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126:81–97 [Google Scholar]
  138. Turner B, Sabloff JA. 2012. Classic Period collapse of the Central Maya Lowlands: insights about human–environment relationships for sustainability. PNAS 109:13908–14 [Google Scholar]
  139. Wagner G, Beer J, Masarik J, Muscheler R, Kubik PW. et al. 2001. Presence of the solar de Vries cycle (∼205 years) during the last ice age. Geophys. Res. Lett. 28:303–6 [Google Scholar]
  140. Wahl D, Byrne R, Anderson L. 2014. An 8700 year paleoclimate reconstruction from the southern Maya lowlands. Quat. Sci. Rev. 103:19–25 [Google Scholar]
  141. Wahl D, Byrne R, Schreiner T, Hansen R. 2006. Holocene vegetation change in the northern Peten and its implications for Maya prehistory. Quat. Res. 65:380–89 [Google Scholar]
  142. Wahl D, Estrada-Belli F, Anderson L. 2013. A 3400 year paleolimnological record of prehispanic human–environment interactions in the Holmul region of the southern Maya lowlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 379:17–31 [Google Scholar]
  143. Wang Y, Cheng H, Edwards RL, He Y, Kong X. et al. 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–57 [Google Scholar]
  144. Wanner H, Mercolli L, Grosjean M, Ritz S. 2015. Holocene climate variability and change; a data-based review. J. Geol. Soc. 172:254–63 [Google Scholar]
  145. Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M. 2011. Structure and origin of Holocene cold events. Quat. Sci. Rev. 30:3109–23 [Google Scholar]
  146. Webster JW, Brook GA, Railsback LB, Cheng H, Edwards RL. et al. 2007. Stalagmite evidence from Belize indicating significant droughts at the time of Preclassic Abandonment, the Maya Hiatus, and the Classic Maya collapse. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250:1–17 [Google Scholar]
  147. Weiss H, Bradley RS. 2001. What drives societal collapse?. Science 291:609–10 [Google Scholar]
  148. Willey GR, Culbert TP, Adams REW. 1967. Maya lowland ceramics: a report from the 1965 Guatemala City Conference. Am. Antiq. 32:289–325 [Google Scholar]
  149. Wright LE. 1997. Biological perspectives on the collapse of the Pasión Maya. Anc. Mesoam. 8:267–73 [Google Scholar]
  150. Wright LE. 2006. Diet, Health, and Status Among the Pasion Maya: A Reappraisal of the Collapse Nashville, TN: Vanderbilt Univ. Press [Google Scholar]
  151. Zhang P, Cheng H, Edwards RL, Chen F, Wang Y. et al. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322:940–42 [Google Scholar]
  152. Zhang R, Delworth TL. 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18:1853–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error