1932

Abstract

The origin of oxygenic photosynthesis was the most important metabolic innovation in Earth history. It allowed life to generate energy and reducing power directly from sunlight and water, freeing it from the limited resources of geochemically derived reductants. This greatly increased global primary productivity and restructured ecosystems. The release of O as an end product of water oxidation led to the rise of oxygen, which dramatically altered the redox state of Earth's atmosphere and oceans and permanently changed all major biogeochemical cycles. Furthermore, the biological availability of O allowed for the evolution of aerobic respiration and novel biosynthetic pathways, facilitating much of the richness we associate with modern biology, including complex multicellularity. Here we critically review and synthesize information from the geological and biological records for the origin and evolution of oxygenic photosynthesis. Data from both of these archives illustrate that this metabolism first appeared in early Paleoproterozoic time and, despite its biogeochemical prominence, is a relatively late invention in the context of our planet's history.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060313-054810
2016-06-29
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/earth/44/1/annurev-earth-060313-054810.html?itemId=/content/journals/10.1146/annurev-earth-060313-054810&mimeType=html&fmt=ahah

Literature Cited

  1. Allen JF, Martin W. 2007. Evolutionary biology: out of thin air. Nature 445:610–12 [Google Scholar]
  2. Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS. et al. 2009. Controls on development and diversity of Early Archean stromatolites. PNAS 106:9548–55 [Google Scholar]
  3. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B. et al. 2007. A whiff of oxygen before the great oxidation event?. Science 317:1903–6 [Google Scholar]
  4. Armstrong FA. 2008. Why did Nature choose manganese to make oxygen?. Philos. Trans. R. Soc. B 363:1263–70 [Google Scholar]
  5. Ashida H, Danchin A, Yokota A. 2005. Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism?. Res. Microbiol. 156:611–18 [Google Scholar]
  6. Bar-Even A, Noor E, Milo R. 2012. A survey of carbon fixation pathways through a quantitative lens. J. Exp. Bot. 63:2325–42 [Google Scholar]
  7. Bauwe H, Hagemann M, Kern R, Timm S. 2012. Photorespiration has a dual origin and manifold links to central metabolism. Curr. Opin. Plant Biol. 15:269–75 [Google Scholar]
  8. Beanland TJ. 1990. Evolutionary relationships between “Q-type” photosynthetic reaction centres: hypothesis-testing using parsimony. J. Theor. Biol. 145:535–45 [Google Scholar]
  9. Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ. et al. 2004. Dating the rise of atmospheric oxygen. Nature 427:117–20 [Google Scholar]
  10. Bekker A, Slack JF, Planavsky N, Krapez B, Hofmann A. et al. 2010. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105:467–508 [Google Scholar]
  11. Bender M, Sowers T, Labeyrie L. 1994. The Dole Effect and its variations during the last 130,000 years as measured in the Vostok Ice Core. Glob. Biogeochem. Cycles 8:363–76 [Google Scholar]
  12. Berg IA. 2011. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77:1925–36 [Google Scholar]
  13. Beukes NJ. 1987. Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, Southern Africa. Sediment. Geol. 54: 1–5 7:9–46 [Google Scholar]
  14. Beukes NJ, Dorland H, Gutzmer J, Nedachi M, Ohmoto H. 2002. Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30:491 [Google Scholar]
  15. Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson R. et al. 2006. Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data. Science 312:400–4 [Google Scholar]
  16. Blankenship RE. 1992. Origin and early evolution of photosynthesis. Photosynth. Res. 33:91–111 [Google Scholar]
  17. Blankenship RE. 2014. Molecular Mechanisms of Photosynthesis Chichester, UK: Wiley-Blackwell, 2nd ed..Comprehensive and detailed reference text on many aspects of phototrophy.
  18. Blankenship RE, Hartman H. 1998. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23:94–97 [Google Scholar]
  19. Borda MJ, Elsetinow AR, Schoonen MA, Strongin DR. 2001. Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology 1:283–88 [Google Scholar]
  20. Bosak T, Knoll AH, Petroff AP. 2013. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41:21–44 [Google Scholar]
  21. Boyd ES, Peters JW. 2013. New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 4:201 [Google Scholar]
  22. Brasier MD, Green OR, Jephcoat AP, Kleppe AK. 2002. Questioning the evidence for Earth's oldest fossils. Nature 416:76–81 [Google Scholar]
  23. Brasier MD, Green OR, Lindsay JF, McLoughlin N. 2005. Critical testing of Earth's oldest putative fossil assemblage from the ∼3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambr. Res. 140:55–102 [Google Scholar]
  24. Brocks JJ. 2011. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: live-oil escape or fingerprint of contamination?. Geochim. Cosmochim. Acta 75:3196–213 [Google Scholar]
  25. Brocks JJ, Logan GA, Buick R, Summons RE. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–36 [Google Scholar]
  26. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–70 [Google Scholar]
  27. Brocks JJ, Schaeffer P. 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochim. Cosmochim. Acta 72:1396–414 [Google Scholar]
  28. Brocks JJ, Summons RE. 2004. Sedimentary hydrocarbons, biomarkers for early life. Treatise on Geochemistry 8 Biogeochemistry WH Schlesinger 63–115 Oxford, UK: Pergamon [Google Scholar]
  29. Brudvig GW. 2008. Water oxidation chemistry of photosystem II. Philos. Trans. R. Soc. B 363:1211–18 [Google Scholar]
  30. Bryant DA, Costas AMG, Maresca JA, Chew AGM, Klatt CG. et al. 2007. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–26 [Google Scholar]
  31. Bryant DA, Frigaard NU. 2006. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14:488–96 [Google Scholar]
  32. Bryant DA, Liu Z. 2013. Green bacteria: insights into green bacterial evolution through genomic analyses. Adv. Bot. Res. 66:99–150Review of phototrophic members of Chlorobi, Chloroflexi, and Acidobacteria with a comprehensive analysis of the evolution of chlorophylls. [Google Scholar]
  33. Bryant DA, Liu Z, Li T, Zhao F, Costas AMG. et al. 2011. Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. Adv. Photosynth. Respir. 33:47–102 [Google Scholar]
  34. Buick R. 1990. Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from a 3500 M.Y. old chert-barite unit at North Pole, Western Australia. PALAIOS 5:441 [Google Scholar]
  35. Butterfield NJ, Knoll AH, Swett K. 1990. A bangiophyte red alga from the Proterozoic of arctic Canada. Science 250:104–7 [Google Scholar]
  36. Calvert SE, Pedersen TF. 1996. Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales. Econ. Geol. 91:36–47 [Google Scholar]
  37. Cameron EM. 1982. Sulphate and sulphate reduction in early Precambrian oceans. Nature 296:145–48 [Google Scholar]
  38. Cardona T. 2015. A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth. Res. 126:111–34 [Google Scholar]
  39. Cardona T, Murray JW, Rutherford AW. 2015. Origin and evolution of water oxidation before the last common ancestor of the Cyanobacteria. Mol. Biol. Evol. 32:1310–28 [Google Scholar]
  40. Cerling TE, Harris JM, MacFadden BJ, Leakey MG. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–58 [Google Scholar]
  41. Chew AGM, Bryant DA. 2007. Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu. Rev. Microbiol. 61:113–29 [Google Scholar]
  42. Christensen PR, Morris RV, Lane MD, Bandfield JL, Malin MC. 2001. Global mapping of Martian hematite mineral deposits: remnants of water driven processes on early Mars. J. Geophys. Res. 106:E1023873–85 [Google Scholar]
  43. Cloud PE. 1968. Atmospheric and hydrospheric evolution on the primitive earth: Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. Science 160:729–36 [Google Scholar]
  44. Coates JD, Achenbach LA. 2004. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat. Rev. Microbiol. 2:569–80 [Google Scholar]
  45. Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ. et al. 2013. Atmospheric oxygenation three billion years ago. Nature 501:535–38 [Google Scholar]
  46. Czaja AD, Johnson CM, Beard BL, Roden EE. 2013. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363:192–203 [Google Scholar]
  47. Dahl TW, Chappaz A, Fitts JP, Lyons TW. 2013. Molybdenum reduction in a sulfidic lake: evidence from X-ray absorption fine-structure spectroscopy and implications for the Mo paleoproxy. Geochim. Cosmochim. Acta 103:213–31 [Google Scholar]
  48. Davenport C, Ussery DW, Tümmler B. 2010. Comparative genomics of green sulfur bacteria. Photosynth. Res. 104:137–52 [Google Scholar]
  49. Delwiche C. 1999. Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 154:S164–77 [Google Scholar]
  50. Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA. et al. 2013. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2:e01102First description of Melainabacteria as a sister group to known phototrophic members of Cyanobacteria from metagenomic data. [Google Scholar]
  51. DiBiase RA, Limaye AB, Scheingross JS, Fischer WW, Lamb MP. 2013. Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res. Planets 118:1285–302 [Google Scholar]
  52. Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A. 2001. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. PNAS 98:2170–75 [Google Scholar]
  53. Dojka MA, Harris JK, Pace NR. 2000. Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl. Environ. Microbiol. 66:1617–21 [Google Scholar]
  54. Doolittle RF. 1986. Of Urfs and Orfs: A Primer on How to Analyze Derived Amino Acid Sequences Mill Valley, CA: Univ. Sci. Books
  55. Doughty DM, Hunter RC, Summons RE, Newman DK. 2009. 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implications. Geobiology 7:524–32 [Google Scholar]
  56. Eigenbrode JL, Freeman KH, Summons RE. 2008. Methylhopane biomarker hydrocarbons in Hamersley Province sediments provide evidence for Neoarchean aerobiosis. Earth Planet. Sci. Lett. 273:323–31 [Google Scholar]
  57. El Tabakh M, Grey K, Pirajno F, Schreiber BC. 1999. Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerrida basin, Western Australia: origin and significance. Geology 27:871 [Google Scholar]
  58. Ellis RJ. 1979. The most abundant protein in the world. Trends Biochem. Sci. 4:241–44 [Google Scholar]
  59. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S. et al. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–48 [Google Scholar]
  60. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA. et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354–60 [Google Scholar]
  61. Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58Discovery of mass-independent fractionation of sulfur isotopes, providing key constraints on the composition of the early atmosphere. [Google Scholar]
  62. Farquhar J, Thiemens MH, Jackson T. 1998. Atmosphere-surface interactions on Mars: δ17O measurements of carbonate from ALH 84001. Science 280:1580–82 [Google Scholar]
  63. Farquhar J, Wing BA. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213:1–13 [Google Scholar]
  64. Farquhar J, Zerkle AL, Bekker A. 2011. Geological constraints on the origin of oxygenic photosynthesis. Photosynth. Res. 107:11–36 [Google Scholar]
  65. Field C, Behrenfeld M, Randerson J, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40 [Google Scholar]
  66. Fischer WW. 2008. Biogeochemistry: life before the rise of oxygen. Nature 455:1051–52 [Google Scholar]
  67. Fischer WW, Fike DA, Johnson JE, Raub TD, Guan Y. et al. 2014. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. PNAS 111:5468–73 [Google Scholar]
  68. Fischer WW, Hemp J, Johnson JE. 2015. Manganese and the evolution of photosynthesis. Orig. Life Evol. Biosph. 45:351–57 [Google Scholar]
  69. Fischer WW, Knoll AH. 2009. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation. Geol. Soc. Am. Bull. 121:222–35 [Google Scholar]
  70. Fischer WW, Pearson A. 2007. Hypotheses for the origin and early evolution of triterpenoid cyclases. Geobiology 5:19–34 [Google Scholar]
  71. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA. et al. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. PNAS 112:5915–20State-of-the-art study in Archean organic geochemistry illustrating that hydrocarbons in Archean samples reflect contamination. [Google Scholar]
  72. Frigaard NU, Bryant DA. 2006. Chlorosomes: antenna organelles in photosynthetic green bacteria. Complex Intracellular Structures in Prokaryotes JM Shively 79–114 Berlin: Springer [Google Scholar]
  73. Frimmel HE. 2005. Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth-Sci. Rev. 70:1–46 [Google Scholar]
  74. Garcia Costas AM, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA. 2012a. Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. Environ. Microbiol. 14:177–90 [Google Scholar]
  75. Garcia Costas AM, Tsukatani Y, Rijpstra WIC, Schouten S, Welander PV. et al. 2012b. Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum.”. J. Bacteriol. 194:1158–68 [Google Scholar]
  76. Garrels RM, Perry EA, Mackenzie FT. 1973. Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Econ. Geol. 68:1173–79 [Google Scholar]
  77. Golubic S, Seong-Joo L. 1999. Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur. J. Phycol. 34:339–48 [Google Scholar]
  78. Grandstaff DE. 1976. A kinetic study of the dissolution of uraninite. Econ. Geol. 71:1493–506 [Google Scholar]
  79. Grandstaff DE. 1980. Origin of uraniferous conglomerates at Elliot Lake, Canada and Witwatersrand, South Africa: implications for oxygen in the Precambrian atmosphere. Precambr. Res. 13:1–26 [Google Scholar]
  80. Granick S. 1957. Speculations on the origins and evolution of photosynthesis. Ann. N.Y. Acad. Sci. 69:292–308 [Google Scholar]
  81. Green BR, Gantt E. 2000. Is photosynthesis really derived from purple bacteria?. J. Phycol. 36:983–85 [Google Scholar]
  82. Green JW, Knoll AH, Golubic S, Swett K. 1987. Paleobiology of distinctive benthic microfossils from the upper Proterozoic Limestone-Dolomite “Series,” central East Greenland. Am. J. Bot. 74:928–40 [Google Scholar]
  83. Grostern A, Alvarez-Cohen L. 2013. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ. Microbiol. 15:3040–53 [Google Scholar]
  84. Grotjohann I, Jolley C, Fromme P. 2004. Evolution of photosynthesis and oxygen evolution: implications from the structural comparison of photosystems I and II. Phys. Chem. Chem. Phys. 6:4743–53 [Google Scholar]
  85. Grotzinger JP. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. SEPM Spec. Publ. 44:79–106 [Google Scholar]
  86. Grotzinger JP. 2014. Habitability, taphonomy, and the search for organic carbon on Mars. Science 343:386–87 [Google Scholar]
  87. Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J. et al. 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350. doi: 10.1126/science.aac7575
  88. Grotzinger JP, Knoll AH. 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27:313–58 [Google Scholar]
  89. Grouzdev DS, Kuznetsov BB, Keppen OI, Krasil'nikova EN, Lebedeva NV, Ivanovsky RN. 2015. Reconstruction of bacteriochlorophyll biosynthesis pathways in the filamentous anoxygenic phototrophic bacterium Oscillochloris trichoides DG-6 and evolution of anoxygenic phototrophs of the order Chloroflexales. Microbiology 161:120–30 [Google Scholar]
  90. Guo Q, Strauss H, Kaufman AJ, Schröder S. 2009. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402 [Google Scholar]
  91. Guy BM, Ono S, Gutzmer J, Kaufman AJ, Lin Y. 2012. A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambr. Res. 216–19:208–31 [Google Scholar]
  92. Halevy I. 2013. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. PNAS 110:17644–49 [Google Scholar]
  93. Halevy I, Fischer WW, Eiler JM. 2011. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4°C in a near-surface aqueous environment. PNAS 108:16895–99 [Google Scholar]
  94. Haqq-Misra J, Kasting JF, Lee S. 2011. Availability of O2 and H2O2 on pre-photosynthetic Earth. Astrobiology 11:293–302 [Google Scholar]
  95. Hartman H. 1984. The evolution of photosynthesis and microbial mats: a speculation on banded iron formations. Microbial Mats: Stromatolites Y Cohen, RW Castenholz, HO Halvorson 449–53 New York: Alan Liss [Google Scholar]
  96. Havig JR, McCormick ML, Hamilton TL, Kump LR. 2015. The behavior of biologically important trace elements across the oxic/euxinic transition of meromictic Fayetteville Green Lake, New York, USA. Geochim. Cosmochim. Acta 165:389–406 [Google Scholar]
  97. Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM. et al. 2009. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:64–67 [Google Scholar]
  98. Heinnickel M, Golbeck JH. 2007. Heliobacterial photosynthesis. Photosynth. Res. 92:35–53 [Google Scholar]
  99. Helz GR, Bura-Nakić E, Mikac N, Ciglenečki I. 2011. New model for molybdenum behavior in euxinic waters. Chem. Geol. 284:323–32 [Google Scholar]
  100. Hemp J, Ward LM, Pace LA, Fischer WW. 2015. Draft genome sequence of Ardenticatena maritima 110S, a thermophilic nitrate- and iron-reducing member of the Chloroflexi class Ardenticatenia. Genome Announc. 3:e01347–15 [Google Scholar]
  101. Hoffman PF. 2013. The Great Oxidation and a Siderian snowball Earth: MIF-S based correlation of Paleoproterozoic glacial epochs. Chem. Geol. 362:142–56 [Google Scholar]
  102. Hofmann HJ. 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleontol. 50:1040–73 [Google Scholar]
  103. Hohmann-Marriott MF, Blankenship RE. 2011. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62:515–48 [Google Scholar]
  104. Holland HD. 1984. The Chemical Evolution of the Atmosphere and Oceans Princeton, NJ: Princeton Univ. Press
  105. Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I. et al. 2013. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1:22 [Google Scholar]
  106. Hurowitz JA, Fischer WW, Tosca NJ, Milliken RE. 2010. Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3:323–26 [Google Scholar]
  107. Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KVP. 2001. Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J. Mol. Evol. 52:333–41 [Google Scholar]
  108. Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki KI. 2010. Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int. J. Syst. Evol. Microbiol. 60:1376–82 [Google Scholar]
  109. Imhoff JF. 2014a. Biology of green sulfur bacteria. eLS doi: 10.1002/9780470015902.a0000458.pub2
  110. Imhoff JF. 2014b. The family Chlorobiaceae. The Prokaryotes: Other Major Lineages of Bacteria and Archaea501–14 Berlin: Springer-Verlag [Google Scholar]
  111. Johnson JE, Gerpheide A, Lamb MP, Fischer WW. 2014. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126:813–30First geological evidence for Mn cycling prior to the rise of oxygen. [Google Scholar]
  112. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW. 2013a. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. PNAS 110:11238–43 [Google Scholar]
  113. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW. 2013b. Reply to Jones and Crowe: Correcting mistaken views of sedimentary geology, Mn-oxidation rates, and molecular clocks. PNAS 110:E4119–20 [Google Scholar]
  114. Kalhoefer D, Thole S, Voget S, Lehmann R, Liesegang H. et al. 2011. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics 12:324 [Google Scholar]
  115. Kappler A, Pasquero C, Konhauser KO, Newman DK. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865 [Google Scholar]
  116. Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A. et al. 2014. Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol. Microbiol. 93:1066–78 [Google Scholar]
  117. Keeling PJ. 2010. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. B 365:729–48 [Google Scholar]
  118. Kharecha P, Kasting JF, Siefert JL. 2005. A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3:53–76 [Google Scholar]
  119. Kiang NY, Siefert J, Govindjee, Blankenship RE. 2007. Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7:222–51 [Google Scholar]
  120. Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J. et al. 2000. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. PNAS 97:1400–5 [Google Scholar]
  121. Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N. et al. 2011. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J. 5:1262–78 [Google Scholar]
  122. Knoll AH. 2003. The geological consequences of evolution. Geobiology 1:3–14 [Google Scholar]
  123. Knoll AH, Golubic S. 1992. Proterozoic and living cyanobacteria. Early Organic Evolution M Schidlowski, S Golubic, MM Kimberley, DM McKirdy Sr., PA Trudinger 450–62 Berlin: Springer [Google Scholar]
  124. Knoll AH, Javaux EJ, Hewitt D, Cohen P. 2006. Eukaryotic organisms in Proterozoic oceans. Philos. Trans. R. Soc. B 361:1023–38 [Google Scholar]
  125. Knoll AH, Summons RE, Waldbauer JR. 2007. The geological succession of primary producers in the oceans. Evolution of Primary Producers in the Sea PG Falkowski, AH Knoll 133–68 Amsterdam: Elsevier [Google Scholar]
  126. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ. 2005. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS 102:11131–36 [Google Scholar]
  127. Kramer DM, Nitschke W, Cooley JW. 2008. The cytochrome bc1 and related bc complexes: the Rieske/cytochrome b complex as the functional core of a central electron/proton transfer complex. Adv. Photosynth. Respir. 28:451–73 [Google Scholar]
  128. Leshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P. et al. 2013. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science 341:1238937 [Google Scholar]
  129. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. PNAS 102:11070–75 [Google Scholar]
  130. Liang MC, Hartman H, Kopp RE, Kirschvink JL, Yung YL. 2006. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis. PNAS 103:18896–99 [Google Scholar]
  131. Liebenberg WR. 1955. The occurrence and origin of gold and radioactive minerals in the Witwatersrand System, the Dominion Reef, the Ventersdorp Contact Reef and the Black Reef. Geol. Soc. S. Afr. Trans. 58:101–354 [Google Scholar]
  132. Liu Z, Frigaard NU, Vogl K, Iino T, Ohkuma M. et al. 2012a. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi. Front. Microbiol. 3:185 [Google Scholar]
  133. Liu Z, Klatt CG, Ludwig M, Rusch DB, Jensen SI. et al. 2012b. Candidatus Thermochlorobacter aerophilum”: an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J. 6:1869–82 [Google Scholar]
  134. Lockhart PJ, Larkum AW, Steel M, Waddell PJ, Penny D. 1996. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. PNAS 93:1930–34 [Google Scholar]
  135. Loew O. 1900. A new enzyme of general occurrence in organisms. Science 11:701–2 [Google Scholar]
  136. Lu Z, Chang YC, Yin QZ, Ng CY, Jackson WM. 2014. Evidence for direct molecular oxygen production in CO2 photodissociation. Science 346:61–64 [Google Scholar]
  137. Luther GW. 2010. The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquat. Geochem. 16:395–420 [Google Scholar]
  138. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15 [Google Scholar]
  139. Madigan MT, Jung DO. 2008. An overview of purple bacteria: systematics, physiology, and habitats. Adv. Photosynth. Respir. 28:1–15 [Google Scholar]
  140. Marshall CP, Emry JR, Marshall AO. 2011. Haematite pseudomicrofossils present in the 3.5-billion-year-old Apex Chert. Nat. Geosci. 4:240–43 [Google Scholar]
  141. Marshall CR, Valentine JW. 2010. The importance of preadapted genomes in the origin of the animal bodyplans and the Cambrian explosion. Evol. Int. J. Org. Evol. 64:1189–201 [Google Scholar]
  142. McEvoy JP, Brudvig GW. 2006. Water-splitting chemistry of photosystem II. Chem. Rev. 106:4455–83 [Google Scholar]
  143. McLennan SM, Bell JF III, Calvin WM, Christensen PR, Clark BC. et al. 2005. Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240:95–121 [Google Scholar]
  144. Mereschkowsky C. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralblatt 25:593–604 [Google Scholar]
  145. Mix LJ, Haig D, Cavanaugh CM. 2005. Phylogenetic analyses of the core antenna domain: investigating the origin of photosystem I. J. Mol. Evol. 60:153–63 [Google Scholar]
  146. Moënne-Loccoz P, Robert B, Ikegami I, Lutz M. 1990. Structure of the primary electron donor in photosystem I: a resonance Raman study. Biochemistry 29:4740–46 [Google Scholar]
  147. Morford JL, Martin WR, Carney CM. 2012. Rhenium geochemical cycling: insights from continental margins. Chem. Geol. 324–25:73–86 [Google Scholar]
  148. Morgan JJ. 2005. Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim. Cosmochim. Acta 69:35–48 [Google Scholar]
  149. Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A. et al. 2006. The cyanobacterial genome core and the origin of photosynthesis. PNAS 103:13126–31 [Google Scholar]
  150. Nagashima S, Nagashima KVP. 2013. Comparison of photosynthesis gene clusters retrieved from total genome sequences of purple bacteria. Adv. Bot. Res. 66:151–78 [Google Scholar]
  151. Nägler TF, Neubert N, Böttcher ME, Dellwig O. 2011. Molybdenum isotope fractionation in pelagic euxinia: evidence from the modern Black and Baltic Seas. Chem. Geol. 289:1–11 [Google Scholar]
  152. Nakayama T, Kamikawa R, Tanifuji G, Kashiyama Y, Ohkouchi N. et al. 2014. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. PNAS 111:11407–12 [Google Scholar]
  153. Nitschke W, Rutherford AW. 1991. Photosynthetic reaction centres: variations on a common structural theme?. Trends Biochem. Sci. 16:241–45 [Google Scholar]
  154. Olson JM. 1970. The evolution of photosynthesis. Science 168:438–46 [Google Scholar]
  155. Overmann J. 2008. Green Nonsulfur Bacteria Chichester, UK: Wiley
  156. Overmann J, Garcia-Pichel F. 2013. The phototrophic way of life. The Prokaryotes: Prokaryotic Communities and Ecophysiology E Rosenberg, EF DeLong, S Lory, E Stackebrandt, F Thompson 203–57 Berlin: Springer [Google Scholar]
  157. Papineau D, Mojzsis SJ. 2006. Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4:227–38 [Google Scholar]
  158. Papineau D, Mojzsis SJ, Schmitt AK. 2007. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255:188–212 [Google Scholar]
  159. Paris G, Adkins JF, Sessions AL, Webb SM, Fischer WW. 2014. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies. Science 346:739–41 [Google Scholar]
  160. Pavlov AA, Kasting JF. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41 [Google Scholar]
  161. Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S. 2012. Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ. Microbiol. 14:2661–72 [Google Scholar]
  162. Planavsky NJ, Asael D, Hofmann A, Reinhard CT. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature 7:283–86 [Google Scholar]
  163. Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY. et al. 2012. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ. Microbiol. 15:1759–71 [Google Scholar]
  164. Prasad N, Roscoe SM. 1996. Evidence of anoxic to oxic atmospheric change during 2.45–2.22 Ga from lower and upper sub-Huronian paleosols, Canada. CATENA 27:105–21 [Google Scholar]
  165. Pufahl PK, Hiatt EE. 2012. Oxygenation of the Earth's atmosphere-ocean system: a review of physical and chemical sedimentologic responses. Mar. Pet. Geol. 32:1–20 [Google Scholar]
  166. Ramdohr P. 1958. New observations on the ores of the Witwatersrand in South Africa and their genetic significance. Geol. Soc. S. Afr. Trans. 61:1–50 [Google Scholar]
  167. Rappaport F, Diner BA. 2008. Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord. Chem. Rev. 252:259–72 [Google Scholar]
  168. Rasmussen B, Bekker A, Fletcher IR. 2013. Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382:173–80 [Google Scholar]
  169. Rasmussen B, Buick R. 1999. Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115 [Google Scholar]
  170. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–4 [Google Scholar]
  171. Raymond J, Blankenship RE. 2004. Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2:199–203 [Google Scholar]
  172. Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE. 2002. Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–20 [Google Scholar]
  173. Refojo PN, Ribeiro MA, Calisto F, Teixeira M, Pereira MM. 2013. Structural composition of alternative complex III: variations on the same theme. Biochim. Biophys. Acta 1827:1378–82 [Google Scholar]
  174. Reinfelder JR, Kraepiel AM, Morel FM. 2000. Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–99 [Google Scholar]
  175. Ricci JN, Coleman ML, Welander PV, Sessions AL, Summons RE. et al. 2013. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. ISME J. 8:675–84 [Google Scholar]
  176. Ricci JN, Michel AJ, Newman DK. 2015. Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria. Geobiology 13:267–77 [Google Scholar]
  177. Riding R. 1982. Cyanophyte calcification and changes in ocean chemistry. Nature 299:814–15 [Google Scholar]
  178. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ. et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–37 [Google Scholar]
  179. Ronov AB, Migdisov AA. 1971. Geochemical history of the crystalline basement and the sedimentary cover of the Russian and north American platforms. Sedimentology 16:137–85 [Google Scholar]
  180. Roscoe SM. 1969. Huronian rocks and uraniferous conglomerates in the Canadian Shield Pap. 68-40, Geol. Surv. Can., Ottowa Important early work describing foundational geological evidence for the rise of atmospheric oxygen.
  181. Roscoe SM. 1973. The Huronian Supergroup, a Paleoaphebian succession showing evidence of atmospheric evolution. Geol. Assoc. Can. Spec. Pap. 12:31–38 [Google Scholar]
  182. Rosing MT, Frei R. 2004. U-rich Archaean sea-floor sediments from Greenland—indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217:237–44 [Google Scholar]
  183. Rutherford AW, Boussac A, Faller P. 2004. The stable tyrosyl radical in photosystem II: Why D?. Biochim. Biophys. Acta 1655:222–30 [Google Scholar]
  184. Rutherford AW, Faller P. 2003. Photosystem II: evolutionary perspectives. Philos. Trans. R. Soc. B 358:245–53Early and important view of the evolution of photosystem II from biochemical data. [Google Scholar]
  185. Rutherford AW, Osyczka A, Rappaport F. 2012. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett. 586:603–16 [Google Scholar]
  186. Rye R, Holland HD. 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298:621–72 [Google Scholar]
  187. Sadekar S, Raymond J, Blankenship RE. 2006. Conservation of distantly related membrane proteins: Photosynthetic reaction centers share a common structural core. Mol. Biol. Evol. 23:2001–7Illustrated key constraints in the evolutionary history of the type I and type II reaction centers from comparative structural biology. [Google Scholar]
  188. Sage RF, Sage TL, Kocacinar F. 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63:19–47 [Google Scholar]
  189. Sattley WM, Blankenship RE. 2010. Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynth. Res. 104:113–22 [Google Scholar]
  190. Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM. et al. 2008. The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J. Bacteriol. 190:4687–96 [Google Scholar]
  191. Schoepp-Cothenet B, Lieutaud C, Baymann F, Verméglio A, Friedrich T. et al. 2009. Menaquinone as pool quinone in a purple bacterium. PNAS 106:8549–54 [Google Scholar]
  192. Schopf JW. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. J. Paleontol. 42:651–88 [Google Scholar]
  193. Schopf JW. 2006. Fossil evidence of Archaean life. Philos. Trans. R. Soc. B. 361:869–85 [Google Scholar]
  194. Schopf JW, Packer BM. 1987. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73 [Google Scholar]
  195. Schröder S, Bedorf D, Beukes NJ, Gutzmer J. 2011. From BIF to red beds: sedimentology and sequence stratigraphy of the Paleoproterozoic Koegas Subgroup (South Africa). Sediment. Geol. 236:25–44 [Google Scholar]
  196. Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P, Krauss N. 1998. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J. Mol. Biol. 280:297–314 [Google Scholar]
  197. Sekine Y, Tajika E, Tada R, Hirai T, Goto KT. 2011. Manganese enrichment in the Gowganda Formation of the Huronian Supergroup: a highly oxidizing shallow-marine environment after the last Huronian glaciation. Earth Planet. Sci. Lett. 307:201–10 [Google Scholar]
  198. Severinghaus JP, Beaudette R, Headly MA, Taylor K, Brook EJ. 2009. Oxygen-18 of O2 records the impact of abrupt climate change on the terrestrial biosphere. Science 324:1431–34 [Google Scholar]
  199. Shaheen R, Niles PB, Chong K, Corrigan CM, Thiemens MH. 2015. Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. PNAS 112:336–41 [Google Scholar]
  200. Shepard RN, Sumner DY. 2010. Undirected motility of filamentous cyanobacteria produces reticulate mats. Geobiology 8:179–90 [Google Scholar]
  201. Shi T, Bibby TS, Jiang L, Irwin AJ, Falkowski PG. 2005. Protein interactions limit the rate of evolution of photosynthetic genes in cyanobacteria. Mol. Biol. Evol. 22:2179–89 [Google Scholar]
  202. Shih PM, Matzke NJ. 2013. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. PNAS 110:12355–60 [Google Scholar]
  203. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP. et al. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. PNAS 110:1053–58Broad genomic sequencing effort of Cyanobacteria taxa highlighted convergence of a number of evolutionary characters. [Google Scholar]
  204. Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ. et al. 2014. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol. Evol. 6:1031–45With additional genomic data provided a reclassification of the Cyanobacteria phylum to include deep-branching nonphototrophic close relatives. [Google Scholar]
  205. Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P. 2015. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ 3:e968 [Google Scholar]
  206. Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. 2013. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol. Evol. 5:200–16 [Google Scholar]
  207. Stamps BW, Corsetti FA, Spear JR, Stevenson BS. 2014. Draft genome of a novel Chlorobi member assembled by tetranucleotide binning of a hot spring metagenome. Genome Announc. 2:e00897–14 [Google Scholar]
  208. Stefurak EJT, Lowe DR, Zentner D, Fischer WW. 2014. Primary silica granules—a new mode of Paleoarchean sedimentation. Geology 42:283–86 [Google Scholar]
  209. Summons RE, Jahnke LL, Hope JM, Logan GA. 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–57 [Google Scholar]
  210. Sumner DY. 1997. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. Am. J. Sci. 297:455–87 [Google Scholar]
  211. Sumner DY, Grotzinger JP. 2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology 51:1273–99 [Google Scholar]
  212. Swingley WD, Blankenship RE, Raymond J. 2008. Evolutionary relationships among purple photosynthetic bacteria and the origin of proteobacterial photosynthetic systems. Adv. Photosynth. Respir. 28:17–29 [Google Scholar]
  213. Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. 2007. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev. 71:576–99 [Google Scholar]
  214. Tamura N, Cheniae G. 1987. Photoactivation of the water-oxidizing complex in photosystem II membranes depleted of Mn and extrinsic proteins. I. Biochemical and kinetic characterization. Biochim. Biophys. Acta 890:179–94 [Google Scholar]
  215. Tank M, Bryant DA. 2015. Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int. J. Syst. Evol. Microbiol. 65:1426–30 [Google Scholar]
  216. Tcherkez GGB, Farquhar GD, Andrews TJ. 2006. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. PNAS 103:7246–51 [Google Scholar]
  217. Tice MM, Lowe DR. 2004. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–52 [Google Scholar]
  218. Tice MM, Lowe DR. 2006. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34:37–40 [Google Scholar]
  219. Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA. 2010. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94 [Google Scholar]
  220. Ueno Y, Johnson MS, Danielache SO, Eskebjerg C, Pandey A, Yoshida N. 2009. Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox. PNAS 106:14784–89 [Google Scholar]
  221. Umena Y, Kawakami K, Shen JR, Kamiya N. 2011. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60 [Google Scholar]
  222. Utsunomiya S, Murakami T, Nakada M. 2003. Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics. Geochim. Cosmochim. Acta 67:213–21 [Google Scholar]
  223. van der Lelie D, Taghavi S, McCorkle SM, Li LL, Malfatti SA. et al. 2012. The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLOS ONE 7:e36740 [Google Scholar]
  224. Van Niel CB. 1944. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol. Rev. 8:1–118 [Google Scholar]
  225. Veizer J. 1978. Secular variations in the composition of sedimentary carbonate rocks. II. Fe, Mn, Ca, Mg, Si and minor constituents. Precambr. Res. 6:381–413 [Google Scholar]
  226. Veizer J, Hoefs J, Lowe DR, Thurston PC. 1989. Geochemistry of Precambrian carbonates. II. Archean greenstone belts and Archean sea water. Geochim. Cosmochim. Acta 53:859–71 [Google Scholar]
  227. Waldbauer JR, Sherman LS, Sumner DY. 2009. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambr. 169:28–47 [Google Scholar]
  228. Walker JC. 1987. Was the Archaean biosphere upside down?. Nature 329:710–12 [Google Scholar]
  229. Walker JC, Brimblecombe P. 1985. Iron and sulfur in the pre-biologic ocean. Precambr. Res. 28:205–22 [Google Scholar]
  230. Ward LM, Hemp J, Pace LA, Fischer WW. 2015a. Draft genome sequence of Herpetosiphon geysericola GC-42, a nonphototrophic member of the Chloroflexi class Chloroflexia. Genome Announc. 3:e01352–15 [Google Scholar]
  231. Ward LM, Kirschvink JL, Fischer WW. 2015b. Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig. Life Evol. Biospheres 46:51–65 [Google Scholar]
  232. Welander PV, Coleman ML, Sessions AL, Summons RE, Newman DK. 2010. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. PNAS 107:8537–42 [Google Scholar]
  233. Whitehill AR, Xie C, Hu X, Xie D. 2013. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth's atmosphere. PNAS 110:17697–702 [Google Scholar]
  234. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–36 [Google Scholar]
  235. Williamson MA, Rimstidt JD. 1994. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 58:5443–54 [Google Scholar]
  236. Williford KH, Van Kranendonk MJ, Ushikubo T, Kozdon R, Valley JW. 2011. Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim. Cosmochim. Acta 75:5686–705 [Google Scholar]
  237. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE. 2000. Molecular evidence for the early evolution of photosynthesis. Science 289:1724–30 [Google Scholar]
  238. Yano J, Yachandra V. 2014. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114:4175–205 [Google Scholar]
  239. Yanyushin MF, del Rosario MC, Brune DC, Blankenship RE. 2005. New class of bacterial membrane oxidoreductases. Biochemistry 44:10037–45 [Google Scholar]
  240. Zahnle K, Claire M, Catling D. 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4:271–83 [Google Scholar]
  241. Zahnle K, Haberle RM, Catling DC, Kasting JF. 2008. Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res. 113:E11004 [Google Scholar]
  242. Zeng Y, Feng F, Medová H, Dean J, Koblížek M. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. PNAS 111:7795–800 [Google Scholar]
  243. Zhang Y, Chen M, Zhou BB, Jermiin LS, Larkum AWD. 2007. Evolution of the inner light-harvesting antenna protein family of cyanobacteria, algae, and plants. J. Mol. Evol. 64:321–31 [Google Scholar]
  244. Zhang Y, Golubic S. 1987. Endolithic microfossils (cyanophyta) from early Proterozoic stromatolites, Hebei, China. Acta Micropaleontol. Sin. 4:1–12 [Google Scholar]
  245. Zubay G. 2000. Origins of Life: On Earth and in the Cosmos San Diego, CA: Academic, 2nd ed..
/content/journals/10.1146/annurev-earth-060313-054810
Loading
/content/journals/10.1146/annurev-earth-060313-054810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error