The history of life on Earth is punctuated by a series of mass extinction episodes that vary widely in their magnitude, duration, and cause. Biomarkers are a powerful tool for the reconstruction of historical environmental conditions and can therefore provide insights into the cause and responses to ancient extinction events. In examining the five largest mass extinctions in the geological record, investigators have used biomarkers to elucidate key processes such as eutrophy, euxinia, ocean acidification, changes in hydrological balance, and changes in atmospheric CO. By using these molecular fossils to understand how Earth and its ecosystems have responded to unusual environmental activity during these extinctions, models can be made to predict how Earth will respond to future changes in its climate.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aboussalam ZS, Becker RT. 2001. Prospects for an upper Givetian substage. Foss. Rec. 4:83–99 [Google Scholar]
  2. Alegret L, Thomas E. 2005. Cretaceous/Paleogene boundary bathyal paleo-environments in the central North Pacific (DSDP Site 465), the Northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: the benthic foraminiferal record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224:53–82 [Google Scholar]
  3. Algeo T, Henderson CM, Ellwood B, Rowe H, Elswick E. et al. 2012. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geol. Soc. Am. Bull. 124:1424–48 [Google Scholar]
  4. Algeo TJ, Scheckler SE. 2010. Land plant evolution and weathering rate changes in the Devonian. J. Earth Sci. 21:75–78 [Google Scholar]
  5. Algeo TJ, Twitchett RJ. 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38:1023–26 [Google Scholar]
  6. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT. et al. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100 [Google Scholar]
  7. Arinobu T, Ishiwatari R, Kaiho K, Lamolda MA. 1999. Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous–Tertiary boundary at Caravaca, Spain. Geology 27:723–26 [Google Scholar]
  8. Audino M, Grice K, Alexander R, Kagi RI. 2002. Macrocyclic alkanes in crude oils from the algaenan of Botryococcus braunii. Org. Geochem 33:979–84 [Google Scholar]
  9. Bambach RK. 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55 [Google Scholar]
  10. Barattolo F, Romano R. 2005. The genus Linoporella (Steinmann, 1899) and its type-species Linoporella capriotica (Oppenheim, 1889) from the early Cretaceous of Capri. Boll. Soc. Paleontol. Ital. 44:237–54 [Google Scholar]
  11. Becker L, Bada JL, Bunch TE. 1995. Fullerenes in the K-T boundary: Are they a result of global wildfires?. Lunar Planet. Sci. Conf. Abstr. 26:85–86 [Google Scholar]
  12. Becker L, Poreda R, Bunch TE. 2000. Fullerenes: an extraterrestrial carbon carrier phase for noble gases. PNAS 97:2979–83 [Google Scholar]
  13. Belcher CM, Mander L, Rein G, Jervis FX, Haworth M. et al. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nat. Geosci. 3:426–29 [Google Scholar]
  14. Beman JM, Chow CE, King AL, Feng Y, Fuhrman JA. et al. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. PNAS 108:208–13 [Google Scholar]
  15. Benson RBJ, Carrano MT, Brusatte SL. 2010. A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften 97:71–78 [Google Scholar]
  16. Benton MJ. 1993. Late Triassic extinctions and the origin of the dinosaurs. Science 260:769–70 [Google Scholar]
  17. Benton MJ, Twitchett RJ. 2003. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18:358–65 [Google Scholar]
  18. Benton MJ, Zhang Q, Hu S, Chen ZQ, Wen W. et al. 2013. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. Earth-Sci. Rev. 125:199–243 [Google Scholar]
  19. Berggren WA, Norris RD. 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology 43:Suppl. 11–116 [Google Scholar]
  20. Berner RA, Kothavala Z. 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301:182–204 [Google Scholar]
  21. Bian L, Hinrichs KU, Xie T, Brassell SC, Iversen N. et al. 2001. Algal and archaeal polyisoprenoids in a recent marine sediment: molecular isotopic evidence for anaerobic oxidation of methane. Geochem. Geophys. Geosyst. 2:2000GC000112 [Google Scholar]
  22. Bird CW, Lynch JM, Pirt FJ, Reid WW, Brooks CJW, Middleditch BS. 1971. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 230:473–74 [Google Scholar]
  23. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV. et al. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941–45 [Google Scholar]
  24. Blokker P, van Bergen PF, Pancost RD, Collinson ME, Sinninghe Damsté JS, de Leeuw JW. 2001. The chemical structure of Gloeocapsamorpha prisca microfossils: implication for their origin. Geochim. Cosmochim. Acta 65:885–900 [Google Scholar]
  25. Bode HB, Zeggel B, Silakowski B, Wenzel SC, Hans R, Müller R. 2003. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualenecyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol 47:471–81 [Google Scholar]
  26. Bond D, Wignall PB, Racki G. 2004. Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geol. Mag. 141:173–93 [Google Scholar]
  27. Bonis NR, Kürschner WM, Krystyn L. 2009. A detailed palynological study of the Triassic–Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria). Rev. Palaeobot. Palynol. 156:376–400 [Google Scholar]
  28. Bonis NR, Ruhl M, Kürschner WM. 2010. Climate change driven black shale deposition during the end-Triassic in the western Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290:151–59 [Google Scholar]
  29. Boomer I. 1999. Late Cretaceous and Cenozoic bathyal Ostracoda from the central Pacific (DSDP Site 463). Mar. Micropaleontol. 37:131–47 [Google Scholar]
  30. Bosch HJ, Sinninghe Damsté JS, de Leeuw JW. 1998. Molecular palaeontology of eastern Mediterranean sapropels: evidence for photic zone euxinia. Proc. Ocean Drill. Program Sci. Res. 160:285–95 [Google Scholar]
  31. Bown PR. 2005. Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology 33:653–56 [Google Scholar]
  32. Bowring SA, Erwin DH, Davidek K, Wang W, Jin MW, Martin YG. 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280:1039–45 [Google Scholar]
  33. Brassell SC, Eglinton G, Marlowe IT, Pflaufmann U, Sarnthein M. 1986. A new tool for climatic assessment. Nature 320:129–33 [Google Scholar]
  34. Brenchley PJ, Marshall JD, Carden GAF, Robertson DBR, Long DGF. et al. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22:295–98 [Google Scholar]
  35. Brinkhuis H, Bujak JP, Smit J, Versteegh GJM, Visscher H. 1998. Dinoflagellate-based sea surface temperature reconstructions across the Cretaceous–Tertiary boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141:67–83 [Google Scholar]
  36. Brocks JJ, Grice K. 2011. Biomarkers (molecular fossils). Encyclopedia of Geobiology V Thiel, J Reitner 147–167 Heidelberg, Ger.: Springer [Google Scholar]
  37. Brocks JJ, Grosjean E, Logan GA. 2008. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochim. Cosmochim. Acta 72:871–88 [Google Scholar]
  38. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Paleoproterozoic sea. Nature 437:866–70 [Google Scholar]
  39. Brocks JJ, Schaeffer P. 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochim. Cosmochim. Acta 72:1396–414 [Google Scholar]
  40. Brocks JJ, Summons RE. 2005. Sedimentary hydrocarbons, biomarkers for early life. Treatise on Geochemistry 8 Biogeochemistry WH Schlesinger 63–115 Amsterdam: Elsevier, 1st ed.. [Google Scholar]
  41. Brown TC, Kenig F. 2004. Water column structure during deposition of Middle Devonian–Lower Mississippian black and green/gray shales of the Illinois and Michigan Basins: a biomarker approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 215:59–85 [Google Scholar]
  42. Burgess SD, Bowring S, Shen S. 2014. High-precision timeline for Earth's most severe extinction. PNAS 111:3316–21 [Google Scholar]
  43. Cao C, Love GD, Hays L, Wang W, Shen S, Summons RE. 2009. Biogeochemical evidence for a euxinic ocean and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 288:188–201 [Google Scholar]
  44. Caplan ML, Bustin RM. 1999. Devonian–Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrocks and anoxia: causes and consequences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 148:187–207 [Google Scholar]
  45. Copper P. 1986. Frasnian/Famennian mass extinction and cold-water oceans. Geology 14:835–39 [Google Scholar]
  46. Courtillot VE, Renne PR. 2003. On the ages of flood basalt events. C.R. Geosci. 335:113 [Google Scholar]
  47. Cox HC, de Leeuw JW, Schenk PA, van Konigsveld H, Jansen JC. et al. 1986. Bicadinane, a C30 pentacyclic isoprenoid hydrocarbon found in crude oil. Nature 319:316–18 [Google Scholar]
  48. Cuny G. 1996. French vertebrate faunas and the Triassic-Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 119:343–58 [Google Scholar]
  49. Dembitsky VM, Dor I, Shkrob I, Aki M. 2001. Branched alkanes and other apolar compounds produced by the cyanobacterium Microcoleus vaginatus from the Negev Desert. Russ. J. Bioorg. Chem 27:110–19 [Google Scholar]
  50. Droser ML, Bottjer DJ, Sheehan PM. 1997. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology 25:167–70 [Google Scholar]
  51. Eiserbeck C, Grice K, Reddy C, Nelson R, Curiale J, Raiteri P. 2011. Separation of 18α(H)-, 18β(H)-oleanane and lupane by comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1218:5549–53 [Google Scholar]
  52. Elewa AMT. 2002. Paleobiography of Maastrichtian to early Eocene Ostracoda of North and West Africa and the Middle East. Micropaleontology 48:391–98 [Google Scholar]
  53. Ellwood BB, Benoist SL, El Hassani A, Wheeler C, Crick RE. 2003. Impact ejecta layer from the mid-Devonian: possible connection to global mass extinctions. Science 300:1734–37 [Google Scholar]
  54. Elvert M, Suess E, Whiticar MJ. 1999. Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 31:1175–87 [Google Scholar]
  55. Erwin DH. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago Princeton, NJ: Princeton Univ. Press
  56. Erwin DH, Bowring SA, Yugan J. 2002. End-Permian mass extinctions: a review. Geol. Soc. Am. Spec. Pap. 356:363–83 [Google Scholar]
  57. Fagerstrom JA. 1994. The history of Devonian-Carboniferous reef communities: extinctions, effects, recovery. Facies 30:177–91 [Google Scholar]
  58. Farrimond P, Head IM, Innes HE. 2000. Environmental influence on the biohopanoid composition of recent sediments. Geochim. Cosmochim. Acta 64:2985–92 [Google Scholar]
  59. Fenton S, Grice K, Twitchett RJ, Böttcher M, Looy CV, Nabbefield B. 2007. Changes in biomarker abundances and their stable carbon isotopes across the Permian–Triassic (P-Tr) Schuchert Dal section (East Greenland). Earth Planet. Sci. Lett. 262:230–39 [Google Scholar]
  60. Finkelstein DB, Pratt LM, Curtin TM, Brassell SC. 2005. Wildfires and seasonal aridity recorded in Late Cretaceous strata from south-eastern Arizona, USA. Sedimentology 52:587–99 [Google Scholar]
  61. Finnegan S, Bergmann K, Eiler JM, Jones DS, Fike DA. et al. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science 331:903–6 [Google Scholar]
  62. Finney SC, Berry WBN, Cooper JD. 2007. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia 40:281–91 [Google Scholar]
  63. Foster CB, Logan GA, Summons RE, Gorter JD, Edwards DS. 1997. Carbon isotopes, kerogen types and the Permian-Triassic boundary in Australia: implications for exploration. APPEA J. 37:472–89 [Google Scholar]
  64. Fowler MG. 1992. The influence of Gloeocapsomorpha prisca on the organic geochemistry of oils and organic-rich rocks of Late Ordovician age from Canada. Early Organic Evolution: Implications for Mineral and Energy Resources M Schidlowski, S Golubic, MM Kimberly, PA Trudinger 336–56 Berlin: Springer [Google Scholar]
  65. French KL, Rocher D, Zumberge JE, Summons RE. 2015. Assessing the distribution of sedimentary C40 carotenoids through time. Geobiology 13:139–51 [Google Scholar]
  66. Friedman M, Sallan LC. 2012. Five hundred million years of extinction and recovery: a Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55:707–42 [Google Scholar]
  67. Fuqua LM, Bralower TJ, Arthur MA, Patzkowsky ME. 2008. Evolution of calcareous nannoplankton and the recovery of marine food webs after the Cretaceous-Paleocene mass extinction. Palaios 23:185–94 [Google Scholar]
  68. Gaines SM, Eglinton G, Rullkötter J. 2009. Echoes of Life: What Fossil Molecules Reveal About Earth History New York: Oxford Univ. Press
  69. Gill BC, Lyons TW, Saltzman MR. 2007. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256:156–73 [Google Scholar]
  70. Gilmour I, Guenther F. 1988. The global Cretaceous-Tertiary fire: biomass or fossil carbon. Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality60–61 Houston: Lunar Planet. Inst.
  71. Graham JE, Bryant DA. 2007. Carotenoid biosynthesis in Synechococcus sp. PCC 7002: elucidation of the pathway to myxoxanthophyll and aromatic xanthophylls Presented at 9th Cyanobacterial Molecular Biology Workshop, Delavan, WI [Google Scholar]
  72. Grasby SE, Sanei H, Beauchamp B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4:104–7 [Google Scholar]
  73. Greenwood PF, Arouri KR, Logan GA, Summons RE. 2004. Abundance and geochemical significance of C2n dialkylalkanes and highly branched C3n alkanes in diverse Meso- and Neoproterozoic sediments. Org. Geochem. 35:221–46 [Google Scholar]
  74. Grice K, Audino M, Alexander R, Boreham CJ, Kagi RI. 2001. Distributions and stable carbon isotopic compositions of biomarkers in torbanites from different palaeogeographical locations. Org. Geochem. 32:1195–210 [Google Scholar]
  75. Grice K, Brocks JJ. 2011. Biomarkers (organic, compound-specific isotopes). Encyclopedia of Geobiology V Thiel, J Reitner 167–82 Heidelberg, Ger.: Springer [Google Scholar]
  76. Grice K, Cao C, Love GD, Bottcher ME, Twitchett R. et al. 2005a. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706–9 [Google Scholar]
  77. Grice K, Eiserbeck C. 2013. The analysis and application of biomarkers. Treatise on Geochemistry 12 Organic Geochemistry PG Falkowski, KH Freeman 47–78 Amsterdam: Elsevier, 2nd ed.. [Google Scholar]
  78. Grice K, Gibbison R, Atkinson JE, Schwark L, Eckardt CB, Maxwell JR. 1996a. Maleimides (1H-pyrrole-2,5-diones) as molecular indicators of anoxygenic photosynthesis in ancient water columns. Geochim. Cosmochim. Acta 60:3913–24 [Google Scholar]
  79. Grice K, Klein Breteler WCM, Schouten S, Grossi V, de Leeuw JW. Damsté JS. , Sinninghe 1998a. The effects of zooplankton herbivory on biomarker proxy records. Paleoceanography 13:686–93 [Google Scholar]
  80. Grice K, Lu H, Atahan P, Asif M, Hallman C. et al. 2009. New insights into the origin of perylene in geological samples. Geochim. Cosmochim. Acta 73:6531–43 [Google Scholar]
  81. Grice K, Nabbefeld B, Maslen E. 2007. Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian–Triassic boundary. Org. Geochem. 38:1795–803 [Google Scholar]
  82. Grice K, Schaeffer P, Schwark L, Maxwell JR. 1996b. Molecular indicators of palaeoenvironmental conditions in an immature Permian shale (Kupferschiefer, Lower Rhine Basin, northwest Germany) from free and S-bound lipids. Org. Geochem. 25:131–47 [Google Scholar]
  83. Grice K, Schaeffer P, Schwark L, Maxwell JR. 1997. Changes in palaeoenvironmental conditions during deposition of the Permian Kupferschiefer (Lower Rhine Basin, northwest Germany) inferred from molecular and isotopic compositions of biomarker components. Org. Geochem. 26:677–90 [Google Scholar]
  84. Grice K, Schouten S, Nissenbaum A, Charrach J, Sinninghe Damsté JS. 1998b. Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation, Dead Sea Basin, Israel. Org. Geochem. 28:349–59 [Google Scholar]
  85. Grice K, Summons R, Grosjean E, Twitchett R, Dunning WJ. et al. 2005b. Depositional conditions of the Northern onshore Perth basin (Basal Triassic). Perth APPEA J. 45:263–73 [Google Scholar]
  86. Grice K, Twitchett R, Alexander R, Foster CB, Looy C. 2005c. A potential biomarker for the Permian–Triassic ecological crisis. Earth Planet. Sci. Lett. 236:315–21 [Google Scholar]
  87. Grimalt JO, Grifoll M, Solanas MA, Albaiges J. 1991. Microbial degradation of marine evaporitic crude oils. Geochim. Cosmochim. Acta 55:1903–13 [Google Scholar]
  88. Grosjean E, Logan GA. 2007. Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: examples from Geoscience Australia marine survey S282. Org. Geochem. 38:853 [Google Scholar]
  89. Guex J, Bartolini A, Atudorei V, Taylor DG. 2004. High-resolution ammonite and carbon isotope stratigraphy across the Triassic–Jurassic boundary at New York Canyon (Nevada). Earth Planet. Sci. Lett. 225:29–41 [Google Scholar]
  90. Haas J, Götz AE, Pálfy J. 2010. Late Triassic to Early Jurassic palaeogeography and eustatic history in the NW Tethyan realm: new insights from sedimentary and organic facies of the Csővár Basin (Hungary). Palaeogeogr. Palaeoclimatol. Palaeoecol. 291:456–68 [Google Scholar]
  91. Hallam A. 1995. Oxygen-restricted facies of the basal Jurassic of north west Europe. Hist. Biol. 10:247–57 [Google Scholar]
  92. Hallam A. 1997. Estimates of the amount and rate of sea-level change across the Rhaetian–Hettangian and Pliensbachian–Toarcian boundaries (latest Triassic to early Jurassic). J. Geol. Soc. Lond. 154:773–79 [Google Scholar]
  93. Hallam A. 2002. How catastrophic was the end-Triassic mass extinction?. Lethaia 35:147–57 [Google Scholar]
  94. Hallmann C, Kelly AE, Neal Gupta S, Summons RE. 2011. Reconstructing deep-time biology with molecular fossils. Top. Geobiol. 36:355–401 [Google Scholar]
  95. Harper DAT. 2006. The Ordovician biodiversification: setting an agenda for marine life. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232:148–66 [Google Scholar]
  96. Hartgers WA, Sinninghe Damsté JS, Requejo AG, Allan J, Hayes JM. et al. 1993. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids. Org. Geochem. 22:703–25 [Google Scholar]
  97. Harvey GR, Sinninghe Damsté JS, de Leeuw JW. 1985. On the origin of alkylbenzenes in geochemical samples. Mar. Chem. 16:187–88 [Google Scholar]
  98. Harwood DM. 1988. Upper Cretaceous and lower Paleocene diatoms and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula. Geol. Soc. Am. Mem. 169:55–129 [Google Scholar]
  99. Hayes JM. 2001. Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. Rev. Mineral. Geochem. 43:225–78 [Google Scholar]
  100. Hays L, Beatty T, Henderson CM, Love GD, Summons RE. 2007. Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld 16:39–50 [Google Scholar]
  101. Hays L, Grice K, Foster C, Summons RE. 2012. Biomarker and isotopic trends in a Permian–Triassic sedimentary section at Kap Stosch, Greenland. Org. Geochem. 43:67–82 [Google Scholar]
  102. Hedberg HD. 1968. Significance of high-wax oils with respect to genesis of petroleum. Am. Assoc. Petrol. Geol. Bull. 52:736–50 [Google Scholar]
  103. Hesselbo SP, Robinson SA, Surlyk F, Piasecki S. 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism?. Geology 30:251–54 [Google Scholar]
  104. Holba AG, Dzou LIP, Masterson WD, Hughes WB, Huizinga BJ. et al. 1998a. Application of 24-norcholestanes for constraining source age of petroleum. Org. Geochem. 29:1269–83 [Google Scholar]
  105. Holba AG, Tegelaar EW, Huizinga BJ, Moldowan JM, Singletary MS. et al. 1998b. 24-Norcholestanes as age-sensitive molecular fossils. Geology 26:783–86 [Google Scholar]
  106. Hollis CJ, Strong CP, Rodgers KA, Rogers KM. 2003. Paleoenvironmental changes across the Cretaceous/Tertiary boundary at Flaxbourne River and Woodside Creek, eastern Marlborough, New Zealand. N.Z. J. Geol. Geophys. 46:177–97 [Google Scholar]
  107. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ. et al. 2012. The geological record of ocean acidification. Science 335:1058–63 [Google Scholar]
  108. House MR. 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181:5–26 [Google Scholar]
  109. Huang Z, Poulter CD, Wolf FR, Somers TC, White JD. 1988. Braunicene, a novel cyclic C32 isoprenoid from Botryococcus braunii. J. Am. Chem. Soc 110:3959–64 [Google Scholar]
  110. Jablonski D. 1991. Extinctions: a paleontological perspective. Science 253:754–57 [Google Scholar]
  111. Jaraula CMB, Grice K, Twitchett RJ, Böttcher ME, LeMetayer P. et al. 2013. Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels. Geology 41:955–58 [Google Scholar]
  112. Jenkyns HC. 2010. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11:Q03004 [Google Scholar]
  113. Jin YG, Wang Y, Wang W, Shang QH, Cao CQ, Erwin DH. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289:432–36 [Google Scholar]
  114. Joachimski MM, Buggisch W. 1993. Anoxic events in the late Frasnian—causes of the Frasnian-Famennian faunal crisis?. Geology 21:675–78 [Google Scholar]
  115. Joachimski MM, Ostertag-Henning C, Pancost RD, Strauss H, Freeman KH. et al. 2001. Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala—Holy Cross Mountains/Poland). Chem. Geol. 175:109–31 [Google Scholar]
  116. Jourdan FM, Marzoli A, Bertrand H, Cirilli S, Tanner L. et al. 2009. 40Ar/39Ar ages of CAMP in North America: implications for the Triassic–Jurassic boundary and the 40K decay constant bias. Lithos 110:167–80 [Google Scholar]
  117. Kamo SL, Czamanske GK, Krogh TE. 1996. A minimum U-Pb age for Siberian flood-basalt volcanism. Geochim. Cosmochim. Acta 60:3505–11 [Google Scholar]
  118. Kannenberg E, Poralla K. 1999. Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86:168–76 [Google Scholar]
  119. Kasprak AH, Sepúlveda J, Price-Waldman R, Williford KH, Schoepfer SD. et al. 2015. Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology 43:307–10 [Google Scholar]
  120. Kenig F, Sinninghe Damsté JS, Kock–van Dalen AC, Rijpstra WIC, Huc AY, de Leeuw JW. 1995. Occurrence and origin of mono-, di-, and trimethyl alkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochim. Cosmochim. Acta 59:2999–3015 [Google Scholar]
  121. Kidder DL, Worsley TR. 2010. Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 295:162–91 [Google Scholar]
  122. Kim JH, van der Meer J, Schouten S, Helmke P, Willmott V. et al. 2010. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74:4639–54 [Google Scholar]
  123. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW. 2007. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256:295–313 [Google Scholar]
  124. Kohl W, Gloe A, Reichenbach H. 1983. Steroids from the myxobacterium Nannocystis exedens. J. Gen. Microbiol 129:1629–35 [Google Scholar]
  125. Koopmans MP, Köster J, van Kaam–Peters HME, Kenig F, Schouten S. et al. 1996a. Diagenetic and catagenetic products of isorenieratene: molecular indicators for photic zone anoxia. Geochim. Cosmochim. Acta 60:4467–96 [Google Scholar]
  126. Koopmans MP, Schouten S, Kohnen MEL, Sinninghe Damsté JS. 1996b. Restricted utility of aryl isoprenoids for photic zone anoxia. Geochim. Cosmochim. Acta 60:4873–76 [Google Scholar]
  127. Köster J, Volkman JK, Rullkötter J, Scholz-Böttcher BM, Rethmeier J, Fischer U. 1999. Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum. Org. Geochem 30:1367–79 [Google Scholar]
  128. Krull ES, Retallack GJ. 2000. δ13C depth profiles from paleosols across the Permian-Triassic boundary in Antarctica: evidence for methane release. Geol. Soc. Am. Bull. 112:1459–72 [Google Scholar]
  129. Kump LR, Pavlov A, Arthur MA. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397–400 [Google Scholar]
  130. Kuypers MM, Blokker P, Erbacher J, Kinkel H, Pancost RD. et al. 2001. Massive expansion of marine Archaea during a Mid-Cretaceous Oceanic anoxic event. Science 293:92–94 [Google Scholar]
  131. LaPorte DF, Holmden C, Patterson WP, Loxton JD, Melchin MJ. et al. 2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276:182–95 [Google Scholar]
  132. Liu C, Olsson RK. 1992. Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. J. Foraminifer. Res. 22:328–46 [Google Scholar]
  133. Logan GA, Hayes JM, Hieshima GB, Summons RE. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:53–56 [Google Scholar]
  134. Long JA, Trinajstic K. 2010. The Late Devonian Gogo Formation Lägerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annu. Rev. Earth Planet. Sci. 38:255–79 [Google Scholar]
  135. Looy CV, Twitchett RJ, Dilcher DL, Van Konijnenburg–Van Cittert JHA, Visscher H. 2001. Life in the end-Permian dead zone. PNAS 98:7879–83 [Google Scholar]
  136. Luo G, Wang Y, Grice K, Kershaw S, Algeo TJ, Ruan X. et al. 2013. Microbial-algal community changes during the latest Permian ecological crisis: evidence from lipid biomarkers at Cili, South China. Glob. Planet. Change 105:36–51 [Google Scholar]
  137. Luo G, Wang Y, Yang H, Algeo TJ, Kump LR. et al. 2011. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian–Triassic crisis interval. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299:70–82 [Google Scholar]
  138. Majoran S, Widmark JGV, Kucera M. 1997. Palaeoecological preferences and geographical distribution of Late Maastrichtian deep-sea ostracods in the South Atlantic. Lethaia 30:53–64 [Google Scholar]
  139. Marynowski L, Filipiak P. 2007. Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). Geol. Mag. 144:569–95 [Google Scholar]
  140. Marynowski L, Narkiewicz M, Grelowski C. 2000. Biomarkers as environmental indicators in a carbonate complex, examples from the Middle Devonian, the Holy Cross Mountains, Poland. Sediment. Geol. 137:187–212 [Google Scholar]
  141. Marynowski L, Rakociński M, Borcuch E, Kremer B, Schubert BA, Jahren AH. 2011. Molecular and petrographic indicators of redox conditions and bacterial communities after the F/F mass extinction (Kowala, Holy Cross Mountains, Poland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 306:1–14 [Google Scholar]
  142. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G. Min A. , De 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic magmatic province. Science 284:616–18 [Google Scholar]
  143. Maslen E, Grice K, Gale JD, Hallmann C, Horsfield B. 2009. Crocetane: a potential marker of photic zone euxinia in thermally mature sediments and crude oils of Devonian age. Org. Geochem. 40:1–11 [Google Scholar]
  144. Mayer FL, Stalling DL, Johnson JL. 1972. Phthalate esters as environmental contaminants. Nature 238:411–13 [Google Scholar]
  145. McCaffrey MA, Moldowan JM, Lipton PA, Summons RE, Peters KE. et al. 1994. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim. Cosmochim. Acta 58:529–32 [Google Scholar]
  146. McCune AR, Schaeffer B. 1986. Triassic and Jurassic fishes: patterns of diversity. The Beginning of the Age of Dinosaurs K Pandian 171–81 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  147. McElwain JC, Beerling DJ, Woodward FI. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–90 [Google Scholar]
  148. McElwain JC, Punyasena SW. 2007. Mass extinction events and the plant fossil record. Trends Ecol. Evol. 22:548–57 [Google Scholar]
  149. McGhee GR Jr. 1996. The Late Devonian Mass Extinction New York: Columbia Univ. Press
  150. McGhee GR Jr. 2005. Modelling Late Devonian extinction hypotheses, in understanding Late Devonian and Permian-Triassic biotic and climatic events—towards an integrated approach. Dev. Paleontol. Stratigr. 20:37–50 [Google Scholar]
  151. McLaren D. 1970. Time, life and boundaries. J. Paleontol. 44:801–15 [Google Scholar]
  152. McLaren D. 1983. Bolides and biostratigraphy. Geol. Soc. Am. Bull. 94:313–24 [Google Scholar]
  153. Melendez I, Grice K, Schwark L. 2013a. Exceptional preservation of Palaeozoic steroids in a diagenetic continuum. Sci. Rep. 3:2768 [Google Scholar]
  154. Melendez I, Grice K, Trinajstic K, Ladjavardi M, Greenwood P, Thompson K. 2013b. Biomarkers reveal the role of photic zone euxinia in exceptional fossil preservation: an organic geochemical perspective. Geology 41:123–26 [Google Scholar]
  155. Melott AL, Bambach RK. 2014. Analysis of periodicity of extinction using the 2012 geological timescale. Paleobiology 40:177–96 [Google Scholar]
  156. Metcalfe I, Nicoll RS, Willink R, Ladjavadi M, Grice K. 2013. Early Triassic (Induan–Olenekian) conodont biostratigraphy, global anoxia, carbon isotope excursions and environmental perturbations: new data from Western Australian Gondwana. Gondwana Res. 23:1136–50 [Google Scholar]
  157. Metzger P, Casadevall E, Pouet MJ, Pouet Y. 1985. Structures of some botryococcenes: branched hydrocarbons from the B race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002 [Google Scholar]
  158. Metzger P, Largeau C. 1999. Chemicals of Botryococcus braunii. Chemicals from Microalgae Z Cohen 205–60 London: Taylor and Francis [Google Scholar]
  159. Meyer KM, Kump LR, Ridgwell A. 2008. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36:747–50 [Google Scholar]
  160. Moldowan JM, Dahl JEP, Huizinga BJ, Fago FJ, Hickey LJ. et al. 1994. The molecular fossil record of oleanane and its relation to angiosperms. Science 265:768–71 [Google Scholar]
  161. Moldowan JM, Fago FJ, Lee CY, Jacobson SR, Watt DS. et al. 1990. Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science 247:309–12 [Google Scholar]
  162. Moldowan JM, Talyzina NM. 1998. Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. Science 281:1168–70 [Google Scholar]
  163. Molina E, Arenillas I, Arz JA. 1998. Mass extinction in planktic foraminifera at the Cretaceous/Tertiary boundary in subtropical and temperate latitudes. Bull. Soc. Geol. Fr. 169:351–63 [Google Scholar]
  164. Murphy AE, Sageman BB, Hollander DJ. 2000. Eutrophication by decoupling of the marine biogeochemical cycles of C, N and P: a mechanism for the Late Devonian mass extinction. Geology 28:427–30 [Google Scholar]
  165. Nabbefeld B, Grice K, Schimmelmann A, Sauer PE, Böttcher ME, Twitchett RJ. 2010a. Significance of δDkerogen, δ13Ckerogen and δ34Spyrite from several Permian/Triassic (P/Tr) sections. Earth Planet. Sci. Lett. 295:21–29 [Google Scholar]
  166. Nabbefeld B, Grice K, Schimmelmann A, Summons R, Troitzsch U, Twitchett R. 2010b. A comparison of thermal maturity parameters between freely extracted hydrocarbons (Bitumen I) and a second extract (Bitumen II) from within the kerogen matrix of Permian and Triassic sedimentary rocks. Org. Geochem. 41:78–87 [Google Scholar]
  167. Nabbefeld B, Grice K, Summons R, Hays L, Cao C. 2010c. Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections. Appl. Geochem. 25:1374–82 [Google Scholar]
  168. Nabbefeld B, Grice K, Twitchett R, Summons R, Hays L. et al. 2010d. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet. Sci. Lett. 291:84–96 [Google Scholar]
  169. Naeher S, Grice K. 2015. Novel 1H-pyrrole-2,5-dione (maleimide) proxies for the assessment of photic zone euxinia. Chem. Geol. 404:100–9 [Google Scholar]
  170. Newell ND. 1967. Paraconformities. Essays in Paleontology and Stratigraphy: R.C. Moore Commemorative Volume C Teichert, EL Yochelson 349–67 Lawrence: Univ. Kansas Press [Google Scholar]
  171. Newton RJ, Pevitt EL, Wignall PB, Bottrell SH. 2004. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth Planet. Sci. Lett. 218:331–45 [Google Scholar]
  172. Nichols PD, Volkman JK, Palmisano AC, Smith GA, White DC. 1988. Occurrence of an isoprenoid C25 di-unsaturated alkene and high neutral lipid content in Antarctic sea-ice diatom communities. J. Phycol. 24:90–96 [Google Scholar]
  173. Noble RA, Alexander R, Kagi RI, Knox J. 1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochim. Cosmochim. Acta 49:2141–47 [Google Scholar]
  174. Olsen PE, Kent DV, Sues HD, Koeberl C, Huber H. et al. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296:1305–7 [Google Scholar]
  175. Ourisson G, Albrecht P. 1992. Hopanoids. 1. Geohopanoids: the most abundant natural products on Earth?. Acc. Chem. Res. 25:398–402 [Google Scholar]
  176. Pálfy J, Demény A, Haas J, Hetényi M, Orchard MJ, Veto I. 2001. Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29:1047–50 [Google Scholar]
  177. Pancost RD, Crawford N, Maxwell JR. 2002. Molecular evidence for basin-scale photic zone euxinia in the Permian Zechstein sea. Chem. Geol. 188:217–27 [Google Scholar]
  178. Pancost RD, Freeman KH, Patzkowsky ME, Wavrek DA, Collister JW. 1998. Molecular indicators of redox and marine photoautotroph composition in the late Middle Ordovician of Iowa, USA. Org. Geochem. 29:1649–62 [Google Scholar]
  179. Payne JL, Clapham ME. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century?. Annu. Rev. Earth Planet. Sci. 40:89–111 [Google Scholar]
  180. Payne JL, Groves JR, Jost AB, Nguyen T, Myhre S. et al. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66:2929–39 [Google Scholar]
  181. Payne JL, Kump LR. 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256:264–77 [Google Scholar]
  182. Pearson A, Budin M, Brocks JJ. 2003. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. PNAS 100:15352–57 [Google Scholar]
  183. Peters KE, Clark ME, Das Gupta U, McCaffrey MA, Lee CY. 1995. Recognition of an Infracambrian source rock based on biomarkers in the Baghewala-1 Oil, India. AAPG Bull 79:1481–94 [Google Scholar]
  184. Peters KE, Walters CC, Moldowan JM. 2004. The Biomarker Guide Cambridge, UK: Cambridge Univ. Press
  185. Playford PE, Hocking RM, Cockbain AE. 2009. Devonian reef complexes of the Canning Basin. Geol. Surv. West. Aust. Bull. 145:1–444 [Google Scholar]
  186. Pospichal JJ, Wise SW. 1990. Calcareous nannofossils across the K/T boundary, ODP Hole 690C, Maud Rise, Weddell Sea. Proc. Ocean Drill. Program Sci. Results 113:515–32 [Google Scholar]
  187. Putschew A, Schaeffer P, Schaeffer-Reiss C, Maxwell JR. 1998. Carbon isotope characteristic of the diaromatic carotenoid, isorenieratene (intact and sulfide bound) and a novel isomer in sediments. Org. Geochem. 28:1849–56 [Google Scholar]
  188. Racki G. 2005. Toward understanding Late Devonian global events: few answers, many questions. Dev. Paleontol. Stratigr. 20:5–36 [Google Scholar]
  189. Rashby SE, Sessions AL, Summons RE, Newman DK. 2007. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. PNAS 104:15099–104 [Google Scholar]
  190. Ratti S, Knoll AH, Giordano M. 2011. Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+c phytoplankton in the oceans?. Geobiology 9:301–12 [Google Scholar]
  191. Requejo AG, Allan J, Creaney S, Gray NR, Cole KS. 1992. Aryl isoprenoids and diaromatic carotenoids in Paleozoic source rocks and oils from the Western Canada and Williston Basins. Org. Geochem. 19:245–64 [Google Scholar]
  192. Richoz S, van de Schootbrugge B, Pross J, Püttmann W, Quan TM. et al. 2012. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat. Geosci. 5:662–67 [Google Scholar]
  193. Robinson N, Eglinton G, Brassell SC. 1984. Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols. Nature 308:439–42 [Google Scholar]
  194. Rohmer M, Bouvier-Navé P, Ourisson G. 1984. Distribution of hopanoid triterpenes in prokaryotes. J. Gen. Microbiol. 130:1137–50 [Google Scholar]
  195. Rohrssen M, Love GD, Fischer W, Finnegan S, Fike DA. 2012. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation. Geology 41:127–30 [Google Scholar]
  196. Sahney S, Benton MJ, Ferry PA. 2010. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol. Lett. 6:544–47 [Google Scholar]
  197. Saltzman MR. 2005. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology 33:573–76 [Google Scholar]
  198. Sandberg CA, Morrow JR, Ziegler W. 2002. Late Devonian sea-level changes, catastrophic events, and mass extinctions. Geol. Soc. Am. Spec. Pap. 356:473–87 [Google Scholar]
  199. Schaeffer P, Adam P, Wehrung P, Albrecht P. 1997. Novel aromatic carotenoid derivatives from sulphur photosynthetic bacteria in sediments. Tetrahedron Lett. 38:8413–16 [Google Scholar]
  200. Schmieder M, Buchner E, Schwarz WH, Trieloff M, Lambert P. 2010. A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record. Meteorit. Planet. Sci. 45:1225–242 [Google Scholar]
  201. Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn T. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100,000-year level. Geology 38:387–90 [Google Scholar]
  202. Schouten S, Klein Breteler WCM, Blokker P, Schogt N, Rijpstra WIC. et al. 1998. Biosynthetic effects on the stable carbon isotopic compositions of algal lipids: implications for deciphering the carbon isotopic biomarker record. Geochim. Cosmochim. Acta 62:1397–406 [Google Scholar]
  203. Schouten S, van der Maarel MJ, Huber R, Sinninghe Damsté JS. 1997. 2,6,10,15,19-Pentamethylicosenes in Methanolobus bombayensis, a marine methanogenic archaeon, and in Methanosarcina mazei. Org. Geochem 26:409–14 [Google Scholar]
  204. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ. et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–18 [Google Scholar]
  205. Schwab V, Spangenberg JE. 2007. Molecular and isotopic characterization of biomarkers in the Frick Swiss Jura sediments: a palaeoenvironmental reconstruction on the northern Tethys margin. Org. Geochem. 28:419–39 [Google Scholar]
  206. Sephton MA, Looy CV, Brinkhuis H, Wignall PB, de Leeuw JW, Visscher H. 2005. Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33:941–44 [Google Scholar]
  207. Sephton MA, Visscher H, Looy CV, Verchovsky AB, Watson JS. 2009. Chemical constitution of a Permian-Triassic disaster species. Geology 37:875–78 [Google Scholar]
  208. Sepkoski JJ Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology7:36–53
  209. Sepkoski JJ Jr. 1986. Phanerozoic overview of mass extinction. Patterns and Processes in the History of Life DM Raup, D Jablonski 277–95 Berlin: Springer Verlag [Google Scholar]
  210. Sepkoski JJ Jr. 1993. Ten years in the library: New data confirm paleontological patterns. Paleobiology 19:43–51 [Google Scholar]
  211. Sepkoski JJ Jr. 1996. Patterns of Phanerozoic extinction: a perspective from global databases. Global Events and Event Stratigraphy in the Phanerozoic O Walliser 35–51 Berlin: Springer Verlag [Google Scholar]
  212. Sepúlveda J, Wendler JE, Summons RE, Hinrichs KU. 2009. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326:129–32 [Google Scholar]
  213. Sheehan PM. 2001. The Late Ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29:331–64 [Google Scholar]
  214. Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH. et al. 2011. Calibrating the end-Permian mass extinction. Science 334:1367–72 [Google Scholar]
  215. Shiea J, Brassell SC, Ward DM. 1990. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: a direct biogenic source for branched alkanes in ancient sediments?. Org. Geochem. 15:223–31 [Google Scholar]
  216. Simoneit BRT, Lein AY, Peresypkin VI, Osipov GA. 2004. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N). Geochim. Cosmochim. Acta 68:2275–94 [Google Scholar]
  217. Simons DJH, Kenig F. 2001. Molecular fossil constraints on the water column structure of the Cenomanian-Turonian western interior seaway, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 169:129–52 [Google Scholar]
  218. Sinninghe Damsté JS, Kenig F, Koopmans MP, Köster J, Schouten S. et al. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 59:1895–900 [Google Scholar]
  219. Sinninghe Damsté JS, Kock–van Dalen AC, de Leeuw JW. 1988. Identification of long-chain isoprenoid alkylbenzenes in sediments and crude oils. Geochim. Cosmochim. Acta 52:2671–77 [Google Scholar]
  220. Sinninghe Damsté JS, Rijpstra WIC, Schouten S, Fuerst JA, Jetten MSM, Strous M. 2004. The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Org Geochem 35:561–66 [Google Scholar]
  221. Sinninghe Damsté JS, Schouten S, van Duin ACT. 2001. Isorenieratene derivatives in sediments: possible controls on their distribution. Geochim. Cosmochim. Acta 65:1557–71 [Google Scholar]
  222. Smit J. 1982. Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap. 190:329–52 [Google Scholar]
  223. Stott LD, Kennett JP. 1990. Antarctic Paleogene planktonic foraminifer biostratigraphy: ODP Leg 113, Sites 689 and 690. Proc. Ocean Drill. Program Sci. Results 113:549–69 [Google Scholar]
  224. Summons RE, Jahnke LL. 1992. Hopenes and hopanes methylated in ring-A: correlation of the hopanoids from extant methylotrophic bacteria with their fossil analogues. Biological Markers in Sediments and Petroleum JM Moldowan, P Albrecht, RP Philp 182–200 Englewood Cliffs, NJ: Prentice Hall [Google Scholar]
  225. Summons RE, Jahnke LL, Hope JM, Logan GA. 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–57 [Google Scholar]
  226. Summons RE, Love GD, Hays L, Cao C, Jin Y. et al. 2006. Molecular evidence for prolonged photic zone euxinia at the Meishan and East Greenland sections of the Permian Triassic Boundary. Geochim. Cosmochim. Acta 70:625 (Abstr.) [Google Scholar]
  227. Summons RE, Metzger P, Largeau C, Murray AP, Hope JM. 2002. Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and oils. Org. Geochem 33:99–109 [Google Scholar]
  228. Summons RE, Powell TG. 1986. Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology. Nature 319:763–65 [Google Scholar]
  229. Summons RE, Powell TG. 1987. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochim. Cosmochim. Acta 51:557–66 [Google Scholar]
  230. Summons RE, Powell TG. 1992. Hydrocarbon composition of the late Proterozoic oils of the Siberian platform: implications for the depositional environment of source rocks. Early Organic Evolution: Implications for Mineral and Energy Resources M Schidlowski, S Golubic, MM Kimberley, DM McKirdy, PA Trudinger 296–307 Berlin: Springer [Google Scholar]
  231. ten Haven HL, Rohmer M, Rullkötter J, Bisseret P. 1989. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochim. Cosmochim. Acta 53:3073–79 [Google Scholar]
  232. Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W. 1999. Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim. Cosmochim. Acta 63:3959–66 [Google Scholar]
  233. Thomas BM, Barber CJ. 2004. A re-evaluation of the hydrocarbon habitat of the northern Perth Basin. APPEA J. 44:13–57 [Google Scholar]
  234. Thomas BM, Willink RJ, Grice K, Twitchett RJ, Purcell RR. et al. 2004. Unique marine Permian–Triassic boundary section from Western Australia. Aust. J. Earth Sci. 51:423–30 [Google Scholar]
  235. Thomas E. 1990a. Late Cretaceous–early Eocene mass extinctions in the deep sea. Geol. Soc. Am. Spec. Publ. 247:481–95 [Google Scholar]
  236. Thomas E. 1990b. Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica). Proc. Ocean Drill. Program Sci. Results 113:571–94 [Google Scholar]
  237. Tissot BP, Welte DH. 1984. Petroleum Formation and Occurrence Berlin: Springer
  238. Tulipani S, Grice K, Greenwood PF, Haines P, Sauer PE. et al. 2015a. Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: a biomarker and stable isotope approach. Gondwana Res. 28:1500–15 [Google Scholar]
  239. Tulipani S, Grice K, Greenwood PF, Schwark L, Bottcher ME. et al. 2015b. Molecular proxies as indicators of freshwater incursion-driven salinity stratification. Chem. Geol. 409:61–68 [Google Scholar]
  240. Twitchett RJ. 1999. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154:27–37 [Google Scholar]
  241. Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29:351 [Google Scholar]
  242. van Aarssen BGK, Quanxing Z, de Leeuw JW. 1992. An unusual distribution of bicadinanes, tricadinanes and oligocadinanes in sediments from the Yacheng gas field, China. Org. Geochem. 18:805–12 [Google Scholar]
  243. van de Schootbrugge B, Quan TM, Lindström S, Püttmann W, Heunich C. et al. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nat. Geosci. 2:589–94 [Google Scholar]
  244. van de Schootbrugge B, Tremolada F, Rosenthal Y, Bailey TR, Feist-Burkhardt S. et al. 2007. End-Triassic calcification crisis and blooms of organic-walled ‘disaster species.’. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244:126–41 [Google Scholar]
  245. Venkatesan MI, Dahl J. 1989. Organic geochemical evidence for global fires at the Cretaceous/Tertiary boundary. Nature 338:57–60 [Google Scholar]
  246. Vilhena DA, Harris EB, Bergstrom CT, Maliska ME, Ward PD. et al. 2013. Bivalve network reveals latitudinal selectivity gradient at the end-Cretaceous mass extinction. Sci. Rep. 3:1790 [Google Scholar]
  247. Vink A, Schouten S, Sephton S, Sinninghe Damsté JS. 1998. A newly discovered norisoprenoid, 2,6,15,19-tetramethylicosane, in Cretaceous black shales. Geochim. Cosmochim. Acta 62:965–70 [Google Scholar]
  248. Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y. et al. 1996. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. PNAS 93:2155–58 [Google Scholar]
  249. Volkman JK. 2003. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 60:496–506 [Google Scholar]
  250. Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F. 1998. Microalgal biomarkers: a review of recent research developments. Org. Geochem. 29:1163–79 [Google Scholar]
  251. Volkman JK, Barrett SM, Dunstan GA. 1994. C25 and C30 highly branched isoprenoid alkanes in laboratory cultures of two marine diatoms. Org. Geochem. 21:407–13 [Google Scholar]
  252. Volkman JK, Barrett SM, Dunstan GA, Jeffrey SW. 1993. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Org. Geochem. 20:7–15 [Google Scholar]
  253. Walliser OH. 1996. Global events in the Devonian and Carboniferous. Global Events and Event Stratigraphy in the Phanerozoic OH Walliser 225–50 Berlin: Springer Verlag [Google Scholar]
  254. Wang C, Visscher H. 2007. Abundance anomalies of aromatic biomarkers in the Permian–Triassic boundary section at Meishan, China—evidence of end-Permian terrestrial ecosystem collapse. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252:291–303 [Google Scholar]
  255. Wang NZ, Zhang X, Zhu M, Zhao WJ. 2009. A new articulated hybodontoid from Late Permian of northwestern China. Acta Zool. 90:159–70 [Google Scholar]
  256. Wang TG, Simoneit BRT. 1995. Tricyclic terpanes in Precambrian bituminous sandstone from the eastern Yanshan region, North China. Chem. Geol. 120:155–70 [Google Scholar]
  257. Ward PD, Garrison G, Haggart J, Kring DA, Beattie MJ. 2004. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction. Earth Planet. Sci. Lett. 224:589–600 [Google Scholar]
  258. Ward PD, Haggart JW, Carter ES, Wilbur D, Tipper HW, Evans T. 2001. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292:1148–51 [Google Scholar]
  259. Watson JS, Sephton MA, Looy CV, Gilmour I. 2005. Oxygen-containing aromatic compounds in a Late Permian sediment. Org. Geochem. 36:371–84 [Google Scholar]
  260. Webby BD, Paris F, Droser ML, Percival IG. 2004. The Great Ordovician Biodiversification Event New York: Columbia Univ. Press
  261. Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN. 2010. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction. PNAS 107:6721–25 [Google Scholar]
  262. Wiese F, Reitner J. 2011. Critical intervals in Earth's history. Encyclopedia of Geobiology V Thiel, J Reitner 293–306 Heidelberg, Ger.: Springer [Google Scholar]
  263. Wignall PB. 2001. Sedimentology of the Triassic-Jurassic boundary beds in Pinhay Bay (Devon, SW England). Proc. Geol. Assoc. 112:349–60 [Google Scholar]
  264. Wignall PB. 2007. The End-Permian mass extinction—how bad did it get?. Geobiology 5:303–9 [Google Scholar]
  265. Wignall PB, Twitchett RJ. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. Geol. Soc. Am. Spec. Pap. 356:395–413 [Google Scholar]
  266. Williford KH, Grice K, Holman A, McElwain J. 2014. An organic record of terrestrial ecosystem collapse and recovery at the Triassic–Jurassic boundary in East Greenland. Geochim. Cosmochim. Acta 127:251–63 [Google Scholar]
  267. Williford KH, Grice K, Logan GA, Chen J, Huston D. 2011. The molecular and isotopic effects of hydrothermal alteration of organic matter in the Paleoproterozoic McArthur River Pb/Zn/Ag ore deposit. Earth Planet. Sci. Lett. 301:382–92 [Google Scholar]
  268. Williford KH, Ward PD, Garrison GH, Buick R. 2007. An extended stable organic carbon isotope record across the Triassic–Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244:290–96 [Google Scholar]
  269. Witzke BJ. 1987. Models for circulation patterns in epicontinental seas applied to Paleozoic facies of North American craton. Paleoceanography 2:229–48 [Google Scholar]
  270. Wolbach WS, Gilmour I, Anders E. 1990. Major wildfires at the K-T boundary. Geol. Soc. Am. Spec. Pap. 247:391–400 [Google Scholar]
  271. Wolbach WS, Widicus S, Kyte FT. 2003. A search for soot from global wildfires in central Pacific Cretaceous-Tertiary boundary and other extinction and impact horizon sediments. Astrobiology 3:91–97 [Google Scholar]
  272. Xie S, Pancost RD, Huang J, Wignall PB, Yu J. et al. 2007. Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Geology 35:1083–86 [Google Scholar]
  273. Zundel M, Rohmer M. 1985a. Hopanoids of the methylotrophic bacteria Methylococcus capsulatus and Methylomonas sp. as possible precursors for the C29 and C30 hopanoid chemical fossils. FEMS Microbiol. Lett 28:61–64 [Google Scholar]
  274. Zundel M, Rohmer M. 1985b. Prokaryotic triterpenoids. 1. 3-Methylhopanoids from Acetobacter sp. and Methylococcus capsulatus. Eur. J. Biochem 150:23–27 [Google Scholar]
  275. Zundel M, Rohmer M. 1985c. Prokaryotic triterpenoids. 3. The biosynthesis of 2b-methylhopanoids and 3b-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus spp. pasteurianus. Eur. J. Biochem 150:35–39 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error