Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Antaya TA. 2009. An assessment of the feasibility for high current operation of compact high field superconducting cyclotrons Res. Rep. PSFC/RR-09-16, Plasma Sci. Fusion Cent., Mass. Inst. Technol., Cambridge [Google Scholar]
  2. Bahcall J, Barish B, Calaprice F, Doe PJ, Gaisser T. et al. 2001. Underground science Rep., Inst. Nuclear Phys., Univ. Wash., Seattle [Google Scholar]
  3. Bemporad C, Gratta G, Vogel P. 2002. Reactor-based neutrino oscillation experiments. Rev. Mod. Phys. 74:297–328 [Google Scholar]
  4. Bendixsen CL, Offutt GF. 1969. Rare gas recovery facility at the Idaho Chemical Processing Plant. Tech. Rep. IN-1221, Id. Nucl. Corp., US At. Energy Comm., Idaho Falls [Google Scholar]
  5. Bernas M, Armbruster P, Benlliure J, Boudard A, Casarejos E. et al. 2003. Fission-residues produced in the spallation reaction 238U + p at 1 A GeV. Nucl. Phys. A 725:213–53 [Google Scholar]
  6. Berthon L, Charbonnel MC. 2009. Radiolysis of solvents used in nuclear fuel reprocessing. Ion Exchange and Solvent Extraction: A Series of Advances 19 BA Moyer 429–515 Boca Raton, FL: CRC Press [Google Scholar]
  7. Birnbaum JC, Probasco KM, Maughan AD. 2004. Measuring and characterizing potential signature compounds. Rep. PNNL-14977, Pac. Northwest Natl. Lab., Richland, WA
  8. Borstad GA, Lim J, Brown LN, Truong QSB, Healey G. et al. 2005. Satellite hyperspectral imaging in support of nuclear safeguards monitoring. Proceedings of the 46th Annual Meeting of the Institute for Nuclear Materials Management Northbrook, IL: Inst. Nucl. Mater. Manag. [Google Scholar]
  9. Bowers D, Selby ND. 2009. Forensic seismology and the Comprehensive Nuclear-Test-Ban Treaty. Annu. Rev. Earth Planet. Sci. 37:209–36 [Google Scholar]
  10. Campbell KM, Einhorn RJ, Reiss MB. 2004. The Nuclear Tipping Point: Why States Reconsider Their Nuclear Choices Washington, DC: Brookings Inst. [Google Scholar]
  11. Chem. Insp. Test. Inst 1992. Biodegradation and Bioaccumulation: Data of Existing Chemicals Based On the CSCL Japan. Tokyo: Jpn. Chem. Ind. Ecol.-Toxicol. Inf. Cent. [Google Scholar]
  12. Chen L, Reiss PS, Chong SY, Holden D, Jelfs KE. et al. 2014. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 13:954–60 [Google Scholar]
  13. CIA (Cent. Int. Agency) 1970. A modest suggestion for a review of the bidding. Stud. Intell. 14:128–32 [Google Scholar]
  14. CISAC (Comm. Int. Secur. Arms Control) 2005. Monitoring Nuclear Weapons and Nuclear-Explosive Material Washington, DC: Natl. Acad. Press [Google Scholar]
  15. Ciufolini I, Wheeler JA. 1995. Gravitation and Inertia Princeton, NJ: Princeton Univ. Press [Google Scholar]
  16. Cochran TB, Paine CE. 2005. The Amount of Plutonium and Highly-Enriched Uranium Needed for Pure Fission Nuclear Weapons Washington, DC: Nat. Resour. Defense Counc. [Google Scholar]
  17. Collon P, Kutschera W, Lu ZT. 2004. Tracing noble gas radionuclides in the environment. Annu. Rev. Nucl. Part. Sci. 54:39–67 [Google Scholar]
  18. Crouse DJ, Denis JO, Kelmers AD, Arnold WD, Brown KB. 1955. Amine extraction process for uranium recovery from sulfate liquors. Chem. Rep. ORN-1959, Oak Ridge Natl. Lab., Oak Ridge, TN [Google Scholar]
  19. DigitalGlobe 2013. Satellite imagery tracks mine rehabilitation in Namibia Case Study, DigitalGlobe, Westminster, CO. http://global.digitalglobe.com/sites/default/files/DG-NAMBMINE-CS-R5-NT.pdf [Google Scholar]
  20. Eguchi K, Enomoto S, Furuno K, Goldman J, Hanada H. et al. (KamLAND Collab.) 2003. First results from KamLAND: evidence for reactor antineutrino disappearance. Phys. Rev. Lett. 90:021802 [Google Scholar]
  21. Ferguson DE. 1977. Simple, quick processing plant. Intra-Lab. Corresp., Oak Ridge Natl. Lab., Oak Ridge, TN [Google Scholar]
  22. Fuji Y, Okamoto M, Kadotani H, Kakihana H. 1989. Uranium enrichment by the chemical-exchange process. Nucl. Technol. 86:282–88 [Google Scholar]
  23. Fukumatsu T, Munakata K, Tanaka K, Yamatsuki S, Nishikawa M. 1998. Removal of carbon dioxide and krypton from nuclear fuel off gas by adsorption process. Separation Phenomena in Liquids and Gases: 6th Workshop Proceedings I Yamamoto Nayoga, Jpn.: Nagoya Univ. [Google Scholar]
  24. Glaser A, Goldston RJ. 2012. Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout. Nucl. Fusion 52:043004 [Google Scholar]
  25. Grossman EM. 2010. New enrichment technology offers detectable “signatures,” advocate says. Global Security Newswire Aug. 2. http://www.nti.org/gsn/article/new-enrichment-technology-offers-detectable-signatures-advocate-says/ [Google Scholar]
  26. Habib B. 2007. Estimation of the electromagnetic radiation emitted from a small centrifuge plant. Sci. Glob. Secur. 15:31–47 [Google Scholar]
  27. Hartwig ZS, Antaya TA, Whyte DG. 2011. Nuclear heating and radiation damage studies for a compact superconducting proton cyclotron. Res. Rep. RR-11-16, Plasma Sci. Fusion Cent., Mass. Inst. Technol., Cambridge [Google Scholar]
  28. Huang RJ, Li WB, Wang YR, Wang QY, Jia WT. et al. 2014. Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography–mass spectrometry and ion chromatography approaches. Atmos. Meas. Tech. 7:2027–35 [Google Scholar]
  29. IAEA (Int. At. Energy Agency) 1987. The recovery of uranium from phosphoric acid. Tech. Rep. IAEA-TECDOC-533, IAEA, Vienna [Google Scholar]
  30. IAEA (Int. At. Energy Agency) 1999. IAEA use of wide area environmental sampling in the detection of undeclared nuclear activities. Tech. Rep. STR-321, IAEA, Vienna [Google Scholar]
  31. IAEA (Int. At. Energy Agency) 2002. IAEA Safeguards Glossary, 2001 Edition Int. Nucl. Verif. Ser. 3 Vienna: IAEA [Google Scholar]
  32. IAEA (Int. At. Energy Agency) 2009. World distribution of uranium deposits (UDEOP) with uranium deposit classification Tech. Rep. IAEA-TECDOC-1629, IAEA, Vienna [Google Scholar]
  33. Igarashi Y, Sartorius H, Miyao T, Weiss W, Katsuhiko F. et al. 2000. 85Kr and 133Xe monitoring at MRI, Tsukuba and its importance. J. Environ. Radioact. 48:191–202 [Google Scholar]
  34. Jarc DA, Schieman RG. 1985. Powerline considerations for variable frequency drives. Conference Record, Industry Applications Society, IEEE-IAS-1985 Annual Meeting55–60 New York: IEEE [Google Scholar]
  35. Jensen RJ, Judd OP, Sullivan JA. 1982. Separating isotopes with lasers. Los Alamos Sci. 3:2–33 [Google Scholar]
  36. Kalinowski MB, Pistner C. 2006. Isotopic signature of atmospheric xenon released from light water reactors. J. Environ. Radioact. 88:215–35 [Google Scholar]
  37. Kalinowski MB, Tuma MP. 2009. Global radioxenon emission inventory based on nuclear power reactor reports. J. Environ. Radioact. 100:58–70 [Google Scholar]
  38. Kemp RS. 2005. Nuclear proliferation with particle accelerators. Sci. Glob. Secur. 13:183–207 [Google Scholar]
  39. Kemp RS. 2006. On the feasibility of safeguarding uranium mines. Nonprolif. Rev. 13:417–25 [Google Scholar]
  40. Kemp RS. 2008a. A performance estimate for the detection of undeclared nuclear-fuel reprocessing by atmospheric 85Kr. J. Environ. Radioact. 99:1341–48 [Google Scholar]
  41. Kemp RS. 2008b. Initial analysis of the detectability of UO2F2 aerosols produced by UF6 released from uranium conversion plants. Sci. Glob. Secur. 16:115–25 [Google Scholar]
  42. Kemp RS. 2010a. Nonproliferation strategy in the centrifuge age. PhD Diss., Woodrow Wilson Sch. Public Int. Aff., Princeton Univ., Princeton, NJ [Google Scholar]
  43. Kemp RS. 2010b. Source terms for routine UF6 emissions. Sci. Glob. Secur. 18:119–25 [Google Scholar]
  44. Kemp RS. 2014. The nonproliferation emperor has no clothes: the gas centrifuge, supply-side controls, and the future of nuclear proliferation. Int. Secur. 38:39–78 [Google Scholar]
  45. Kips RS, Kristo MJ. 2009. Investigation of chemical changes in uranium oxyfluoride particles using secondary ion mass spectrometry. J. Radioanal. Nucl. Chem. 282:1031–35 [Google Scholar]
  46. Kips RS, Kristo MJ, Hutcheon ID. 2012. Action sheet 36 final report. Rep. LLNL-TR-534211, Lawrence Livermore Natl. Lab., Livermore, CA [Google Scholar]
  47. Kopeikin VI. 2012. Flux and spectrum of reactor antineutrinos. Phys. At. Nucl. 75:143–52 [Google Scholar]
  48. Krejci J, Zeman T, Hrad J. 2014. Impulse noise considerations related to data transmission over high-voltage lines. Elektron. Elektrotech. 20:68–71 [Google Scholar]
  49. Lasserre T, Fechner M, Mention G, Reboulleau R, Cribier M. et al. 2010. SNIF: a futuristic neutrino probe for undeclared nuclear fission reactors. arXiv:1011.3850v1
  50. Learned JG. 2004. Neutrinos and arms control: thinking big about detection of neutrinos from reactors at long distances Tech. Rep., Dep. Phys. Astron., Univ. Hawaii, Manoa. http://www.phys.hawaii.edu/∼jgl/post/gigaton_array.pdf [Google Scholar]
  51. Leslie R, Riggs P, Bragin V, Truong QSB, Borstad GA. et al. 2002. Satellite imagery for safeguards purposes: utility of panchromatic and multispectral imagery for verification of remote uranium mines. Presented at Annu. Meet. Inst. Nucl. Mater. Manag., 43rd, June 23–27, Orlando, FL [Google Scholar]
  52. Lim J, Borstad GA, Brown LN, Truong QSB. 2006. A systematic approach to hyperspectral interpretation of uranium mines. Proceedings of the 47th Annual Meeting of the Institute for Nuclear Materials Management. Northbrook, IL: Inst. Nucl. Mater. Manag. [Google Scholar]
  53. Long JT. 1978. Engineering for Nuclear Fuel Reprocessing. La Grange Park, IL: Am. Nucl. Soc. [Google Scholar]
  54. Maomi S, Hunihiko T, Tetsuya M. 1981. The chromatographic uranium enrichment process by Asahi Chemical. Am. Inst. Chem. Eng. Symp. Ser. 78:41–48 [Google Scholar]
  55. Nabiev SS, Palkina LA. 2014. Current trends in the development of remote methods of detecting radioactive and highly toxic substances. The Atmosphere and Ionosphere VL Bychkov, GV Golubkov, AI Nikitin 113–200 Cham, Switz: Springer [Google Scholar]
  56. Namestnikov D. 2007. Three-channel detector based on DFB InGaAs lasers for monitoring purposes PhD Thesis, Moscow Power Eng. Inst., Natl. Res. Univ., Moscow [Google Scholar]
  57. OECD (Organ. Econ. Co-op. Dev.) 2004a. CAS No. 126-73-8: tributyl phosphate OECD Existing Chemicals Database, updated July 2004. http://webnet.oecd.org/hpv/ui/SIDS_Details.aspx?id=a06f42ff-9afb-4997-99f4-96939810a4e6 [Google Scholar]
  58. OECD (Organ. Econ. Co-op. Dev.) 2004b. CAS No. 107-66-4: dibutyl phosphate OECD Existing Chemicals Database, updated July 2004. http://webnet.oecd.org/hpv/ui/SIDS_Details.aspx?id=0bbf8349-30cd-4f6b-a256-12602a6b3b59 [Google Scholar]
  59. OECD (Organ. Econ. Co-op. Dev.) 2011. CAS No. 108-10-1: methyl isobutyl ketone OECD Existing Chemicals Database, updated March 2011. http://webnet.oecd.org/hpv/ui/SIDS_Details.aspx?id=42e15215-0b5d-4123-94c4-bae1556212f4 [Google Scholar]
  60. OECD NEA (Organ. Econ. Co-op. Dev. Nucl. Energy Agency), IAEA (Int. At. Energy Agency) 2012. Uranium 2011: Resources, Production and Demand Paris: OECD [Google Scholar]
  61. Packard RE, Vitale S. 1992. Principles of superfluid-helium gyroscopes. Phys. Rev. B 46:3540–49 [Google Scholar]
  62. Probasco KM, Birnbaum JC, Maughan AD. 2002. Potential signatures of semi-volatile compounds associated with nuclear processing. Rep. PNNL-13922, Pac. Northwest Natl. Lab., Richland, WA [Google Scholar]
  63. Ricciardi MV, Armbruster P, Benlliure J, Bernas M, Boudard A. et al. 2006. Light nuclides produced in the proton-induced spallation of 238U at 1 GeV. Phys. Rev. C 73:014607 [Google Scholar]
  64. Richards PG, Zavales J. 1990. Seismic discrimination of nuclear explosions. Annu. Rev. Earth Planet. Sci. 18:257–86 [Google Scholar]
  65. Richelson J. 2006. Spying On the Bomb: American Nuclear Intelligence from Nazi Germany to Iran and North Korea New York: Norton [Google Scholar]
  66. Ronander E, Strydom HJ, Viljoen J. 2012. ASP separation technology for isotope and gas separation. Separation Phenomena in Liquids and Gases: 12th Workshop Proceedings A Petit. Paris: CEA [Google Scholar]
  67. Ross JO. 2010. Simulation of atmospheric krypton-85 transport to assess the detectability of clandestine nuclear reprocessing. Rep. Earth Syst. Sci. IAEA-CN-184/034, IAEA, Vienna [Google Scholar]
  68. Savukov IM, Seltzer SJ, Romalis MV, Sauer KL. 2005. Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95:063004 [Google Scholar]
  69. Taylor G, Farrington V, Woods P, Ring R, Molloy R. 2004. Review of environmental impacts of the acid in-situ leach uranium mining process. Client Rep. to the Environmental Protection Authority of the South Australian Government, CSIRO (Commonw. Sci. Ind. Res. Org.) Land and Water, Clayton South, Victoria, Aust. [Google Scholar]
  70. Taylor TB. 1975. Nuclear safeguards. Annu. Rev. Nucl. Sci. 25:407–21 [Google Scholar]
  71. Thiolliere N, Zanini L, David JC, Eikenberg J, Guertin A. et al. 2011. Gas production in the MEGAPIE spallation target. ANIMA 2011: Proceedings of the 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and Their Applications. Piscataway, NJ: IEEE [Google Scholar]
  72. Truong QSB, Borstad GA, Staenz K, Neville R, Leslie R. et al. 2003. Multispectral and hyperspectral imagery for safeguards and verification of remote uranium mines Presented at Annu. Meet. Inst. Nucl. Mater. Manag., 44th, July 13–17, Phoenix, AZ [Google Scholar]
  73. US Congr. OTA (Off. Technol. Assess.) 1995. Environmental monitoring for nuclear safeguards Rep. OTA-BP-ISS-168, OTA, Washington, DC [Google Scholar]
  74. US DOE (US Dep. Energy) 2005. Specification for HEPA filters used by DOE contractors. DOE Tech. Stand. DOE-STD-3020-2005, US DOE, Washington, DC [Google Scholar]
  75. US EIA (US Energy Inf. Admin.) 2006. Table C3A: Consumption and gross energy intensity for sum of major fuels for all buildings, 2003. Commercial Building Energy Consumption Survey, 2003 Washington, DC: US EIA [Google Scholar]
  76. US GAO (US Gen. Account. Off.) 1978. Quick and secret construction of plutonium reprocessing plants: a way to nuclear weapons proliferation? Rep. EMD-78-104, US GAO, Washington, DC [Google Scholar]
  77. Van Neste CW, Senesac LR, Thundat T. 2008. Standoff photoacoustic spectroscopy. Appl. Phys. Lett. 92:234102 [Google Scholar]
  78. Villani S. 1979. Uranium Enrichment Berlin: Springer-Verlag [Google Scholar]
  79. Villani S. 1984. Progress in uranium enrichment. Naturwissenschaften 71:115–23 [Google Scholar]
  80. Walters M, Baroody T, Berry W. 2008. Technologies for uranium recovery from phosphoric acid Presented at Clearwater 2008: Annu. Conv. Phosphate Fertil. Sulfuric Acid Technol., AIChE Centr. Fla. Sect., June 7, Clearwater Beach, FL [Google Scholar]
  81. Wang F, Chen Y, Zhao Y, Zhang Y, Wang T. et al. 2013. Primary studies on particle recovery of swipe samples for nuclear safeguards. J. Radioanal. Nucl. Chem. 298:1865–69 [Google Scholar]
  82. Webb J. 1949. The fogging of photographic film by radioactive contaminants in cardboard packaging materials. Phys. Rev. 76:375–80 [Google Scholar]
  83. Whitaker JM. 2005. Uranium enrichment plant characteristics—a training manual for the IAEA. Train. Man. ORNL/TM-2005/43, Oak Ridge Natl. Lab., Oak Ridge, TN [Google Scholar]
  84. Wogman NA. 2013. Prospects for the introduction of wide area monitoring using environmental sampling for proliferation detection. J. Radioanal. Nucl. Chem. 296:1071–77 [Google Scholar]
  85. Wymer DG, Haridasan PP. IAEA (Int. At. Energy Agency) 2013. Radiation protection and management of NORM residues in the phosphate industry Saf. Rep. 78, IAEA, Vienna [Google Scholar]
  86. Yönak SH, Dowling DR. 2003. Gas-phase generation of photoacoustic sound in an open environment. J. Acoust. Soc. Am. 114:3167 [Google Scholar]
  87. Ziegler CA, Jacobson D. 1995. Spying Without Spies: Origins of America's Secret Nuclear Surveillance System Westport, CT: Praeger [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error