In order to better understand the effect of CO on the Earth system in the future, geologists may look to CO-induced environmental change in Earth's past. Here we describe how CO can be reconstructed using the boron isotopic composition (δ11B) of marine calcium carbonate. We review the chemical principles that underlie the proxy, summarize the available calibration data, and detail how boron isotopes can be used to estimate ocean pH and ultimately atmospheric CO in the past. δ11B in a variety of marine carbonates shows a coherent relationship with seawater pH, in broad agreement with simple models for this proxy. Offsets between measured and predicted δ11B may in part be explained by physiological influences, though the exact mechanisms of boron incorporation into carbonate remain unknown. Despite these uncertainties, we demonstrate that δ11B may provide crucial constraints on past ocean acidification and atmospheric CO.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adkins JF, Boyle EA, Curry WB, Lutringer A. 2003. Stable isotopes in deep-sea corals and a new mechanism for “vital effects. Geochim. Cosmochim. Acta 67:1129–43 [Google Scholar]
  2. Aggarwal JK, Sheppard D, Mezger K, Pernicka E. 2003. Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: origin of boron in the Ngawha geothermal system, New Zealand. Chem. Geol. 199:331–42 [Google Scholar]
  3. Allen KA, Hönisch B, Eggins SM, Rosenthal Y. 2012. Environmental controls on B/Ca in calcite tests of the tropical planktic foraminifer species Globigerinoides ruber and Globigerinoides sacculifer. Earth Planet. Sci. Lett.351–352270–80
  4. Allen KA, Hönisch B, Eggins SM, Yu J, Spero HJ, Elderfield H. 2011. Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa. Earth Planet. Sci. Lett. 309:291–301 [Google Scholar]
  5. Anand P, Elderfield H, Conte M. 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18:1050 [Google Scholar]
  6. Anderson OR, Faber WW. 1984. An estimation of calcium carbonate deposition rate in a planktonic foraminifer Globigerinoides sacculifer using 45Ca as a tracer: a recommended procedure for improved accuracy. J. Foraminif. Res. 14:303–8 [Google Scholar]
  7. Aston FW. 1920. The mass-spectra of chemical elements. Philos. Mag. 39:611–25 [Google Scholar]
  8. Babila TL, Rosenthal Y, Conte MH. 2014. Evaluation of the biogeochemical controls on B/Ca of Globigerinoides ruber white from the Oceanic Flux Program, Bermuda. Earth Planet. Sci. Lett. 404:67–76 [Google Scholar]
  9. Badger MPS, Lear CH, Pancost RD, Foster GL, Bailey T. et al. 2013a. CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography 28:42–53 [Google Scholar]
  10. Badger MPS, Schmidt DN, Mackensen A, Pancost RD. 2013b. High resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3 to 2.8 Ma). Philos. Trans. R. Soc. A 347:20130094 [Google Scholar]
  11. Barth S. 1993. Boron isotope variations in nature: a synthesis. Geol. Rundsch. 82:640–51 [Google Scholar]
  12. Bartoli G, Hönisch B, Zeebe R. 2011. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere Glaciations. Paleoceanography 26:PA4213 [Google Scholar]
  13. Bereiter B, Eggleson S, Schmitt J, Nehrbass-Ahles C, Stocker TF. et al. 2015. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42:542–49 [Google Scholar]
  14. Böhm F, Eisenhauer A, Tang J, Dietzel M, Krabbenhöft A. et al. 2012. Strontium isotope fractionation of planktic foraminifera and inorganic calcite. Geochim. Cosmochim. Acta 93:300–14 [Google Scholar]
  15. Branson O, Kaczmarek K, Redfern SAT, Misra S, Langer G. et al. 2015. The coordination and distribution of B in foraminiferal calcite. Earth Planet. Sci. Lett. 416:67–72 [Google Scholar]
  16. Byrne B, Goldblatt C. 2013. Radiative forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett. 41:152–60 [Google Scholar]
  17. Carpenter SJ, Lohmann KC. 1992. Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. Geochim. Cosmochim. Acta 56:1837–49 [Google Scholar]
  18. Catanzaro EJ, Champion CE, Garner EL, Marinenko G, Sappenfield KM, Shields WR. 1970. Boric assay; isotopic, and assay standard reference materials Spec. Publ 260–17 Natl. Bur. Stand. Washington, DC:
  19. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V. et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen 465–570 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  20. Cusack M, Kamenos NA, Rollion-Bard C, Tricot G. 2015. Red coralline algae assessed as marine pH proxies using 11B MAS NMR. Sci. Rep. 5:8175 [Google Scholar]
  21. de Nooijer LJ, Spero HJ, Erez J, Bijma J, Reichart GJ. 2014. Biomineralization in perforate foraminifera. Earth-Sci. Rev. 135:48–58 [Google Scholar]
  22. de Nooijer LJ, Toyufuku T, Kitazato H. 2009. Foraminifera promote calcification by elevating their intracellular pH. PNAS 106:15374–78 [Google Scholar]
  23. DePaolo DJ. 2011. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Acta 75:1039–56 [Google Scholar]
  24. Dickson AG. 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. 37:755–66 [Google Scholar]
  25. Dissard D, Douville E, Reynaud S, Julliet-Leclerc A, Montagna P. et al. 2012. Light and temperature effects on δ11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments. Biogeosciences 9:4589–605 [Google Scholar]
  26. Douville E, Paterne M, Cabioch G, Louvat P, Gaillardet J. et al. 2010. Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites). Biogeosciences 7:2445–59 [Google Scholar]
  27. Foster GL. 2008. Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271:254–66 [Google Scholar]
  28. Foster GL, Hönisch B, Paris G, Dwyer GS, Rae JWB. et al. 2013. Interlaboratory comparison of boron isotope analysis of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358:1–14 [Google Scholar]
  29. Foster GL, Lear CH, Rae JWB. 2012. The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet. Sci. Lett. 341243–54
  30. Foster GL, Pogge von Strandmann PAE, Rae JWB. 2010. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11:Q08015 [Google Scholar]
  31. Foster GL, Sexton PF. 2014. Enhanced carbon dioxide outgassing from the eastern equatorial Atlantic during the last glacial. Geology 42:1003–6 [Google Scholar]
  32. Gabitov RI, Rollion-Bard C, Aradhna T, Sadekov A. 2014. In situ study of boron partitioning between calcite and fluid at different crystal growth rates. Geochim. Cosmochim. Acta 137:81–92 [Google Scholar]
  33. Gattuso JP, Magnan A, Bille R, Cheung WWL, Howes EL. et al. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emission scenarios. Science 349: doi:10.1126/science.aac4722 [Google Scholar]
  34. Gay-Lussac JL, Thenard LJ. 1808. Sur la décomposition et la recomposition de l'acide boracique. Ann. Chim. 68:169–74 [Google Scholar]
  35. Glas MS, Fabricius KE, de Beer D, Uthicke S. 2012. The O2, pH and Ca2+ microenvironment of benthic foraminifera in a high CO2 world. PLOS ONE 7:e50010 [Google Scholar]
  36. Greenop R, Foster GL, Wilson PA, Lear CH. 2014. Middle Miocene climate instability associated with high-amplitude CO2 variability. Paleoceanography 29:845–53 [Google Scholar]
  37. Guerrot C, Millot R, Robert M, Negrel P. 2011. Accurate and high-precision determination of boron isotopic ratios at low concentration by MC-ICP-MS (Neptune). Geostand. Geoanal. Res. 35:275–84 [Google Scholar]
  38. Hain MP, Sigman DM, Haug GH. 2010. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cylces 24:GB4023 [Google Scholar]
  39. Hain MP, Sigman DM, Higgins JA, Haug GH. 2015. The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: implications for Eocene and Cretaceous ocean carbon chemistry and buffer. Glob. Biogeochem. Cycles 29:517–33 [Google Scholar]
  40. Halliday AN, Lee DC, Christensen JN, Rehkamper M, Yi W. et al. 1998. Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim. Cosmochim. Acta 62:919–40 [Google Scholar]
  41. He M, Xiao Y, Jin Z, Liu W, Ma Y. et al. 2013a. Quantification of boron incorporation into synthetic calcite under controlled pH and temperature conditions using a differential solubility technique. Chem. Geol.337–3867–74
  42. He M, Xiao Y, Jin Z, Ma Y, Xiao J. et al. 2013b. Accurate and precise determination of boron isotopic ratios at low concentration by positive thermal ionization mass spectrometry using static multicollection of CS2BO2+. Anal. Chem. 85:6248–53 [Google Scholar]
  43. Hemming NG, Hanson GN. 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56:537–43 [Google Scholar]
  44. Hemming NG, Hanson GN. 1994. A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry. Chem. Geol. 114:147–56 [Google Scholar]
  45. Hemming NG, Hönisch B. 2007. Boron isotopes in marine carbonate sediments and the pH of the ocean. Dev. Mar. Geol. 1:717–34 [Google Scholar]
  46. Hemming NG, Reeder RJ, Hanson GN. 1995. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim. Cosmochim. Acta 59:371–79 [Google Scholar]
  47. Hemming NG, Reeder RJ, Hart SR. 1998. Growth-step-selective incorporation of boron on the calcite surface. Geochim. Cosmochim. Acta 62:2915–22 [Google Scholar]
  48. Henehan MJ, Foster GL, Rae JWB, Prentice KC, Erez J. et al. 2015. Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system: a case study of Globigerinoides ruber. Geochem. Geophys. Geosyst. 16:1052–69 [Google Scholar]
  49. Henehan MJ, Rae JWB, Foster GL, Erez J, Prentice KC. et al. 2013. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364:111–22 [Google Scholar]
  50. Hobbs MY, Reardon EJ. 1999. Effect of pH on boron coprecipitation by calcite: further evidence for nonequilibrium partitioning of trace elements. Geochim. Cosmochim. Acta 63:1013–21 [Google Scholar]
  51. Holmen K. 1992. The global carbon cycle. Glob. Biogeochem. Cycles 50:239–62 [Google Scholar]
  52. Hönisch B, Bijma J, Russell AD, Spero HJ, Palmer MR. et al. 2003. The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells. Mar. Micropaleontol. 49:87–96 [Google Scholar]
  53. Hönisch B, Hemming NG. 2005. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet. Sci. Lett. 236:305–14 [Google Scholar]
  54. Hönisch B, Hemming NG, Archer D, Siddal M, McManus JF. 2009. Atmospheric carbon dioxide concentration across the Mid-Pleistocene Transition. Science 324:1551–54 [Google Scholar]
  55. Hönisch B, Hemming NG, Grottoli AG, Mat A, Hanson GN, Bijma J. 2004. Assessing scleractinian corals as recorders of paleo-pH: empirical calibration and vital effects. Geochim. Cosmochim. Acta 68:3675–85 [Google Scholar]
  56. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ. et al. 2012. The geological record of ocean acidification. Science 335:1058–63 [Google Scholar]
  57. Horita J, Zimmermann H, Holland HD. 2002. Chemical evolution of seawater during the Phanerozoic: implications form the record of marine evaporites. Geochim. Cosmochim. Acta 66:3733–56 [Google Scholar]
  58. Kaczmarek K, Langer G, Nehrke G, Horn I, Misra S. et al. 2015. Boron incorporation in foraminifera Amphistegina lessonii under a decoupled carbonate chemistry. Biogeosciences 12:1753–63 [Google Scholar]
  59. Kakihana H, Kotaka M. 1977. Equilibrium constants for boron isotope-exchange reactions. Bull. Res. Lab. Nucl. Reactors 2:1–12 [Google Scholar]
  60. Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M. 1977. Fundamental studies on the ion-exchange separation of boron isotopes. Bull. Chem. Soc. Jpn. 50:158–63 [Google Scholar]
  61. Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC. et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–91 [Google Scholar]
  62. Kiss E. 1988. Ion-exchange separation and spectrophotometric determination of boron in geological materials. Anal. Chim. Acta 211:243–56 [Google Scholar]
  63. Klochko K, Cody GD, Tossell JA, Dera P, Kaufman AJ. 2009. Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR. Geochim. Cosmochim. Acta 73:1890–900 [Google Scholar]
  64. Klochko K, Kaufman AJ, Yoa W, Byrne RH, Tossell JA. 2006. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248:261–70 [Google Scholar]
  65. Kotaka M, Kakihana H. 1977. Thermodynamic isotope effect of trigonal planar and tetrahedral molecules. Bull. Res. Lab. Nucl. Reactors 2:13–29 [Google Scholar]
  66. Krief S, Hendy EJ, Fine M, Yam R, Meibom A. et al. 2010. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74:4988–5001 [Google Scholar]
  67. Lea DW, Martin PA, Chan DA, Spero HJ. 1995. Calcium uptake and calcification rate in the planktonic foraminifer Orbulina universa. J. Foraminifer. Res. 25:14–23 [Google Scholar]
  68. Lecuyer C, Grandjean P, Reynard B, Albarede F, Telouk P. 2002. 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem. Geol. 186:45–55 [Google Scholar]
  69. Lee K, Kim TW, Byrne RH, Millero FJ, Feely RA, Liu YM. 2010. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74:1801–11 [Google Scholar]
  70. Leeman WP, Sisson VB. 1996. Geochemistry of boron and its implications for crustal and mantle processes. Boron: Mineralogy, Petrology and Geochemistry ES Grew, LM Anovitz 645–95 Washington, DC: Mineral. Soc. Am. [Google Scholar]
  71. Leeman WP, Sisson VB, Reid MR. 1992. Boron geochemistry of the lower crust: evidence from granulite terranes and deep crustal xenoliths. Geochim. Cosmochim. Acta 56:775–88 [Google Scholar]
  72. Lemarchand D, Gaillardet J, Gopel C, Manhes G. 2002a. An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chem. Geol. 182:323–34 [Google Scholar]
  73. Lemarchand D, Gaillardet J, Lewin E, Allegre CJ. 2002b. Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem. Geol. 190:123–40 [Google Scholar]
  74. Lisiecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003 [Google Scholar]
  75. Liu Y, Liu W, Peng Z, Xiao Y, Wei G. et al. 2009. Instability of seawater pH in the South China Sea during the mid-late Holocene: evidence from boron isotopic composition of corals. Geochim. Cosmochim. Acta 73:1264–72 [Google Scholar]
  76. Liu Y, Peng Z, Zhou R, Song S, Liu W. et al. 2014. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2. Sci. Rep. 4:5148 [Google Scholar]
  77. Liu Y, Tossell JA. 2005. Ab initio molecular orbital calculations for boron isotope fractionations on boric acids and borates. Geochim. Cosmochim. Acta 69:3995–4006 [Google Scholar]
  78. Louvat P, Bouchez J, Paris G. 2010. MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): optimisation and application to boron in seawater and carbonate samples. Geostand. Geoanal. Res. 35:75–88 [Google Scholar]
  79. Martínez-Botí MA, Foster GL, Chalk TB, Rohling EJ, Sexton PF. et al. 2015a. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:49–54 [Google Scholar]
  80. Martínez-Botí MA, Marino G, Foster GL, Ziveri P, Henehan MJ. et al. 2015b. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518:219–22 [Google Scholar]
  81. Mavromatis V, Montouillout V, Noireaux J, Gaillardet J, Schott J. 2015. Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. Geochim. Cosmochim. Acta 150:299–313 [Google Scholar]
  82. McCulloch MT, Falter J, Trotter J, Montagna P. 2012. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Climate Change 2:623–27 [Google Scholar]
  83. McCulloch MT, Holcomb M, Rankenburg K, Trotter J. 2014. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates. Rapid Commun. Mass Spectrom. 28:2704–12 [Google Scholar]
  84. McDonough WF, Sun S. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  85. McMullen CC, Gragg CB, Thode HG. 1961. Absolute ratio B11/B10 in Searles Lake borax. Geochim. Cosmochim. Acta 23:147–49 [Google Scholar]
  86. Misra S, Froelich PN. 2012. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335:818–23 [Google Scholar]
  87. Misra S, Owen R, Kerr J, Greaves M, Elderfield H. 2014. Determination of δ11B by HR-ICP-MS from mass limited samples: application to natural carbonates and water samples. Geochim. Cosmochim. Acta 140:531–52 [Google Scholar]
  88. Nehrke G, Keul N, Langer G, de Nooijer LJ, Bijma J, Meibom A. 2013. A new model for biomineralization and trace-element signatures of Foraminifera test. Biogeosciences 10:6759–67 [Google Scholar]
  89. Ni Y, Foster GL, Bailey T, Elliott T, Schmidt DN. et al. 2007. A core top assessment of proxies for the ocean carbonate system in surface-dwelling foraminifers. Paleoceanography 22:PA3212 [Google Scholar]
  90. Nir O, Vengosh A, Harkness JS, Dwyer GS, Lahav O. 2015. Direct measurement of the boron isotope fractionation factor: reducing the uncertainty in reconstructing ocean paleo-pH. Earth Planet. Sci. Lett. 414:1–5 [Google Scholar]
  91. Noireaux J, Mavromatis V, Gaillardet J, Schott J, Montouillout V. et al. 2015. Crystallographic control on the boron isotope paleo-pH proxy. Earth Planet. Sci. Lett. 430:398–407 [Google Scholar]
  92. Oi T. 2000. Ab initio molecular orbital calculations of reduced partition function ratios of polyboric acids and polyborate anions. Z. Naturforsch. 55:623–28 [Google Scholar]
  93. Pagani M, Lemarchand D, Spivack A, Gaillardet J. 2005. A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient pH estimates. Geochim. Cosmochim. Acta 69:953–61 [Google Scholar]
  94. Palmer MR, Pearson PN, Cobb SJ. 1998. Reconstructing past ocean pH-depth profiles. Science 282:1468–71 [Google Scholar]
  95. Palmer MR, Swihart GH. 1996. Boron isotope geochemistry: an overview. Boron: Mineralogy, Petrology and Geochemistry ES Grew, LM Anovitz 709–44 Washington, DC: Mineral. Soc. Am. [Google Scholar]
  96. Panchuk K, Ridgwell AJ, Kump LR. 2008. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36:315–18 [Google Scholar]
  97. Paris G, Gaillardet J, Louvat P. 2010. Geological evolution of seawater boron isotopic composition recorded in evaporites. Geology 38:1035–38 [Google Scholar]
  98. Park H, Schlesinger WH. 2002. Global biogeochemical cycle of boron. Glob. Biogeochem. Cycles 16:1072 [Google Scholar]
  99. Pearson PN, Foster GL, Wade BS. 2009. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461:1110–13 [Google Scholar]
  100. Pearson PN, Palmer MR. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–99 [Google Scholar]
  101. Penman DE, Hönisch B, Zeebe R, Thomas E, Zachos JC. 2014. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29:357–69 [Google Scholar]
  102. Rae JWB, Foster GL, Schmidt DN, Elliott T. 2011. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302:403–13 [Google Scholar]
  103. Rae JWB, Sarntheim M, Foster GL, Ridgwell A, Grootes PM, Elliott T. 2014. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography 29:645–67 [Google Scholar]
  104. Raitzsch, Hönisch B. 2013. Cenozoic boron isotope variations in benthic foraminifers. Geology 41:591–94 [Google Scholar]
  105. Ramakumar KL, Parab AR, Khodade PS, Almaula AI, Chitambar SA, Jain HC. 1985. Determination of isotopic composition of boron. J. Radioanal. Nucl. Chem. 94:53–61 [Google Scholar]
  106. Ridgwell AJ. 2005. A Mid Mesozoic Revolution in the regulation of ocean chemistry. Mar. Geol. 217:339–57 [Google Scholar]
  107. Rink S, Kuhl M, Bijma J, Spero HJ. 1998. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar. Biol. 131:583–95 [Google Scholar]
  108. Rohling EJ, Sluijs A, Dijkstra HA, Kohler P, Van de Wal RSW. et al. 2012. Making sense of palaeoclimate sensitivity. Nature 491:683–91 [Google Scholar]
  109. Rollion-Bard C, Blamart D, Trebosc J, Tricot G, Mussi A, Cuif JP. 2011. Boron isotopes as pH proxy: a new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS. Geochim. Cosmochim. Acta 75:1003–12 [Google Scholar]
  110. Rollion-Bard C, Erez J. 2010. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: implications for δ11B vital effects and paleo-pH reconstructions. Geochim. Cosmochim. Acta 74:1530–36 [Google Scholar]
  111. Ruiz-Agudo E, Putnis CV, Kowacz M, Ortega-Huertas M, Putnis A. 2012. Boron incorporation into calcite during growth: implications for the use of boron in carbonates as a pH proxy. Earth Planet. Sci. Lett.345–489–17
  112. Rustad JR, Bylaska EJ. 2007. Ab initio calculation of isotopic fractionation in B(OH)3(aq) and BOH4(aq). J. Am. Chem. Soc. 129:2222–23 [Google Scholar]
  113. Rustad JR, Bylaska EJ, Jackson VE, Dixon DA. 2010. Calculation of boron-isotope fractionation between B(OH)3(aq) and B(OH)4(aq). Geochim. Cosmochim. Acta 74:2843–50 [Google Scholar]
  114. Sanchez-Valle C, Reynard B, Daniel I, Lecuyer C, Martinez I, Chervin JC. 2005. Boron isotopic fractionation between minerals and fluids: new insights from in situ high pressure-high temperature vibrational spectroscopic data. Geochim. Cosmochim. Acta 69:4301–13 [Google Scholar]
  115. Sanyal A, Bijman J, Spero H, Lea DW. 2001. Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: implications for the boron isotope paleo-pH proxy. Paleoceanography 16:515–19 [Google Scholar]
  116. Sanyal A, Hemming NG, Broecker WS, Lea DW, Spero HJ, Hanson GN. 1996. Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments. Paleoceanography 11:513–17 [Google Scholar]
  117. Sanyal A, Hemming NG, Hanson GN, Broecker WS. 1995. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373:234–36 [Google Scholar]
  118. Sanyal A, Nugent M, Reeder RJ, Bijma J. 2000. Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim. Cosmochim. Acta 64:1551–55 [Google Scholar]
  119. Seki O, Foster GL, Schmidt DN, Mackensen A, Kawamura K, Pancost RD. 2010. Alkenone and boron based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292:201–11 [Google Scholar]
  120. Sen S, Stebbins JF, Hemming NG, Ghosh B. 1994. Coordination environments of B impurities in calcite and aragonite polymorphs: a 11B MAS NMR study. Am. Mineral. 79:819–25 [Google Scholar]
  121. Shaw DM, Cramer JJ, Higgins MD, Truscott MG. 1986. Composition of the Canadian Precambrian shield and the continental crust of the earth. The Nature of the Lower Continental Crust DA Dawson, DA Carswell, J Hall, Wedephol 275–82 London: Geol. Soc. [Google Scholar]
  122. Sinclair DJ, Kinsley LPJ, McCulloch MT. 1998. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim. Cosmochim. Acta 62:1889–901 [Google Scholar]
  123. Spivack AJ, You CF, Smith HJ. 1993. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr. Nature 363:149–51 [Google Scholar]
  124. Swihart GH. 1996. Instrumental techniques for boron isotope analysis. Boron: Mineralogy, Petrology and Geochemistry ES Grew, LM Anovitz 845–62 Washington, DC: Mineral. Soc. Am. [Google Scholar]
  125. Swihart GH, Moore PB, Callis EL. 1986. Boron isotopic composition of marine and nonmarine evaporite borates. Geochim. Cosmochim. Acta 50:1297–301 [Google Scholar]
  126. Takahashi K, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA. et al. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res. 56:554–77 [Google Scholar]
  127. Toggweiler JR. 1999. Variation of atmospheric CO2 by ventilation of the oceans’ deepest water. Paleoceanography 14:571–88 [Google Scholar]
  128. Tossell JA. 2006. Boric acid adsorption on humic acids: ab initio calculation of structures, stabilities, 11B NMR and 11B, 10B isotopic fractionations of surface complexes. Geochim. Cosmochim. Acta 70:5089–103 [Google Scholar]
  129. Trotter J, Montagna P, McCulloch MT, Silenzi S, Reynaud S. et al. 2011. Quantifying the pH “vital effect” in temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet. Sci. Lett. 303:163–73 [Google Scholar]
  130. Tyrrell T, Zeebe RE. 2004. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68:3521–30 [Google Scholar]
  131. Uchikawa J, Penman DE, Zachos JC, Zeebe RE. 2015. Experimental evidence for kinetic effects on B/Ca in synthetic calcite: Implications for potential B(OH)4 and B(OH)3 incorporation. Geochim. Cosmochim. Acta 150:171–91 [Google Scholar]
  132. Urey HC. 1948. Oxygen isotopes in nature and the laboratory. Science 108:489–96 [Google Scholar]
  133. Vengosh A, Chivas AR, McCulloch MT. 1989. Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chem. Geol. 79:333–43 [Google Scholar]
  134. Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT. 1991. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim. Cosmochim. Acta 55:2901–10 [Google Scholar]
  135. Venn AA, Tambutte E, Holcomb M, Laurent J, Allemand D, Tambutte S. 2013. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. PNAS 110:1634–39 [Google Scholar]
  136. Walder AJ, Freedman PA. 1992. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J. Anal. Mass Spectrom. 7:571–75 [Google Scholar]
  137. Wang BS, You CF, Huang KF, Wu SF, Aggarwal SK. et al. 2010. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta 82:1378–84 [Google Scholar]
  138. Watson EB. 2004. A conceptual model for near-surface kinetic controls on the trace-element and stable isotope compositions of abiogenic calcite crystals. Geochim. Cosmochim. Acta 68:1473–88 [Google Scholar]
  139. Yu J, Elderfield H. 2008. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258:73–86 [Google Scholar]
  140. Yu J, Elderfield H, Hönisch B. 2007. B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography 22:PA2202
  141. Yu J, Foster GL, Elderfield H, Broecker WS, Clark E. 2010. An evaluation of benthic foraminiferal B/Ca and δ11B for deep ocean carbonate ion and pH reconstructions. Earth Planet. Sci. Lett. 293:114–20 [Google Scholar]
  142. Yu J, Thornalley DJR, Rae JWB, McCave NI. 2013. Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. Paleoceanography 28:237–52 [Google Scholar]
  143. Zeebe RE. 2005. Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)4. Geochim. Cosmochim. Acta 69:2753–66 [Google Scholar]
  144. Zeebe RE, Sanyal A, Ortiz JD, Wolf-Gladrow DA. 2001. A theoretical study of the kinetics of the boric acid–borate equilibrium in seawater. Mar. Chem. 73:113–24 [Google Scholar]
  145. Zeebe RE, Wolf-Gladrow DA. 2001. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Amsterdam: Elsevier
  146. Zeebe RE, Wolf-Gladrow DA, Bijma J, Hönisch B. 2003. Vital effects in foraminifera do not compromise the use of δ11B as a paleo-pH indicator: evidence from modeling. Paleoceanography 18:1043 [Google Scholar]
  147. Zeebe RE, Wolf-Gladrow DA, Jansen H. 1999. On the time required to establish chemical and isotopic equilibrium in the carbon dioxide system in seawater. Mar. Chem. 65:135–53 [Google Scholar]
  148. Zeebe RE, Zachos JC, Dickens GR. 2009. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nat. Geosci. 2:576–80 [Google Scholar]
  149. Zeininger H, Heumann KG. 1983. Boron isotopic ratio measurement by negative thermal ionization mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 48:377–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error