Coastal margins play a significant role in the burial of organic matter (OM) on Earth. These margins vary considerably with respect to their efficiency in OM burial and to the amounts and periodicity of their OM delivery, depending in large part on whether they are passive or active margins. In the context of global warming, these coastal regions are expected to experience higher water temperatures, changes in riverine inputs of OM, and sea level rise. Low-oxygen conditions continue to expand around the globe in estuarine regions (i.e., hypoxic zones) and shelf regions (i.e., oxygen minimum zones), which will impact the amounts and sources of OM stored in these regions. In this review, we explore how these changes are impacting the storage of OM and the preservation of sedimentary biomarkers, used as proxies to reconstruct environmental change, in coastal margins.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Airoldi L, Beck WM. 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. 45:345–405 [Google Scholar]
  2. Aller RC. 1998. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Mar. Chem. 61:143–55 [Google Scholar]
  3. Aller RC. 2004. Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor. J. Mar. Res. 62:815–935 [Google Scholar]
  4. Aller RC. 2014. Sedimentary diagenesis, depositional environments, and benthic fluxes. Treatise on Geochemistry 8 The Oceans and Marine Geochemistry, ed. MJ Mottl, H Elderfield 293–34 Amsterdam: Elsevier [Google Scholar]
  5. Altieri AH, Gedan KB. 2015. Climate change and dead zones. Glob. Change Biol. 21:1395–406 [Google Scholar]
  6. Arndt S, Jørgensen BB, LaRowe DE, Middelburg J, Pancost R, Regnier P. 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123:53–86 [Google Scholar]
  7. Baldrian P, Valášková V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32:501–21 [Google Scholar]
  8. Basse A, Zhu C, Versteegh GJM, Fischer G, Hinrichs K-U, Mollenhauer G. 2014. Distribution of intact and core tetraether lipids in water column profiles of suspended particulate matter off Cape Blanc, NW Africa. Org. Geochem. 72:1–13 [Google Scholar]
  9. Bauer JE, Cai W, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PA. 2013. The changing carbon cycle of the coastal ocean. Nature 504:61–70 [Google Scholar]
  10. Benner R, Moran MA, Hodson RE. 1986. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes. Limnol. Oceanogr. 31:89–100 [Google Scholar]
  11. Berner RA. 1989. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Glob. Planet. Change 1:97–122 [Google Scholar]
  12. Berner RA. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64 [Google Scholar]
  13. Bianchi TS. 2011. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. PNAS 108:19473–81 [Google Scholar]
  14. Bianchi TS, Allison MA. 2009. Large-river delta-front estuaries as natural “recorders” of global environmental change. PNAS 106:8085–92 [Google Scholar]
  15. Bianchi TS, Allison MA, Zhao J, Li X, Comeaux RS. et al. 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 119:7–16 [Google Scholar]
  16. Bianchi TS, Canuel EA. 2011. Chemical Biomarkers in Aquatic Ecosystems Princeton, NJ: Princeton Univ. Press
  17. Bianchi TS, DiMarco S, Cowan J, Hetland R, Chapman P. et al. 2010. The science of hypoxia in the northern Gulf of Mexico: a review. Sci. Total Environ. 408:1471–84 [Google Scholar]
  18. Bianchi TS, Engelhaupt E, Westman P, Andren T, Rolff C, Elmgren R. 2000a. Cyanobacterial blooms in the Baltic Sea: natural or human-induced?. Limnol. Oceanogr. 45:716–26 [Google Scholar]
  19. Bianchi TS, Johansson B, Elmgren R. 2000b. Breakdown of phytoplankton pigments in Baltic sediments: effects of anoxia and loss of deposit-feeding macrofauna. J. Exp. Mar. Biol. Ecol. 251:161–83 [Google Scholar]
  20. Bianchi TS, Thornton DCO, Yvon-Lewis S, King GM, Eglinton TI. et al. 2015. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system. Geophys. Res. Lett. 42:135460–67 [Google Scholar]
  21. Bingeman CW, Varner J, Martin W. 1953. The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci. Soc. Am. J. 17:34–38 [Google Scholar]
  22. Blair NE, Aller RC. 2012. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4:401–23 [Google Scholar]
  23. Blanchette R. 1991. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 29:381–98 [Google Scholar]
  24. Boynton W, Garber J, Summers R, Kemp W. 1995. Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18:285–314 [Google Scholar]
  25. Burdige DJ. 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci. Rev. 35:249–84 [Google Scholar]
  26. Burdige DJ. 2006. Geochemistry of Marine Sediments Princeton, NJ: Princeton Univ. Press
  27. Burdige D. 2011. Estuarine and coastal sediments—coupled biogeochemical cycling. Treatise on Estuarine and Coastal Science 5 Biogeochemistry RWPM Laane, JJ Middelburg 279–316 Amsterdam: Elsevier [Google Scholar]
  28. Canfield DE. 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 114:315–29 [Google Scholar]
  29. Canfield DE. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels.. Annu. Rev. Earth Planet. Sci. 33:1–36 [Google Scholar]
  30. Canfield DE. 2014. Oxygen: A Four Billion Year History Princeton, NJ: Princeton Univ. Press
  31. Canuel EA, Cammer SS, McIntosh HA, Pondell CR. 2012. Climate change impacts on the organic carbon cycle at the land-ocean interface. Annu. Rev. Earth Planet. Sci. 40:685–711 [Google Scholar]
  32. Canuel EA, Martens CS. 1996. Reactivity of recently deposited organic matter. Degradation of lipid compounds near the sediment-water interface. Geochim. Cosmochim. Acta 60:1793–806 [Google Scholar]
  33. Capone DG, Hutchins DA. 2013. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat. Geosci. 6:711–17 [Google Scholar]
  34. Caraco N, Cole J, Likens GE. 1990. A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9:277–90 [Google Scholar]
  35. Caradec S, Grossi V, Gilbert F, Guigue C, Goutx M. 2004. Influence of various redox conditions on the degradation of microalgal triacylglycerols and fatty acids in marine sediments. Org. Geochem. 35:277–87 [Google Scholar]
  36. Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG, Hietanen S. et al. 2014. Hypoxia in the Baltic Sea: biogeochemical cycles, benthic fauna, and management. Ambio 43:26–36 [Google Scholar]
  37. Chen N, Bianchi TS, McKee BA, Bland JM. 2001. Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Org. Geochem. 32:543–61 [Google Scholar]
  38. Conley DJ, Carstensen J, Ærtebjerg G, Christensen PB, Dalsgaard T. et al. 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 17:S165–84 [Google Scholar]
  39. Conley DJ, Carstensen J, Aigars J, Axe P, Bonsdorff E. et al. 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ. Sci. Technol. 45:6777–83 [Google Scholar]
  40. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP. et al. 2009. Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–15 [Google Scholar]
  41. Coolen MJ, Overmann J. 2000. Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the eastern Mediterranean Sea. Appl. Environ. Microbiol. 66:2589–98 [Google Scholar]
  42. Cowie G, Hedges J, Prahl F, de Lange G. 1995. Elemental and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect. Geochim. Cosmochim. Acta 59:33–46 [Google Scholar]
  43. Dawson KS, Schaperdoth I, Freeman KH, Macalady JL. 2013. Anaerobic biodegradation of the isoprenoid biomarkers pristane and phytane. Org. Geochem. 65:118–26 [Google Scholar]
  44. Day JW Jr., Boesch DF, Clairain EJ, Kemp GP, Laska SB. et al. 2007. Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. Science 315:1679–84 [Google Scholar]
  45. Duarte CM, Middelburg JJ, Caraco NF. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8 [Google Scholar]
  46. Eglinton TI, Eglinton G. 2008. Molecular proxies for paleoclimatology. Earth Planet. Sci. Lett. 275:1–16 [Google Scholar]
  47. Elmgren R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapp. P.-v. Réun. Cons. Int. Explor. Mer. 183:152–69 [Google Scholar]
  48. Emerson S, Hedges J. 2008. Chemical Oceanography and the Marine Carbon Cycle Cambridge, UK: Cambridge Univ. Press
  49. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR. et al. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43:1075–90 [Google Scholar]
  50. Funkey CP, Conley DJ, Reuss NS, Humborg C, Jilbert T, Slomp CP. 2014. Hypoxia sustains cyanobacteria blooms in the Baltic Sea. Environ. Sci. Technol. 48:2598–602 [Google Scholar]
  51. Gilbert R, Crookshanks S. 2009. Sediment waves in a modern high-energy glacilacustrine environment. Sedimentology 56:645–59 [Google Scholar]
  52. Glessmer MS, Eden C, Oschlies A. 2009. Contribution of oxygen minimum zone waters to the coastal upwelling off Mauritania. Prog. Oceanogr. 83:143–50 [Google Scholar]
  53. Gong C, Hollander DJ. 1999. Evidence for differential degradation of alkenones under contrasting bottom water oxygen conditions: implication for paleotemperature reconstruction. Geochim. Cosmochim. Acta 63:405–11 [Google Scholar]
  54. Gooday A, Jorissen F, Levin L, Middelburg J, Naqvi S. et al. 2009. Historical records of coastal eutrophication-induced hypoxia. Biogeosciences 6:1707–45 [Google Scholar]
  55. Gruber N. 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. R. Soc. A 369:1980–96 [Google Scholar]
  56. Guenet B, Danger M, Abbadie L, Lacroix G. 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–61 [Google Scholar]
  57. Gustafsson BG, Schenk F, Blenckner T, Eilola K, Meier HM. et al. 2012. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio 41:534–48 [Google Scholar]
  58. Haddad RI, Martens CS, Farrington JW. 1992. Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Org. Geochem. 19:205–216 [Google Scholar]
  59. Hartnett HE, Keil RG, Hedges JI, Devol AH. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–75 [Google Scholar]
  60. Hedges JI, Blanchette RA, Weliky K, Devol AH. 1988. Effects of fungal degradation on the CuO oxidation products of lignin: a controlled laboratory study. Geochim. Cosmochim. Acta 52:2717–26 [Google Scholar]
  61. Hedges JI, Keil RG. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49:81–115 [Google Scholar]
  62. Hedges JI, Keil RG. 1999. Organic geochemical perspectives on estuarine processes: sorption reactions and consequences. Mar. Chem. 65:55–65 [Google Scholar]
  63. Heider J. 2007. Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr. Chem. Biol. 11:188–94 [Google Scholar]
  64. Helly JJ, Levin LA. 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res. I 51:1159–68 [Google Scholar]
  65. Hendy IL, Kennett JP. 2003. Tropical forcing of North Pacific intermediate water distribution during Late Quaternary rapid climate change?. Quat. Sci. Rev. 22:673–89 [Google Scholar]
  66. Hendy IL, Pedersen TF. 2006. Oxygen minimum zone expansion in the eastern tropical North Pacific during deglaciation. Geophys. Res. Lett. 33:L20602 [Google Scholar]
  67. Herbert TD. 2014. Alkenone paleotemperature determinations. Treatise on Geochemistry 8 WH Schlesinger 399–433 Amsterdam: Elsevier [Google Scholar]
  68. Hoefs MJ, Rijpstra WIC, Sinninghe Damsté JS. 2002. The influence of oxic degradation on the sedimentary biomarker record I: evidence from Madeira Abyssal Plain turbidites. Geochim. Cosmochim. Acta 66:2719–35 [Google Scholar]
  69. Hopmans EC, Weijers JWH, Schefub E, Herfort L, Sinninghe Damsté JS. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224:107–16 [Google Scholar]
  70. Huguet C, de Lange GJ, Gustafsson Ö, Middelburg JJ, Sinninghe Damsté JS, Schouten S. 2008. Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochim. Cosmochim. Acta 72:6061–68 [Google Scholar]
  71. Huguet C, Kim J-H, de Lange GJ, Sinninghe Damsté JS, Schouten S. 2009. Effects of long term oxic degradation on the UK′37, TEX86 and BIT organic proxies. Org. Geochem. 40:1188–94 [Google Scholar]
  72. Ivanochko TS, Ganeshram RS, Brummer GA, Ganssen G, Jung SJ. et al. 2005. Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth Planet. Sci. Lett. 235:302–14 [Google Scholar]
  73. Jaccard SL, Galbraith ED. 2012. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5:151–56 [Google Scholar]
  74. Jenkyns H, Schouten-Huibers L, Schouten S, Sinninghe Damsté JS. 2012. Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim. Past Discuss. 7:1339–61 [Google Scholar]
  75. Jex CN, Pate GH, Blyth AJ, Spencer RGM, Hernes PJ. et al. 2014. Lignin biogeochemistry: from modern processes to Quaternary archives. Quat. Sci. Rev. 87:46–59 [Google Scholar]
  76. Karstensen J, Stramma L, Visbeck M. 2008. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77:331–50 [Google Scholar]
  77. Kastner TP, Goñi MA. 2003. Constancy in the vegetation of the Amazon Basin during the late Pleistocene: evidence from the organic matter composition of Amazon deep sea fan sediments. Geology 31:291–94 [Google Scholar]
  78. Keeling RF, Körtzinger A, Gruber N. 2010. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2:199–229 [Google Scholar]
  79. Keil RG, Dickens AF, Arnarson T, Nunn BL, Devol AH. 2004. What is the oxygen exposure time of laterally transported organic matter along the Washington Margin?. Mar. Chem. 92:157–65 [Google Scholar]
  80. Kennish MJ. 2001. Coastal salt marsh systems in the US: a review of anthropogenic impacts. J. Coast. Res. 17:731–48 [Google Scholar]
  81. Kim J, Huguet C, Zonneveld KA, Versteegh GJ, Roeder W. et al. 2009. An experimental field study to test the stability of lipids used for the TEX86 and palaeothermometers.. Geochim. Cosmochim. Acta 73:2888–98 [Google Scholar]
  82. Kirk TK, Farrell RL. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465–501 [Google Scholar]
  83. Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N. et al. 2014. How mangrove forests adjust to rising sea level. New Phytol. 202:19–34 [Google Scholar]
  84. Kuliński K, Kędra M, Legeżyńska J, Gluchowska M, Zaborska A. 2014. Particulate organic matter sinks and sources in high Arctic fjord. J. Mar. Syst. 139:27–37 [Google Scholar]
  85. Kuypers MM, Lavik G, Woebken D, Schmid M, Fuchs BM. et al. 2005. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. PNAS 102:6478–83 [Google Scholar]
  86. Kuzyakov Y, Friedel J, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32:1485–98 [Google Scholar]
  87. Lee C. 1992. Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim. Cosmochim. Acta 56:3323–35 [Google Scholar]
  88. Lengger SK, Hopmans EC, Sinninghe Damsté JS, Schouten S. 2014. Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru Margin). Geobiology 12:212–20 [Google Scholar]
  89. Lengger SK, Kraaij M, Tjallingii R, Baas M, Stuut J-B. et al. 2013. Differential degradation of intact polar and core glycerol dialkyl glycerol tetraether lipids upon post-depositional oxidation. Org. Geochem. 65:83–93 [Google Scholar]
  90. Li X, Bianchi TS, Allison MA, Chapman P, Mitra S. et al. 2012. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Mar. Chem. 145:37–52 [Google Scholar]
  91. Li X, Bianchi TS, Yang Z, Osterman LE, Allison MA. et al. 2011. Historical trends of hypoxia in Changjiang River estuary: applications of chemical biomarkers and microfossils. J. Mar. Syst. 86:57–68 [Google Scholar]
  92. Lipp JS, Hinrichs K-U. 2009. Structural diversity and fate of intact polar lipids in marine sediments. Geochim. Cosmochim. Acta 73:6816–33 [Google Scholar]
  93. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG. et al. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–09 [Google Scholar]
  94. Lückge A, Doose-Rolinski H, Khan AA, Schulz H, Von Rad U. 2001. Monsoonal variability in the northeastern Arabian Sea during the past 5000 years: geochemical evidence from laminated sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 167:273–86 [Google Scholar]
  95. Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW III. 2013. Abundant Mn(III) in porewaters is a major component of the sedimentary redox system. Science 341:875–78 [Google Scholar]
  96. Mayer LM. 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58:1271–84 [Google Scholar]
  97. Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M. et al. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9:552–60 [Google Scholar]
  98. Meile C, Van Cappellen P. 2005. Particle age distributions and O2 exposure times: timescales in bioturbated sediments. Glob. Biogeochem. Cycles 19:GB3013 [Google Scholar]
  99. Middelburg JJ. 2011. Chemoautotrophy in the ocean. Geophys. Res. Lett. 38:L24604 [Google Scholar]
  100. Middelburg JJ, Levin L. 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–93 [Google Scholar]
  101. Muri G, Wakeham SG, Pease TK, Faganeli J. 2004. Evaluation of lipid biomarkers as indicators of changes in organic matter delivery to sediments from Lake Planina, a remote mountain lake in NW Slovenia. Org. Geochem. 35:1083–93 [Google Scholar]
  102. Opsahl S, Benner R. 1995. Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications. Geochim. Cosmochim. Acta 59:4889–904 [Google Scholar]
  103. Osterman LE, Poore RZ, Swarzenski PW, Turner RE. 2005. Reconstructing a 180 yr record of natural and anthropogenic induced low-oxygen conditions from Louisiana continental shelf sediments. Geology 33:329–32 [Google Scholar]
  104. Pagani M. 2014. Biomarker-based inferences of past climate: the alkenone pCO2 proxy. Treatise on Geochemistry 12 Organic Geochemistry, ed. PG Falkowski, KH Freeman 361–78 Amsterdam: Elsevier [Google Scholar]
  105. Pantoja S, Sepúlveda J, González H. 2004. Decomposition of sinking proteinaceous material during fall in the oxygen minimum zone off northern Chile. Deep-Sea Res. I 51:55–70 [Google Scholar]
  106. Paytan A, Kastner M, Campbell D, Thiemens MH. 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282:1459–62 [Google Scholar]
  107. Perga M, Desmet M, Enters D, Reyss J. 2010. A century of bottom-up and top-down driven changes on a lake planktonic food web: a paleoecological and paleoisotopic study of Lake Annecy, France. Limnol. Oceanogr. 55:803–16 [Google Scholar]
  108. Petsch ST, Eglington TI, Edwards KJ. 2001. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science 292:1127–31 [Google Scholar]
  109. Prahl F, de Lange G, Lyle M, Sparrow M. 1989. Post-depositional stability of long-chain alkenones under contrasting redox conditions. Nature 341:434–37 [Google Scholar]
  110. Rabalais N, Turner R, Gupta BS, Boesch D, Chapman P, Murrell M. 2007. Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia?. Estuaries Coasts 30:753–72 [Google Scholar]
  111. Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N. et al. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6:597–607 [Google Scholar]
  112. Rontani J, Bonin P, Jameson I, Volkman JK. 2005. Degradation of alkenones and related compounds during oxic and anoxic incubation of the marine haptophyte Emiliania huxleyi with bacterial consortia isolated from microbial mats from the Camargue, France. Org. Geochem. 36:603–18 [Google Scholar]
  113. Rontani J, Harji R, Guasco S, Prahl FG, Volkman JK. et al. P. 2008. Degradation of alkenones by aerobic heterotrophic bacteria: selective or not?. Org. Geochem. 39:34–51 [Google Scholar]
  114. Rowe A, Bird L, Lam B, Nealson K. 2014. Characterizing mechanisms of extracellular electron transport in sulfur and iron-oxidizing electrochemically active bacteria isolated from marine sediments Presented at AGU Fall Meet., Dec. 15–19, San Francisco
  115. Roy S, Llewellyn CA, Egeland ES, Johnsen G. 2011. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography Cambridge, UK: Cambridge Univ. Press
  116. Sachs JP, Schneider RR, Eglinton TI, Freeman KH, Ganssen G. et al. 2000. Alkenones as paleooceanographic proxies. Geochem. Geophys. Geosys. 1:2000GC000059 [Google Scholar]
  117. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA. et al. 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–64 [Google Scholar]
  118. Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G. et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56 [Google Scholar]
  119. Schmittner A, Galbraith ED, Hostetler SW, Pedersen TF, Zhang R. 2007. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard–Oeschger oscillations caused by variations of North Atlantic deep water subduction. Paleoceanography 22:PA3207 [Google Scholar]
  120. Schouten S, Hopmans EC, Rosell-Mele, Pearson A, Adam P. 2013. An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures. Geochem. Geophys. Geosyst. 14:5263–85 [Google Scholar]
  121. Schouten S, Hopmans EC, Sinninghe Damsté JS. 2004. The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry. Org. Geochem. 35:567–71 [Google Scholar]
  122. Schouten S, Hopmans EC, Sinninghe Damsté JS. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54:19–61 [Google Scholar]
  123. Schouten S, Ossebaar J, Schreiber K, Kienhuis M, Langer G. et al. 2006. The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica. Biogeosciences 3:113–19 [Google Scholar]
  124. Schreiner KM, Bianchi TS, Eglinton TI, Allison MA, Hanna AJM. 2013. Sources of terrigenous inputs to surface sediments of the Colville River Delta and Simpson's Lagoon, Beaufort Sea, Alaska. J. Geophys. Res. 118:1–17 [Google Scholar]
  125. Schreiner KM, Bianchi TS, Rosenheim BF. 2014. Evidence for permafrost thaw and transport from the Alaskan North Slope watershed. Geophys. Res. Lett. 41:3117–26 [Google Scholar]
  126. Scott C, Lyons T, Bekker A, Shen Y, Poulton S. et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–59 [Google Scholar]
  127. Shah SR, Mollenhauer G, Ohkouchi N, Eglinton TI. et al. 2008. Origins of archaeal tetraether lipids in sediments: insights from radiocarbon analysis. Geochim. Cosmochim. Acta 72:4577–4594 [Google Scholar]
  128. Sigman DM, Boyle EA. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–69 [Google Scholar]
  129. Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN. et al. 2012. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. PNAS 109:11234–39 [Google Scholar]
  130. Sinninghe Damsté JS, Rijpstra WIC, Reichart G. 2002. The influence of oxic degradation on the sedimentary biomarker record II. Evidence from Arabian Sea sediments. Geochim. Cosmochim. Acta 66:2737–54 [Google Scholar]
  131. Smith RW, Bianchi TS, Allison M, Savage C. 2010. Comparison of lignin phenols and branched/isoprenoid tetraethers (BIT index) as indices of terrestrial organic matter in Doubtful Sound, Fiordland, New Zealand. Org. Geochem. 41:281–290 [Google Scholar]
  132. Smith RW, Bianchi TS, Allison M, Savage C, Galy V. 2015. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8:450–53 [Google Scholar]
  133. Smith RW, Bianchi TS, Li X. 2012. A re-evaluation of the use of branched GDGTs as terrestrial biomarkers: implications for the BIT Index. Geochim. Cosmochim. Acta 80:14–29 [Google Scholar]
  134. Sun M, Aller RC, Lee C, Wakeham SG. 2002. Effects of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sediments. Geochim. Cosmochim. Acta 66:2003–12 [Google Scholar]
  135. Sun M, Zou L, Dai J, Ding H, Culp RA, Scranton MI. 2004. Molecular carbon isotopic fractionation of algal lipids during decomposition in natural oxic and anoxic seawaters. Org. Geochem. 35:895–908 [Google Scholar]
  136. Szymczak-Żyła M, Kowalewska G, Louda JW. 2011. Chlorophyll-a and derivatives in recent sediments as indicators of productivity and depositional conditions. Mar. Chem. 125:39–48 [Google Scholar]
  137. Tareq SM, Tanaka N, Ohta K. 2004. Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment. Sci. Total Environ. 324:91–103 [Google Scholar]
  138. Tierney JE, Schouten S, Pitcher A, Hopmans EC, Sinninghe Damsté JS. 2012. Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): insights into the origin of lacustrine GDGTs. Geochim. Cosmochim. Acta 77:561–81 [Google Scholar]
  139. Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ. 2012. Microbial oceanography of anoxic oxygen minimum zones. PNAS 109:15996–6003 [Google Scholar]
  140. van Niftrik LA, Fuerst JA. Sinninghe Damsté JS, Kuenen JG, Jetten MS, Strous M. 2004. The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol. Lett. 233:7–13 [Google Scholar]
  141. Vandewiele S, Cowie G, Soetaert K, Middelburg JJ. 2009. Amino acid biogeochemistry and organic matter degradation state across the Pakistan margin oxygen minimum zone. Deep-Sea Res. II 56:376–92 [Google Scholar]
  142. Versteegh GJ, Zonneveld KA, de Lange GJ. 2010. Selective aerobic and anaerobic degradation of lipids and palynomorphs in the Eastern Mediterranean since the onset of sapropel S1 deposition. Mar. Geol. 278:177–92 [Google Scholar]
  143. Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL. et al. 2006. Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–14 [Google Scholar]
  144. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA. et al. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–50 [Google Scholar]
  145. Vonk JE, Sánchez-García L, Semiletov IP, Dudarev OV, Eglinton TI. et al. 2010. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea. Biogeosciences 7:3153–66 [Google Scholar]
  146. Walker HA, Latimer JS, Dettmann EH. 2000. Assessing the effects of natural and anthropogenic stressors in the Potomac Estuary: implications for long-term monitoring. Environ. Monitor. Assess. 63:237–51 [Google Scholar]
  147. Wang B, Wei Q, Chen J, Xie L. 2012. Annual cycle of hypoxia off the Changjiang (Yangtze River) estuary. Mar. Environ. Res. 77:1–5 [Google Scholar]
  148. Ward BB, Tuit CB, Jayakumar A, Rich JJ, Moffett J, Naqvi SWA. 2008. Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. Deep Sea Res. Part I 55:1672–83 [Google Scholar]
  149. Willard DA, Bernhardt CE. 2011. Impacts of past climate and sea level change on Everglades wetlands: placing a century of anthropogenic change into a late-Holocene context. Clim. Change 107:59–80 [Google Scholar]
  150. Wong JX, Van Colen C, Airoldi L. 2015. Nutrient levels modify saltmarsh responses to increased inundation in different soil types. Mar. Environ. Res. 104:37–46 [Google Scholar]
  151. Wright JJ, Konwar KM, Hallam SJ. 2012. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10:381–94 [Google Scholar]
  152. Xie S, Lipp JS, Wegener G, Ferdelman TG, Hinrichs K-U. 2013. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations. PNAS 110:6010–14 [Google Scholar]
  153. Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–83 [Google Scholar]
  154. Zeng N, Qian H, Roedenbeck C, Heimann M. 2005. Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophys. Res. Lett. 32:2005GL024607 [Google Scholar]
  155. Zhao J, Bianchi TS, Li X, Allison MA, Yao P, Yu Z. 2012. Historical eutrophication in the Changjiang and Mississippi Delta-front estuaries: stable sedimentary chloropigments as biomarkers. Cont. Shelf Res. 47:133–44 [Google Scholar]
  156. Zillén L, Conley DJ, Andrén T, Andrén E, Björck S. 2008. Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth Sci. Rev. 91:77–92 [Google Scholar]
  157. Zimmerman AR, Canuel EA. 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Mar. Chem. 69:117–37 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error