The nature of the early martian climate is one of the major unanswered questions of planetary science. Key challenges remain, but a new wave of orbital and in situ observations and improvements in climate modeling have led to significant advances over the past decade. Multiple lines of geologic evidence now point to an episodically warm surface during the late Noachian and early Hesperian periods 3–4 Ga. The low solar flux received by Mars in its first billion years and inefficiency of plausible greenhouse gases such as CO mean that the steady-state early martian climate was likely cold. A denser CO atmosphere would have caused adiabatic cooling of the surface and hence migration of water ice to the higher-altitude equatorial and southern regions of the planet. Transient warming caused melting of snow and ice deposits and a temporarily active hydrological cycle, leading to erosion of the valley networks and other fluvial features. Precise details of the warming mechanisms remain unclear, but impacts, volcanism, and orbital forcing all likely played an important role. The lack of evidence for glaciation across much of Mars's ancient terrain suggests the late Noachian surface water inventory was not sufficient to sustain a northern ocean. Though mainly inhospitable on the surface, early Mars may nonetheless have presented significant opportunities for the development of microbial life.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acuna M, Connerney J, Wasilewski P, Lin R, Anderson K. et al. 1998. Magnetic field and plasma observations at Mars: initial results of the Mars global surveyor mission. Science 279:1676–80 [Google Scholar]
  2. Baranov YI, Lafferty WJ, Fraser GT. 2004. Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2/CO2 mixtures. J. Mol. Spectrosc. 228:432–40 [Google Scholar]
  3. Barnhart CJ, Howard AD, Moore JM. 2009. Long-term precipitation and late-stage valley network formation: landform simulations of Parana Basin, Mars. J. Geophys. Res. 114:E01003 [Google Scholar]
  4. Bibring JP, Langevin Y, Gendrin A, Gondet B, Poulet F. et al. 2005. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–81 [Google Scholar]
  5. Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson R. et al. 2006. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–4 [Google Scholar]
  6. Boynton W, Feldman W, Squyres S, Prettyman T, Brückner J. et al. 2002. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297:81–85 [Google Scholar]
  7. Brady PV, Gíslason SR. 1997. Seafloor weathering controls on atmospheric CO2 and global climate. Geochim. Cosmochim. Acta 61:965–73 [Google Scholar]
  8. Budyko MI. 1969. The effect of solar radiation variations on the climate of the Earth. Tellus 21:611–19 [Google Scholar]
  9. Bullock MA, Moore JM. 2007. Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34:L19201 [Google Scholar]
  10. Cabrol NA, Grin EA. 1999. Distribution, classification, and ages of martian impact crater lakes. Icarus 142:160–72 [Google Scholar]
  11. Carr MH. 1996. Water on Mars New York: Oxford Univ. Press [Google Scholar]
  12. Carr MH, Head JW III. 2003. Basal melting of snow on early Mars: a possible origin of some valley networks. Geophys. Res. Lett. 30:2245 [Google Scholar]
  13. Carr MH, Head JW III. 2010. Geologic history of Mars. Earth Planet. Sci. Lett. 294:185–203 [Google Scholar]
  14. Carr MH, Head JW III. 2015. Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42:726–32 [Google Scholar]
  15. Carter J, Loizeau D, Mangold N, Poulet F, Bibring JP. 2015. Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248:373–82 [Google Scholar]
  16. Carter J, Poulet F, Bibring JP, Mangold N, Murchie S. 2013. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. Planets 118:831–58 [Google Scholar]
  17. Carter J, Poulet F, Bibring JP, Murchie S. 2010. Detection of hydrated silicates in crustal outcrops in the northern plains of Mars. Science 328:1682–86 [Google Scholar]
  18. Cary SC, McDonald IR, Barrett JE, Cowan DA. 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat. Rev. Microbiol. 8:129–38 [Google Scholar]
  19. Cassanelli JP, Head JW III. 2015. Firn densification in a Late Noachian “icy highlands” Mars: implications for ice sheet evolution and thermal response. Icarus 253:243–55 [Google Scholar]
  20. Chambers JE, Wetherill GW. 1998. Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136:304–27 [Google Scholar]
  21. Chassefière E, Leblanc F. 2004. Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52:1039–58 [Google Scholar]
  22. Chevrier V, Poulet F, Bibring JP. 2007. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448:60–63 [Google Scholar]
  23. Clark BC, Baird AK, Rose HJ, Toulmin P, Keil K. et al. 1976. Inorganic analyses of Martian surface samples at the viking landing sites. Science 194:1283–88 [Google Scholar]
  24. Clifford SM. 1993. A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. 98:10973–11016 [Google Scholar]
  25. Clifford SM, Parker TJ. 2001. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154:40–79 [Google Scholar]
  26. Clough SA, Iacono MJ, Moncet JL. 1992. Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor. J. Geophys. Res. 97:15761–85 [Google Scholar]
  27. Connerney J, Acuna M, Wasilewski P, Kletetschka G, Ness N. et al. 2001. The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett 28:4015–18 [Google Scholar]
  28. Craddock RA, Howard AD. 2002. The case for rainfall on a warm, wet early Mars. J. Geophys. Res. 107:5111 [Google Scholar]
  29. Dauphas N, Pourmand A. 2011. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–92 [Google Scholar]
  30. D'Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R. et al. 2004. Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–21 [Google Scholar]
  31. di Achille G, Hynek BM. 2010. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3:459–63 [Google Scholar]
  32. Edwards CS, Ehlmann BL. 2015. Carbon sequestration on Mars. Geology 43:863–66 [Google Scholar]
  33. Ehlmann BL, Dundar M. 2015. Are Noachian/Hesperian acidic waters key to generating Mars’ regional-scale aluminum phyllosilicates? The importance of jarosite co-occurrences with Al-phyllosilicate units. Lunar Planet. Sci. Conf. Abstr. 46:1635 [Google Scholar]
  34. Ehlmann BL, Edwards CS. 2014. Mineralogy of the martian surface. Annu. Rev. Earth Planet. Sci. 42:291–315 [Google Scholar]
  35. Ehlmann BL, Mustard JF, Fassett CI, Schon SC, Head JW III. et al. 2008. Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. 1:355–58 [Google Scholar]
  36. Ehlmann BL, Mustard JF, Murchie SL, Bibring JP, Meunier A. et al. 2011. Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60 [Google Scholar]
  37. Ehlmann BL, Mustard JF, Swayze GA, Clark RN, Bishop JL. et al. 2009. Identification of hydrated silicate minerals on mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114:E00D08 [Google Scholar]
  38. Fairén AG. 2010. A cold and wet Mars. Icarus 208:165–75 [Google Scholar]
  39. Fairén AG, Davila AF, Gago-Duport L, Amils R, McKay CP. 2009. Stability against freezing of aqueous solutions on early Mars. Nature 459:401–4 [Google Scholar]
  40. Fassett CI, Head JW III. 2008. The timing of martian valley network activity: constraints from buffered crater counting. Icarus 195:61–89 [Google Scholar]
  41. Fassett CI, Head JW III. 2011. Sequence and timing of conditions on early Mars. Icarus 211:1204–14 [Google Scholar]
  42. Fastook JL, Head JW III. 2014. Glaciation in the Late Noachian icy highlands: ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106:82–98 [Google Scholar]
  43. Fastook JL, Head JW III, Marchant DR, Forget F, Madeleine JB. 2012. Early Mars climate near the Noachian–Hesperian boundary: independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea formation) and implications for valley network formation. Icarus 219:25–40 [Google Scholar]
  44. Forget F, Haberle RM, Montmessin F, Levrard B, Head JW. 2006. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311:368–71 [Google Scholar]
  45. Forget F, Pierrehumbert RT. 1997. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278:1273–76 [Google Scholar]
  46. Forget F, Wordsworth RD, Millour E, Madeleine JB, Kerber L. et al. 2013. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222:81–99 [Google Scholar]
  47. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R. et al. 2007. Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis , et al., pp. 129–234 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  48. Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B. et al. 2005. Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307:1587–91 [Google Scholar]
  49. Goody R, West R, Chen L, Crisp D. 1989. The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transf. 42:539–50 [Google Scholar]
  50. Goudge TA, Head JW, Mustard JF, Fassett CI. 2012. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219:211–29 [Google Scholar]
  51. Gough DO. 1981. Solar interior structure and luminosity variations. Solar Phys. 74:21–34 [Google Scholar]
  52. Greenwood JP, Itoh S, Sakamoto N, Vicenzi EP, Yurimoto H. 2008. Hydrogen isotope evidence for loss of water from Mars through time. Geophys. Res. Lett. 35:L05203 [Google Scholar]
  53. Grott M, Morschhauser A, Breuer D, Hauber E. 2011. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308:391–400 [Google Scholar]
  54. Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J. et al. 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350: doi: 10.1126/science.aac7575 [Google Scholar]
  55. Grotzinger JP, Sumner DY, Kah LC, Stack K, Gupta S. et al. 2014. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343: doi: 10.1126/science.1242777 [Google Scholar]
  56. Gruszka M, Borysow A. 1997. Roto-translational collision-induced absorption of CO2 for the atmosphere of Venus at frequencies from 0 to 250 cm−1, at temperatures from 200 to 800 K. Icarus 129:172–77 [Google Scholar]
  57. Haberle RM. 1998. Early Mars climate models. J. Geophys. Res. 103:E1228467 [Google Scholar]
  58. Halevy I, Head JW. 2014. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7:865–68 [Google Scholar]
  59. Halevy I, Pierrehumbert R, Schrag D. 2009. Radiative transfer in CO2-rich paleoatmospheres. J. Geophys. Res. 114:D18112 [Google Scholar]
  60. Halevy I, Zuber MT, Schrag DP. 2007. A sulfur dioxide climate feedback on early Mars. Science 318:1903–7 [Google Scholar]
  61. Hartmann WK, Neukum G. 2001. Cratering chronology and the evolution of Mars. Space. Sci. Rev. 96:165–94 [Google Scholar]
  62. Hayes JM, Waldbauer JR. 2006. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361:931–50 [Google Scholar]
  63. Head JW III, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ. 1999. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 286:2134–37 [Google Scholar]
  64. Head JW III, Kreslavsky MA, Pratt S. 2002. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J. Geophys. Res. 107:E15004 [Google Scholar]
  65. Head JW III, Marchant DR. 2014. The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarct. Sci. 26:774–800 [Google Scholar]
  66. Head JW III, Pratt S. 2001. Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J. Geophys. Res. 106:E612275–300 [Google Scholar]
  67. Hirschmann MM, Withers AC. 2008. Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse. Earth Planet. Sci. Lett. 270:147–55 [Google Scholar]
  68. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP. 1998. A Neoproterozoic snowball Earth. Science 281:1342–46 [Google Scholar]
  69. Hoke MRT, Hynek BM, Tucker GE. 2011. Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312:1–12 [Google Scholar]
  70. Howard AD. 1981. Etched plains and braided ridges of the south polar region of Mars: features produced by basal melting of ground ice?. Reports of Planetary Geology Program—1981 HE Holt 286–88 NASA Tech. Memo. 84211 Washington, DC: NASA [Google Scholar]
  71. Howard AD, Moore JM, Irwin RP III. 2005. An intense terminal epoch of widespread fluvial activity on early Mars. 1. Valley network incision and associated deposits. J. Geophys. Res. 110:E12S14 [Google Scholar]
  72. Hynek BM, Beach M, Hoke MRT. 2010. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115:E09008 [Google Scholar]
  73. Irwin RP III, Howard AD, Craddock RA, Moore JM. 2005. An intense terminal epoch of widespread fluvial activity on early Mars. 2. Increased runoff and paleolake development. J. Geophys. Res. 110:E12S15 [Google Scholar]
  74. Jakosky BM, Jones JH. 1997. The history of Martian volatiles. Rev. Geophys. 35:1–16 [Google Scholar]
  75. Johnson SS, Mischna MA, Grove TL, Zuber MT. 2008. Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. 113:E08005 [Google Scholar]
  76. Johnson SS, Pavlov AA, Mischna MA. 2009. Fate of SO2 in the ancient martian atmosphere: implications for transient greenhouse warming. J. Geophys. Res. 114:E11011 [Google Scholar]
  77. Kahre MA, Vines SK, Haberle RM, Hollingsworth JL. 2013. The early Martian atmosphere: investigating the role of the dust cycle in the possible maintenance of two stable climate states. J. Geophys. Res. Planets 118:1388–96 [Google Scholar]
  78. Kargel JS, Strom RG. 1992. Ancient glaciation on Mars. Geology 20:3–7 [Google Scholar]
  79. Kasting JF. 1991. CO2 condensation and the climate of early Mars. Icarus 94:1–13 [Google Scholar]
  80. Kasting JF. 1997. Warming early Earth and Mars. Science 276:1213 [Google Scholar]
  81. Kasting JF, Whitmire DP, Reynolds RT. 1993. Habitable zones around main sequence stars. Icarus 101:108–28 [Google Scholar]
  82. Kerber L, Forget F, Wordsworth RD. 2015. Sulfur in the early martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261:133–48 [Google Scholar]
  83. Khairoutdinov MF, Randall DA. 2001. A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: preliminary results. Geophys. Res. Lett. 28:3617–20 [Google Scholar]
  84. Kirschvink JL. 1992. Late Proterozoic low-latitude global glaciation: the snowball Earth. The Proterozoic Biosphere: A Multidisciplinary Study JW Schopf, C Klein 51–52 New York: Cambridge Univ. Press [Google Scholar]
  85. Kirschvink JL, Weiss BP. 2002. Mars, panspermia, and the origin of life: Where did it all begin?. Palaeontol. Electron. 4:8–15 [Google Scholar]
  86. Kite ES, Halevy I, Kahre MA, Wolff MJ, Manga M. 2013. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223:181–210 [Google Scholar]
  87. Kite ES, Williams JP, Lucas A, Aharonson O. 2014. Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters. Nat. Geosci. 7:335–39 [Google Scholar]
  88. Kitzmann D, Patzer ABC, Rauer H. 2013. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: numerical radiative transfer studies. Astron. Astrophys. 557:A6 [Google Scholar]
  89. Lacis AA, Oinas V. 1991. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res 96:D59027–64 [Google Scholar]
  90. Lammer H, Chassefière E, Karatekin Ö, Morschhauser A, Niles PB. et al. 2013. Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. 174:113–54 [Google Scholar]
  91. Lammer H, Selsis F, Ribas I, Guinan EF, Bauer SJ, Weiss WW. 2003. Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophys. J. 598:L121–24 [Google Scholar]
  92. Laskar J, Correia ACM, Gastineau M, Joutel F, Levrard B, Robutel P. 2004. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170:343–64 [Google Scholar]
  93. Laskar J, Robutel P. 1993. The chaotic obliquity of the planets. Nature 361:608–12 [Google Scholar]
  94. Leovy C, Mintz Y. 1969. Numerical simulation of the atmospheric circulation and climate of Mars. J. Atmos. Sci. 26:1167–90 [Google Scholar]
  95. Madeleine JB, Forget F, Head JW, Levrard B, Montmessin F, Millour E. 2009. Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203:390–405 [Google Scholar]
  96. Malin MC, Edgett KS. 1999. Oceans or seas in the Martian northern lowlands: high resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26:3049–52 [Google Scholar]
  97. Malin MC, Edgett KS. 2003. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302:1931–34 [Google Scholar]
  98. Mangold N, Quantin C, Ansan V, Delacourt C, Allemand P. 2004. Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area. Science 305:78–81 [Google Scholar]
  99. Marty B. 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313:56–66 [Google Scholar]
  100. Matsubara Y, Howard AD, Gochenour JP. 2013. Hydrology of early Mars: valley network incision. J. Geophys. Res. Planets 118:1365–87 [Google Scholar]
  101. Michalski JR, Niles PB. 2010. Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3:751–55 [Google Scholar]
  102. Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G. et al. 2000. Natural transfer of viable microbes in space. 1. From Mars to Earth and Earth to Mars. Icarus 145:391–427 [Google Scholar]
  103. Milton DJ. 1973. Water and processes of degradation in the Martian landscape. J. Geophys. Res. 78:4037–47 [Google Scholar]
  104. Minton DA, Malhotra R. 2007. Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle. Astrophys. J. 660:1700 [Google Scholar]
  105. Mischna MA, Baker V, Milliken R, Richardson M, Lee C. 2013. Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate. J. Geophys. Res. Planets 118:560–76 [Google Scholar]
  106. Mischna MA, Richardson MI, Wilson RJ, McCleese DJ. 2003. On the orbital forcing of martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res. 108:E65062 [Google Scholar]
  107. Montmessin F, Gondet B, Bibring J, Langevin Y, Drossart P. et al. 2007. Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. J. Geophys. Res. 112:E11S90 [Google Scholar]
  108. Morris RV, Ruff SW, Gellert R, Ming DW, Arvidson RE. et al. 2010. Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329:421–24 [Google Scholar]
  109. Murchie SL, Mustard JF, Ehlmann BL, Milliken RE, Bishop JL. et al. 2009. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114:E00D06 [Google Scholar]
  110. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE. et al. 2008. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454:305–9 [Google Scholar]
  111. Nakajima S, Hayashi YY, Abe Y. 1992. A study on the “runaway greenhouse effect” with a one-dimensional radiative-convective equilibrium model. J. Atmos. Sci 49:2256–66 [Google Scholar]
  112. Niles PB, Catling DC, Berger G, Chassefière E, Ehlmann BL. et al. 2013. Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. 174:301–28 [Google Scholar]
  113. Nimmo F, Tanaka K. 2005. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33:133–61 [Google Scholar]
  114. Osterloo MM, Anderson FS, Hamilton VE, Hynek BM. 2010. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115:E10012 [Google Scholar]
  115. Parker TJ, Gorsline DS, Saunders RS, Pieri DC, Schneeberger DM. 1993. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98:E611061–78 [Google Scholar]
  116. Perrin MY, Hartmann JM. 1989. Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band. J. Quant. Spectrosc. Radiat. Transf. 42:311–17 [Google Scholar]
  117. Perron JT, Mitrovica JX, Manga M, Matsuyama I, Richards MA. 2007. Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447:840–43 [Google Scholar]
  118. Phillips RJ, Zuber MT, Solomon SC, Golombek MP, Jakosky BM. et al. 2001. Ancient geodynamics and global-scale hydrology on Mars. Science 291:2587–91 [Google Scholar]
  119. Pierrehumbert RT, Abbot DS, Voigt A, Koll D. 2011. Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci. 39:417–60 [Google Scholar]
  120. Pollack JB, Kasting JF, Richardson SM, Poliakoff K. 1987. The case for a wet, warm climate on early Mars. Icarus 71:203–24 [Google Scholar]
  121. Postawko SE, Kuhn WR. 1986. Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate. J. Geophys. Res. 91:D4431–38 [Google Scholar]
  122. Poulet F, Bibring JP, Mustard JF, Gendrin A, Mangold N. et al. 2005. Phyllosilicates on Mars and implications for early martian climate. Nature 438:623–27 [Google Scholar]
  123. Quintana EV, Barclay T, Raymond SN, Rowe JF, Bolmont E. et al. 2014. An Earth-sized planet in the habitable zone of a cool star. Science 344:277–80 [Google Scholar]
  124. Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF. 2014. Warming early mars with CO2 and H2. Nat. Geosci. 7:59–63 [Google Scholar]
  125. Richardson MI, Mischna MA. 2005. Long-term evolution of transient liquid water on Mars. J. Geophys. Res. 110:E03003 [Google Scholar]
  126. Sagan C. 1977. Reducing greenhouses and the temperature history of Earth and Mars. Nature 269:224–26 [Google Scholar]
  127. Scanlon KE, Head JW, Madeleine JB, Wordsworth RD, Forget F. 2013. Orographic precipitation in valley network headwaters: constraints on the ancient Martian atmosphere. Geophys. Res. Lett. 40:4182–87 [Google Scholar]
  128. Scott DH, Tanaka KL. 1986. Geologic map of the western equatorial region of Mars Geol. Investig. Ser. Map I-1802-A US Geol. Surv. Reston, VA: [Google Scholar]
  129. Segura TL, McKay CP, Toon OB. 2012. An impact-induced, stable, runaway climate on Mars. Icarus 220:144–48 [Google Scholar]
  130. Segura TL, Toon OB, Colaprete A. 2008. Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. 113E11007 [Google Scholar]
  131. Segura TL, Toon OB, Colaprete A, Zahnle K. 2002. Environmental effects of large impacts on Mars. Science 298:1977–80 [Google Scholar]
  132. Sleep NH, Zahnle K. 2001. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 106:E11373–400 [Google Scholar]
  133. Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH. et al. 2005. New perspectives on ancient Mars. Science 307:1214–20 [Google Scholar]
  134. Soto A, Mischna M, Schneider T, Lee C, Richardson M. 2015. Martian atmospheric collapse: idealized GCM studies. Icarus 250:553–69 [Google Scholar]
  135. Squyres SW, Kasting JF. 1994. Early Mars: how warm and how wet?. Science 265:744–49 [Google Scholar]
  136. Stenchikov GL, Kirchner I, Robock A, Graf HF, Antuna JC. et al. 1998. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res. 103:D1213837–57 [Google Scholar]
  137. Stepinski TF, Stepinski AP. 2005. Morphology of drainage basins as an indicator of climate on early Mars. J. Geophys. Res. 110:E12S12 [Google Scholar]
  138. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M. 2007. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34:L09501 [Google Scholar]
  139. Tanaka KL. 1986. The stratigraphy of Mars. J. Geophys. Res. 91:B13E139–58 [Google Scholar]
  140. Tanaka KL, Scott DH. 1987. Geologic map of the polar regions of Mars Sci. Investig. Map 3177 US Geol. Surv. Reston, VA: [Google Scholar]
  141. Tanaka KL, Skinner JA, Dohm JM, Irwin RP III, Kolb EJ. et al. 2014. Geologic map of Mars Sci. Investig. Map 3292 US Geol. Surv. Reston, VA: [Google Scholar]
  142. Tian F, Claire MW, Haqq-Misra JD, Smith M, Crisp DC. et al. 2010. Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295:412–18 [Google Scholar]
  143. Toon OB, Segura T, Zahnle K. 2010. The formation of Martian river valleys by impacts. Annu. Rev. Earth Planet. Sci. 38:303–22 [Google Scholar]
  144. Tosca NJ, Knoll AH. 2009. Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 286:379–86 [Google Scholar]
  145. Udry S, Bonfils X, Delfosse X, Forveille T, Mayor M. et al. 2007. The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M) in a 3-planet system. Astron. Astrophys. 469:L43–47 [Google Scholar]
  146. Urata RA, Toon OB. 2013. Simulations of the martian hydrologic cycle with a general circulation model: implications for the ancient martian climate. Icarus 226:229–50 [Google Scholar]
  147. Villanueva G, Mumma M, Novak R, Käufl H, Hartogh P. et al. 2015. Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs. Science 348:218–21 [Google Scholar]
  148. von Paris P, Grenfell JL, Rauer H, Stock JW. 2013. N2-associated surface warming on early Mars. Planet. Space Sci. 82:149–54 [Google Scholar]
  149. Wadhwa M. 2001. Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291:1527–30 [Google Scholar]
  150. Walker JCG, Hayes PB, Kasting JF. 1981. A negative feedback mechanism for the long-term stabilization of the Earth's surface temperature. J. Geophys. Res. 86:C109776–82 [Google Scholar]
  151. Walsh KJ, Morbidelli A, Raymond SN, O'Brien DP, Mandell AM. 2011. A low mass for Mars from Jupiter's early gas-driven migration. Nature 475:206–9 [Google Scholar]
  152. Webster CR, Mahaffy PR, Flesch GJ, Niles PB, Jones JH. et al. 2013. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341:260–63 [Google Scholar]
  153. Werner SC, Tanaka KL. 2011. Redefinition of the crater-density and absolute-age boundaries for the chrono-stratigraphic system of Mars. Icarus 215:603–7 [Google Scholar]
  154. Williams RME, Grotzinger JP, Dietrich WE, Gupta S, Sumner DY. et al. 2013. Martian fluvial conglomerates at Gale Crater. Science 340:1068–72 [Google Scholar]
  155. Wordsworth R, Forget F, Eymet V. 2010. Infrared collision-induced and far-line absorption in dense CO2 atmospheres. Icarus 210:992–97 [Google Scholar]
  156. Wordsworth R, Forget F, Millour E, Head JW, Madeleine JB, Charnay B. 2013. Global modelling of the early martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222:1–19 [Google Scholar]
  157. Wordsworth R, Kerber L, Pierrehumbert R, Forget F, Head JW III. 2015. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3D climate model. J. Geophys. Res. Planets 120:1201–19 [Google Scholar]
  158. Wordsworth R, Pierrehumbert R. 2013. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere. Science 339:64–67 [Google Scholar]
  159. Wray J, Ehlmann B, Squyres S, Mustard J, Kirk R. 2008. Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35:L12202 [Google Scholar]
  160. Yung YL, Nair H, Gerstell MF. 1997. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation. Icarus 130:222–24 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error