1932

Abstract

The sinking of organic matter to the deep ocean leaves extremely low concentrations of major and trace nutrients for photosynthetic organisms at the sunlit surface. As a result, marine phytoplankton make use of alternative sources of essential elements and have evolved to substitute some elements by others in various biochemical processes. A particularly intriguing example is that of Zn, which is used in many biochemical functions but is often depleted down to picomolar concentrations in surface seawater. Laboratory data show that many phytoplankton species are able to achieve high growth rates by replacing Zn with Cd or Co in cultures. One documented biochemical replacement occurs in some carbonic anhydrases that are used in the acquisition of inorganic carbon for photosynthesis. Field data show the existence of such enzymes in surface seawater and indicate a replacement of Zn by Cd and Co in the surface waters of the eastern tropical South Pacific. Those results point at interesting opportunities for future research.

  • ▪   The dearth of essential elements in surface seawater has caused marine phytoplankton to substitute some trace metals by others in various biochemical processes.
  • ▪   Many species can substitute Cd and/or Co for Zn as a metal center in carbonic anhydrase enzymes that are used in the acquisition of inorganic carbon for photosynthesis.
  • ▪   Field data show the presence of such enzymes in the sea and indicate a replacement of Zn by Cd and Co in the surface upwelling waters of the eastern tropical South Pacific.
  • ▪   New analytical and molecular tools provide opportunities to elucidate the unusual biochemistry of marine phytoplankton.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060108
2020-05-30
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-053018-060108.html?itemId=/content/journals/10.1146/annurev-earth-053018-060108&mimeType=html&fmt=ahah

Literature Cited

  1. Ahner BA, Kong S, Morel FMM 1995. Phytochelatin production in marine algae. 1. An interspecies comparison. Limnol. Oceanogr. 40:649–57
    [Google Scholar]
  2. Ahner BA, Lee JG, Price NM, Morel FMM 1998. Phytochelatin concentrations in the equatorial Pacific. Deep Sea Res. I 45:1779–96
    [Google Scholar]
  3. Ahner BA, Morel FMM. 1995. Phytochelatin production in marine algae. 2. Induction by various metals. Limnol. Oceanogr. 40:658–65
    [Google Scholar]
  4. Ahner BA, Morel FMM, Moffett JW 1997. Trace metal control of phytochelatin production in coastal waters. Limnol. Oceanogr. 42:601–8
    [Google Scholar]
  5. Ahner BA, Price NM, Morel FMM 1994. Phytochelatin production by marine-phytoplankton at low free metal-ion concentrations: laboratory studies and field data from Massachusetts Bay. PNAS 91:8433–36
    [Google Scholar]
  6. Aristilde L, Xu Y, Morel FM 2012. Weak organic ligands enhance zinc uptake in marine phytoplankton. Environ. Sci. Technol. 46:5438–45
    [Google Scholar]
  7. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D et al. 2004. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86
    [Google Scholar]
  8. Bates NR. 2018. Seawater carbonate chemistry distributions across the Eastern South Pacific Ocean sampled as part of the GEOTRACES project and changes in marine carbonate chemistry over the past 20 years. Front. Mar. Sci. 5:1–8
    [Google Scholar]
  9. Bender SJ, Moran DM, McIlvin MR, Zheng H, McCrow JP et al. 2018. Colony formation in Phaeocystis antarctica: connecting molecular mechanisms with iron biogeochemistry. Biogeosciences 15:4923–42
    [Google Scholar]
  10. Bertrand EM, Moran DM, McIlvin MR, Hoffman JM, Allen AE, Saito MA 2013. Methionine synthase interreplacement in diatom cultures and communities: implications for the persistence of B-12 use by eukaryotic phytoplankton. Limnol. Oceanogr. 58:1431–50
    [Google Scholar]
  11. Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC et al. 2007. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 52:1079–93
    [Google Scholar]
  12. Browning TJ, Achterberg EP, Rapp I, Engel A, Bertrand EM et al. 2017. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551:242–46
    [Google Scholar]
  13. Bruland KW. 1980. Oceanographic distributions of cadmium, zinc, nickel and copper in the north Pacific. Earth Planet. Sci. Lett. 47:176–98
    [Google Scholar]
  14. Bruland KW. 1989. Complexation of zinc by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 34:269–85
    [Google Scholar]
  15. Bruland KW. 1992. Complexation of cadmium by natural organic ligands in the central North Pacific. Limnol. Oceanogr. 37:1008–17
    [Google Scholar]
  16. Bruland KW, Rue EL, Smith GJ, DiTullio GR 2005. Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Mar. Chem. 93:81–103
    [Google Scholar]
  17. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. 2009. BLAST+: architecture and applications. BMC Bioinform 10:421
    [Google Scholar]
  18. Chappell PD, Vedmati J, Selph KE, Cyr HA, Jenkins BD et al. 2016. Preferential depletion of zinc within Costa Rica upwelling dome creates conditions for zinc co-limitation of primary production. J. Plankton Res. 38:244–55
    [Google Scholar]
  19. Chen S, Gagnon AC, Adkins JF 2018. Carbonic anhydrase, coral calcification and a new model of stable isotope vital effects. Geochim. Cosmochim. Acta 236:179–97
    [Google Scholar]
  20. Coale KH. 1991. Effects of iron, manganese, copper and zinc enrichments on productivity and biomass in the subarctic Pacific. Limnol. Oceanogr. 36:1851–64
    [Google Scholar]
  21. Coale KH, Wang XJ, Tanner SJ, Johnson KS 2003. Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep Sea Res. II 50:635–53
    [Google Scholar]
  22. Conway TM, John SG. 2014. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Glob. Biogeochem. Cycles 28:1111–28
    [Google Scholar]
  23. Cox AD, Saito MA. 2013. Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions. Front. Microbiol. 4:387
    [Google Scholar]
  24. Cox EH, McLendon GL, Morel FMM, Lane TW, Prince RC et al. 2000. The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry 39:12128–30
    [Google Scholar]
  25. Crawford DW, Lipsen MS, Purdie DA, Lohan MC, Statham PJ et al. 2003. Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol. Oceanogr. 48:1583–600
    [Google Scholar]
  26. Donat JR, Bruland KW. 1990. A comparison of 2 voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Mar. Chem. 28:301–23
    [Google Scholar]
  27. Dupont CL, Neupane K, Shearer J, Palenik B 2008. Diversity, function and evolution of genes coding for putative Ni-containing superoxide dismutases. Environ. Microbiol. 10:1831–43
    [Google Scholar]
  28. Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED et al. 2006. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. . Nature 439:68–71
    [Google Scholar]
  29. Ellwood MJ. 2004. Zinc and cadmium speciation in subantarctic waters east of New Zealand. Mar. Chem. 87:37–58
    [Google Scholar]
  30. Ellwood MJ, Van den Berg CMG 2000. Zinc speciation in the Northeastern Atlantic Ocean. Mar. Chem. 68:295–306
    [Google Scholar]
  31. Erdner DL, Anderson DM. 1999. Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment. Limnol. Oceanogr. 44:1609–15
    [Google Scholar]
  32. Erdner DL, Price NM, Doucette GJ, Peleato ML, Anderson DM 1999. Characterization of ferredoxin and flavodoxin as markers of iron limitation in marine phytoplankton. Mar. Ecol. Prog. Ser. 184:43–53
    [Google Scholar]
  33. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354–60
    [Google Scholar]
  34. Franck VM, Bruland KW, Hutchins DA, Brzezinski MA 2003. Iron and zinc effects on silicic acid and nitrate uptake kinetics in three high-nutrient, low-chlorophyll (HNLC) regions. Mar. Ecol. Prog. Ser. 252:15–33
    [Google Scholar]
  35. Fukuda R, Sohrin Y, Saotome N, Fukuda H, Nagata T, Koike I 2000. East–west gradient in ectoenzyme activities in the subarctic Pacific: possible regulation by zinc. Limnol. Oceanogr. 45:930–39
    [Google Scholar]
  36. Garcia HE, Locarnini RA, Boyer TP, Antonov JI 2010a. Nutrients (phosphate, nitrate and silicate). World Ocean Atlas 2009 S Levitus 298 Washington, DC: US Gov. Print. Office
    [Google Scholar]
  37. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Baranova OK et al. 2010b. Dissolved oxygen, apparent oxygen utilization, and oxygen saturation. World Ocean Atlas 2009 S Levitus 344 Washington, DC: US Gov. Print. Office
    [Google Scholar]
  38. Gupton-Campolongo T, Damasceno LM, Hay AG, Ahner BA 2013. Characterization of a high affinity phytochelatin synthase from the Cd-utilizing marine diatom Thalassiosira pseudonana. J. Phycol 49:32–40
    [Google Scholar]
  39. Harvey HW. 1926. Nitrate in the sea. J. Mar. Biol. Assoc. 4:617–28
    [Google Scholar]
  40. Hawco NJ, Lam PJ, Lee JM, Ohnemus DC, Noble AE et al. 2018. Cobalt scavenging in the mesopelagic ocean and its influence on global mass balance: synthesizing water column and sedimentary fluxes. Mar. Chem. 201:151–66
    [Google Scholar]
  41. Hawco NJ, Ohnemus DC, Resing JA, Twining BS, Saito MA 2016. A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific. Biogeosciences 13:5697–717
    [Google Scholar]
  42. Hawco NJ, Saito MA. 2018. Competitive inhibition of cobalt uptake by zinc and manganese in a pacific Prochlorococcus strain: insights into metal homeostasis in a streamlined oligotrophic cyanobacterium. Limnol. Oceanogr. 63:2229–49
    [Google Scholar]
  43. Hopkinson BM, Dupont CL, Allen AE, Morel FMM 2011. Efficiency of the CO2 concentrating mechanism of diatoms. PNAS 108:103830–37
    [Google Scholar]
  44. Hutchins DA, Bruland KW. 1998. Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime. Nature 393:561–64
    [Google Scholar]
  45. Jakuba RW, Saito MA, Moffett JW, Xu Y 2012. Dissolved zinc in the subarctic North Pacific and Bering Sea: its distribution, speciation, and importance to primary producers. Glob. Biogeochem. Cycles 26:GB2015
    [Google Scholar]
  46. Jensen EL, Clement R, Kosta A, Maberly SC, Gontero B 2019. A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J 13:2094–106
    [Google Scholar]
  47. John SG, Conway TM. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth Planet. Sci. Lett. 394:159–67
    [Google Scholar]
  48. John SG, Geis RW, Saito MA, Boyle EA 2007. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnol. Oceanogr 52:2710–14
    [Google Scholar]
  49. John SG, Helgoe J, Townsend E 2018. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Mar. Chem. 201:256–62
    [Google Scholar]
  50. Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, DeLong EF 2008. Aerobic production of methane in the sea. Nat. Geosci. 1:473–78
    [Google Scholar]
  51. Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol 12:e1001889
    [Google Scholar]
  52. Kim JM, Baars O, Morel FMM 2015. Bioavailability and electroreactivity of zinc complexed to strong and weak organic ligands. Environ. Sci. Technol. 49:10894–902
    [Google Scholar]
  53. Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J et al. 2000. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. PNAS 97:1400–5
    [Google Scholar]
  54. Kuenzler EJ, Perras JP. 1965. Phosphatases of marine algae. Biol. Bull. 128:271–84
    [Google Scholar]
  55. Kumar S, Stecher G, Li M, Knyaz C, Tamura K 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547–49
    [Google Scholar]
  56. Lam PJ, Lee JM, Heller MI, Mehic S, Xiang Y, Bates NR 2018. Size-fractionated distributions of suspended particle concentration and major phase composition from the US GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar. Chem. 201:90–107
    [Google Scholar]
  57. Lane ES, Jang K, Cullen JT, Maldonado MT 2008. The interaction between inorganic iron and cadmium uptake in the marine diatom Thalassiosira oceanica. Limnol. Oceanogr 53:1784–89
    [Google Scholar]
  58. Lane ES, Semeniuk DM, Strzepek RF, Cullen JT, Maldonado MT 2009. Effects of iron limitation on intracellular cadmium of cultured phytoplankton: implications for surface dissolved cadmium to phosphate ratios. Mar. Chem. 115:155–62
    [Google Scholar]
  59. Lane TW, Morel FMM. 2000a. A biological function for cadmium in marine diatoms. PNAS 97:4627–31
    [Google Scholar]
  60. Lane TW, Morel FMM. 2000b. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. . Plant Physiol 123:345–52
    [Google Scholar]
  61. LaRoche J, Boyd PW, McKay RML, Geider RJ 1996. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382:802–5
    [Google Scholar]
  62. Lee JG, Ahner BA, Morel FMM 1996. Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ. Sci. Technol 30:1814–21
    [Google Scholar]
  63. Lee JG, Morel FMM. 1995. Replacement of zinc by cadmium in marine phytoplankton. Mar. Ecol. Prog. Ser. 127:305–9
    [Google Scholar]
  64. Lee JG, Roberts SB, Morel FMM 1995. Cadmium: a nutrient for the marine diatom Thalassiosira weissflogii. Limnol. Oceanogr. 40:1056–63
    [Google Scholar]
  65. Lee JM, Heller MI, Lam PJ 2018. Size distribution of particulate trace elements in the US GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar. Chem. 201:108–23
    [Google Scholar]
  66. Lohan MC, Crawford DW, Purdie DA, Statham PJ 2005. Iron and zinc enrichments in the northeastern subarctic Pacific: ligand production and zinc availability in response to phytoplankton growth. Limnol. Oceanogr. 50:1427–37
    [Google Scholar]
  67. Mackey KRM, Morris JJ, Morel FMM, Kranz SA 2015. Response of photosynthesis to ocean acidification. Oceanography 28:22–39
    [Google Scholar]
  68. Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR et al. 2017. A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism. Cell 171:133–47
    [Google Scholar]
  69. Martin JH, Gordon RM, Fitzwater SE 1990. Iron in Antarctic waters. Nature 345:156–58
    [Google Scholar]
  70. Martin JH, Gordon RM, Fitzwater SE, Broenkow WW 1989. VERTEX: phytoplankton iron studies in the Gulf of Alaska. Deep Sea Res. A 36:649–80
    [Google Scholar]
  71. McCarthy JJ. 1972. Uptake of urea by natural populations of marine phytoplankton. Limnol. Oceanogr. 17:738–48
    [Google Scholar]
  72. McGinn PJ, Morel FMM. 2008a. Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C-4 pathway of marine diatoms. Plant Physiol 146:300–9
    [Google Scholar]
  73. McGinn PJ, Morel FMM. 2008b. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol. Plant. 133:78–91
    [Google Scholar]
  74. Menzel DW, Spaeth JP. 1962. Occurrence of vitamin B12 in the Sargasso Sea. Limnol. Oceanogr. 7:151–54
    [Google Scholar]
  75. Milligan AJ, Morel FMM. 2002. A proton buffering role for silica in diatoms. Science 297:1848–50
    [Google Scholar]
  76. Moffett JW, German CR. 2018. The US GEOTRACES Eastern Tropical Pacific Transect (GP16). Mar. Chem. 201:1–5
    [Google Scholar]
  77. Morel FMM, Hudson RJM, Price NM 1991. Limitation of productivity by trace metals in the sea. Limnol. Oceanogr. 36:1742–55
    [Google Scholar]
  78. Morel FMM, Milligan AJ, Saito MA 2003. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. Treatise on Geochemistry, Vol. 6 The Oceans and Marine Geochemistry KK Turekian, HD Holland 113–43 Cambridge, UK: Elsevier Sci. Ltd.
    [Google Scholar]
  79. Morel FMM, Price NM. 2003. The biogeochemical cycles of trace metals in the oceans. Science 300:944–47
    [Google Scholar]
  80. Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D 1994. Zinc and carbon co-limitation of marine phytoplankton. Nature 369:740–42
    [Google Scholar]
  81. Ohnemus DC, Rauschenberg S, Cutter GA, Fitzsimmons JN, Sherrell RM, Twining BS 2017. Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones. Limnol. Oceanogr. 62:3–25
    [Google Scholar]
  82. Palenik B, Morel FMM. 1990. Amino-acid utilization by marine phytoplankton: a novel mechanism. Limnol. Oceanogr. 35:260–69
    [Google Scholar]
  83. Palenik B, Morel FMM. 1991. Amine oxidases of marine phytoplankton. Appl. Environ. Microbiol. 57:2440–43
    [Google Scholar]
  84. Park H, McGinn PJ, Morel FMM 2008. Expression of cadmium carbonic anhydrase of diatoms in seawater. Aquat. Microb. Ecol. 51:183–93
    [Google Scholar]
  85. Peers G, Price NM. 2006. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–44
    [Google Scholar]
  86. Price NM, Harrison PJ. 1988. Uptake of urea C and urea N by the coastal marine diatom Thalassiosira pseudonana. Limnol. Oceanogr 33:528–37
    [Google Scholar]
  87. Price NM, Morel FMM. 1990. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344:658–60
    [Google Scholar]
  88. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC et al. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–13
    [Google Scholar]
  89. Redfield AC. 1934. On the proportions of organic derivatives in sea water and their relation to the composition of phytoplankton. James Johnstone Memorial Volume RJ Daniel 176–92 Liverpool, UK: Univ. Liverpool Press
    [Google Scholar]
  90. Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW et al. 2015. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523:200–3
    [Google Scholar]
  91. Roshan S, DeVries T, Wu JF, Chen GD 2018. The internal cycling of zinc in the ocean. Glob. Biogeochem. Cycles 32:1833–49
    [Google Scholar]
  92. Roshan S, Wu JF, DeVries T 2017. Controls on the cadmium-phosphate relationship in the tropical South Pacific. Glob. Biogeochem. Cycles 31:1516–27
    [Google Scholar]
  93. Saito MA, Goepfert TJ. 2008. Zinc-cobalt colimitation of Phaeocystis antarctica. . Limnol. Oceanogr 53:266–75
    [Google Scholar]
  94. Saito MA, Goepfert TJ, Noble AE, Bertrand EM, Sedwick PN, DiTullio GR 2010. A seasonal study of dissolved cobalt in the Ross Sea, Antarctica: micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P. Biogeosciences 7:124059–82
    [Google Scholar]
  95. Saito MA, Moffett JW, DiTullio GR 2003. Depletion of cobalt as a micronutrient in the eastern Equatorial Pacific. Geochim. Cosmochim. Acta 67:A409 (Abstr.)
    [Google Scholar]
  96. Saito MA, Noble AE, Hawco N, Twining BS, Ohnemus DC et al. 2017. The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean. Biogeosciences 14:4637–62
    [Google Scholar]
  97. Saito MA, Rocap G, Moffett JW 2005. Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol. Oceanogr. 50:279–90
    [Google Scholar]
  98. Sañudo-Wilhelmy SA, Cutter LS, Durazo R, Smail EA, Gómez-Consarnau L et al. 2012. Multiple B-vitamin depletion in large areas of the coastal ocean. PNAS 109:14041–45
    [Google Scholar]
  99. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60
    [Google Scholar]
  100. Schlitzer R, Anderson RF, Dodas EM, Lohan M, Geibere W et al. 2018. The GEOTRACES Intermediate Data Product 2017. Chem. Geol. 493:210–23
    [Google Scholar]
  101. Sly WS, Hu PY. 1995. Human carbonic-anhydrase and carbonic-anhydrase deficiencies. Annu. Rev. Biochem. 64:375–401
    [Google Scholar]
  102. Sunda WG, Huntsman SA. 1992. Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr. 37:25–40
    [Google Scholar]
  103. Sunda WG, Huntsman SA. 1995. Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol. Oceanogr. 40:1404–17
    [Google Scholar]
  104. Sunda WG, Huntsman SA. 1996. Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol. Oceanogr. 41:373–87
    [Google Scholar]
  105. Sunda WG, Huntsman SA. 1998a. Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environ. Sci. Technol. 32:2961–68
    [Google Scholar]
  106. Sunda WG, Huntsman SA. 1998b. Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci. Total Environ. 219:165–81
    [Google Scholar]
  107. Sunda WG, Huntsman SA. 2000. Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling. Limnol. Oceanogr. 45:1501–16
    [Google Scholar]
  108. Sunda WG, Huntsman SA. 2005. Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom. Limnol. Oceanogr. 50:1181–92
    [Google Scholar]
  109. Tagliabue A, Hawco NJ, Bundy RM, Landing WM, Milne A et al. 2018. The role of external inputs and internal cycling in shaping the global ocean cobalt distribution: insights from the first cobalt biogeochemical model. Glob. Biogeochem. Cycles 32:594–616
    [Google Scholar]
  110. Takeda S. 1998. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393:774–77
    [Google Scholar]
  111. Timmermans KR, Snoek J, Gerringa LJA, Zondervan I, de Baar HJW 2001. Not all eukaryotic algae can replace zinc with cobalt: Chaetoceros calcitrans (Bacillariophyceae) versus Emiliania huxleyi (Prymnesiophyceae). Limnol. Oceanogr. 46:699–703
    [Google Scholar]
  112. Twining BS, Baines SB. 2013. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5:191–215
    [Google Scholar]
  113. Vance D, Little SH, de Souza GF, Khatiwala S, Lohan MC, Middag R 2017. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nat. Geosci. 10:202–6
    [Google Scholar]
  114. Waldron KJ, Robinson NJ. 2009. How do bacterial cells ensure that metalloproteins get the correct metal. ? Nat. Rev. Microbiol. 7:25–35
    [Google Scholar]
  115. Weber T, John S, Tagliabue A, DeVries T 2018. Biological uptake and reversible scavenging of zinc in the global ocean. Science 361:72–76
    [Google Scholar]
  116. Wheeler PA, North BB, Stephens GC 1974. Amino-acid uptake by marine phytoplankters. Limnol. Oceanogr. 19:249–59
    [Google Scholar]
  117. Xu Y, Feng L, Jeffrey PD, Shi YG, Morel FMM 2008. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61
    [Google Scholar]
  118. Xu Y, Morel FM. 2013. Cadmium in marine phytoplankton. Cadmium: From Toxicity to Essentiality A Sigel, H Sigel, RKO Sigel 509–28 Dordrecht, Neth: Springer
    [Google Scholar]
  119. Xu Y, Shi DL, Aristilde L, Morel FMM 2012. The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: possible role of weak complexes. Limnol. Oceanogr. 57:293–304
    [Google Scholar]
  120. Xu Y, Tang D, Shaked Y, Morel FMM 2007. Zinc, cadmium, and cobalt interreplacement and relative use efficiencies in the coccolithophore Emiliania huxleyi. Limnol. Oceanogr 52:2294–305
    [Google Scholar]
  121. Xu Y, Wahlund TM, Feng L, Shaked Y, Morel FMM 2006. A novel alkaline phosphatase in the coccolithophore Emiliania huxleyi (Prymnesiophyceae) and its regulation by phosphorus. J. Phycol. 42:835–44
    [Google Scholar]
  122. Yee D, Morel FMM. 1996. In vivo substitution of zinc by cobalt in carbonic anhydrase of a marine diatom. Limnol. Oceanogr. 41:573–77
    [Google Scholar]
  123. Young JN, Heureux AM, Sharwood RE, Rickaby RE, Morel FMM, Whitney SM 2016. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J. Exp. Bot. 67:3445–56
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060108
Loading
/content/journals/10.1146/annurev-earth-053018-060108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error