1932

Abstract

Although plate tectonics started as a theory of the ocean basins nearly 50 years ago, the mechanical details of how it works are still poorly known. Our understanding of these details has been hampered partly by our inability to characterize the physical nature of the lithosphere–asthenosphere system (LAS) beneath the ocean. We review the existing observational constraints on the seismic and electrical properties of the LAS, particularly for normal oceanic regions away from mid-oceanic ridges, hot spots, and subduction zones, where plate tectonics is expected to present its simplest form. Whereas a growing volume of seismic data on land has provided remarkable advances in large-scale pictures, seafloor observations have been shedding new light on essential details. By combing through these observational constraints, researchers are unveiling the nature of the enigmatic LAS. Future directions for large-scale seafloor observations are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-020319
2017-08-30
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-063016-020319.html?itemId=/content/journals/10.1146/annurev-earth-063016-020319&mimeType=html&fmt=ahah

Literature Cited

  1. Aki K. 1957. Space and time spectra of stationary stochastic waves with special reference to microtremors. Bull. Earthq. Res. Inst. 35:415–56 [Google Scholar]
  2. Aki K, Richards PG. 2002. Quantitative Seismology Sausalito, CA: Univ. Sci. Books. 2nd ed. [Google Scholar]
  3. Akuhara T, Mochizuki K, Kawakatsu H, Takeuchi N. 2016. Nonlinear waveform analysis for water-layer response and its application to high-frequency receiver function analysis using OBS array. Geophys. J. Int. 206:1914–20 [Google Scholar]
  4. Anderson DL, Sammis C. 1970. Partial melting in the upper mantle. Phys. Earth Planet. Inter. 3:41–50 [Google Scholar]
  5. Audet P. 2016. Receiver functions using OBS data: promises and limitations from numerical modelling and examples from the Cascadia Initiative. Geophys. J. Int. 205:1740–55 [Google Scholar]
  6. Baba K, Chave AD, Evans RL, Hirth G, Mackie RL. 2006. Mantle dynamics beneath the East Pacific Rise at 17°S: insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J. Geophys. Res. 111:B02101 [Google Scholar]
  7. Baba K, Tada N, Zhang L, Liang P, Shimizu H, Utada H. 2013. Is the electrical conductivity of the western Pacific upper mantle normal?. Geochem Geophys. Geosyst. 14:4969–79 [Google Scholar]
  8. Baba K, Utada H, Goto T, Kasaya T, Shimizu H, Tada N. 2010. Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys. Earth Planet. Inter. 183:44–62 [Google Scholar]
  9. Bagley B, Courtierband AM, Revenaugh J. 2009. Melting in the deep upper mantle oceanward of the Honshu slab. Phys. Earth Planet. Inter. 175:137–44 [Google Scholar]
  10. Bagley B, Revenaugh J. 2008. Upper mantle seismic shear discontinuities of the Pacific. J. Geophys. Res. 113:B12301 [Google Scholar]
  11. Becker TW, Conrad CP, Schaeffer AJ, Lebedev S. 2014. Origin of azimuthal seismic anisotropy in oceanic plates and mantle. Earth Planet. Sci. Lett. 401:236–50 [Google Scholar]
  12. Blackman DK, Kendall JM. 2002. Seismic anisotropy in the upper mantle 2. Predictions for current plate boundary flow models. Geochem. Geophys. Geosyst. 3:8602 [Google Scholar]
  13. Booth CM, Forsyth DW, Weeraratne DS. 2014. Upper mantle Q structure beneath old seafloor in the western Pacific. J. Geophys. Res. Solid Earth 119:3448–61 [Google Scholar]
  14. Bozdağ E, Trampert J. 2008. On crustal corrections in surface wave tomography. Geophys. J. Int. 172:1066–1082 [Google Scholar]
  15. Burgos G, Montagner JP, Beucler E, Capdeville Y, Mocquet A, Drilleau M. 2014. Oceanic lithosphere/asthenosphere boundary from surface wave dispersion data. J. Geophys. Res. Solid Earth 119:1079–93 [Google Scholar]
  16. Cox C, Constable SC, Chave A, Webb SC. 1986. Controlled-source electromagnetic sounding of the oceanic lithosphere. Nature 320:52–54 [Google Scholar]
  17. Crosby AG, McKenzie D, Sclater JG. 2006. The relationship between depth, age and gravity in the oceans. Geophys. J. Int. 166:553–73 [Google Scholar]
  18. Dai L, Karato S. 2014. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth Planet. Sci. Lett. 408:79–86 [Google Scholar]
  19. Dalton CA, Ekström G, Dziewonski AM. 2008. The global attenuation structure of the upper mantle. J. Geophys. Res. 113:B09303 [Google Scholar]
  20. Dalton CA, Ekström G, Dziewonski AM. 2009. Global seismological shear velocity and attenuation: a comparison with experimental observations. Earth Planet. Sci. Lett. 284:65–75 [Google Scholar]
  21. Debayle E, Ricard Y. 2013. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth Planet. Sci. Lett. 376:165–77 [Google Scholar]
  22. Deuss A, Woodhouse JH. 2002. A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett. 29:90–1–90-4 [Google Scholar]
  23. Dorman J, Ewing M, Oliver J. 1960. Study of shear-velocity distribution in the upper mantle by mantle Rayleigh waves. Bull. Seismol. Soc. Am. 50:87–115 [Google Scholar]
  24. Dunn RA, Forsyth DW. 2003. Imaging the transition between the region of mantle melt generation and the crustal magma chamber beneath the southern East Pacific Rise with short-period Love waves. J. Geophys. Res. 108B72352
  25. Dziewonski AM, Anderson DL. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25:297–356 [Google Scholar]
  26. Ekström G, Dziewonski AM. 1998. The unique anisotropy of the Pacific upper mantle. Nature 394:168–72 [Google Scholar]
  27. Evans RL, Hirth G, Baba K, Forsyth D, Chave A, Mackie R. 2005. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437:249–52 [Google Scholar]
  28. Evans RL, Tarits P, Chave AD, White A, Heinson G. et al. 1999. Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science 286:752–55 [Google Scholar]
  29. Fei H, Wiedenbeck M, Yamasaki D, Katsura T. 2013. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 498:213–15 [Google Scholar]
  30. Ferreira AMG, Woodhouse JH, Visser K, Trampert J. 2010. On the robustness of global radially anisotropic surface wave tomography. J. Geophys. Res. 115:B04313 [Google Scholar]
  31. Fichtner A, Kennett B, Igel H, Bunge HP. 2010. Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle. Earth Planet. Sci. Lett. 290:270–80 [Google Scholar]
  32. Fischer KM. 2015. Seismological constraints on the lithosphere–asthenosphere boundary. Treatise on Geophysics, Vol. 1: Deep Earth Seismology G Schubert 587–612 Amsterdam: Elsevier. 2nd ed. [Google Scholar]
  33. Fischer KM, Ford HA, Abt DL, Rychert CA. 2010. The lithosphere–asthenosphere boundary. Annu. Rev. Earth Planet. Sci. 38:551–75 [Google Scholar]
  34. Forsyth DW. 1975. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astron. Soc. 43:103–62 [Google Scholar]
  35. Forsyth DW, Li A. 2005. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. Seismic Earth: Array Analysis of Broadband Seismograms A Levander, G Nolet 81–97 Washington, DC: Am. Geophys. Union [Google Scholar]
  36. Foster A, Nettles M, Ekström G. 2014. Overtone interference in array-based Love-wave phase measurements. Bull. Seismol. Soc. Am. 104:2266–77 [Google Scholar]
  37. French S, Lekic V, Romanowicz B. 2013. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342:227–30 [Google Scholar]
  38. Furumura T, Kennett BLN. 2005. Subduction zone guided waves and the heterogeneity structure of the subducted plate: intensity anomalies in northern Japan. J. Geophys. Res. 110:B10302 [Google Scholar]
  39. Gaherty JB, Kato M, Jordan TH. 1999. Seismological structure of the upper mantle: a regional comparison of seismic layering. Phys. Earth Planet. Inter. 110:21–41 [Google Scholar]
  40. Gaherty JB, Lizarralde D, Collins JA, Hirth G, Kim S. 2004. Mantle deformation during slow seafloor spreading constrained by observations of seismic anisotropy in the western Atlantic. Earth Planet. Sci. Lett. 228:255–65 [Google Scholar]
  41. Gaillard F, Mohammed M, Iacono-Marziano G, Pichavant M, Scaillet B. 2008. Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–65 [Google Scholar]
  42. Gardes E, Gaillard F, Tarits P. 2014. Toward a unified hydrous olivine electrical conductivity law. Geochem. Geophys. Geosyst. 15:4984–5000 [Google Scholar]
  43. Gu YJ, Dziewonski AM, Ekström G. 2001. Lehmann discontinuity beneath continents. Geophys. Res. Lett. 28:4655–58 [Google Scholar]
  44. Gutenberg B. 1959. Physics of the Earth's Interior New York: Elsevier [Google Scholar]
  45. Harmon N, Forsyth D, Webb S. 2007. Using ambient seismic noise to determine short-period phase velocities and shallow shear velocities in young oceanic lithosphere. Bull. Seismol. Soc. Am. 97:2009–23 [Google Scholar]
  46. Hirano N, Takahashi E, Yamamoto J, Abe N, Ingle SP. et al. 2006. Volcanism in response to plate flexure. Science 313:1426–28 [Google Scholar]
  47. Hirschmann MM. 2010. Partial melt in the oceanic low velocity zone. Phys. Earth Planet. Inter. 179:60–71 [Google Scholar]
  48. Hirschmann MM, Dasgupta R. 2009. The H/C ratios of Earth's near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262:4–16 [Google Scholar]
  49. Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T, Hustoft J. 2003. Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301:1227–30 [Google Scholar]
  50. Jackson I, Faul UH, Skelton R. 2014. Elastically accommodated grain-boundary sliding: new insights from experiment and modeling. Phys. Earth Planet. Inter. 228:203–10 [Google Scholar]
  51. Jung H, Katayama I, Jian Z, Hiraga T, Karato S. 2006. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22 [Google Scholar]
  52. Kaneda K, Kodaira S, Nishizawa A, Morishita T, Takahashi N. 2010. Structural evolution of preexisting oceanic crust through intraplate igneous activities in the Marcus–Wake seamount chain. Geochem. Geophys. Geosyst. 11:Q10014 [Google Scholar]
  53. Karato S. 2012. On the origin of the asthenosphere. Earth Planet. Sci. Lett. 321–322:95–103 [Google Scholar]
  54. Kawakatsu H. 2016. A new fifth parameter for transverse isotropy. Geophys. J. Int. 204:682–85 [Google Scholar]
  55. Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T. et al. 2009. Seismic evidence for sharp lithosphere–asthenosphere boundaries of oceanic plates. Science 324:499–502 [Google Scholar]
  56. Kelbert A, Kuvshinov A, Veláský J, Toyama T, Ribaudo J. et al. 2014. Global 3-D electromagnetic forward modelling: a benchmark study. Geophys. J. Int. 197:785–814 [Google Scholar]
  57. Kennett BLN, Furumura T. 2013. High-frequency Po/So guided waves in the oceanic lithosphere: I—long-distance propagation. Geophys. J. Int. 195:1862–77 [Google Scholar]
  58. Kennett BLN, Furumura T. 2015. Toward the reconciliation of seismological and petrological perspectives on oceanic lithosphere heterogeneity. Geochem. Geophys. Geosyst. 16:3129–41 [Google Scholar]
  59. Kennett BLN, Furumura T, Zhao Y. 2014. High-frequency Po/So guided waves in the oceanic lithosphere: II—heterogeneity and attenuation. Geophys. J. Int. 199:614–30 [Google Scholar]
  60. Kennett BLN, Yoshizawa K. 2017. Lithospheric discontinuities beneath Australia: interaction of large-scale and fine-scale structure. Lithospheric Discontinuities H Yuan, B Romanowicz, AG Jones Washington, DC: Am. Geophys. Union. In press [Google Scholar]
  61. Key K, Constable S, Liu L, Pommier A. 2013. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495:499–502 [Google Scholar]
  62. Key K, Constable S, Matsuno T, Evans R, Myer D. 2012. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench. Earth Planet. Sci. Lett. 351–352:45–53 [Google Scholar]
  63. Korenaga J, Jordan TH. 2004. Physics of multiscale convection in Earth's mantle: evolution of sublithospheric convection. J. Geophys. Res. 109:B01405 [Google Scholar]
  64. Kumar P, Kawakatsu H. 2011. Imaging the seismic lithosphere–asthenosphere boundary of the oceanic plate. Geochem. Geophys. Geosyst. 12:Q01006 [Google Scholar]
  65. Kumar P, Kawakatsu H, Shinohara M, Kanazawa T, Araki E, Suyehiro K. 2011. P and S receiver function analysis of seafloor borehole broadband seismic data. J. Geophys. Res. 116:B12308 [Google Scholar]
  66. Kustowski B, Ekström G, Dziewonski AM. 2008. Anisotropic shear-wave velocity structure of the Earth's mantle: a global model. Earth Planet. Sci. Lett. 113:B06306 [Google Scholar]
  67. Leeds AR, Knopo L, Kausel EG. 1974. Variations of upper mantle structure under the Pacific Ocean. Science 186:141–43 [Google Scholar]
  68. Lévêque JJ, Cara M. 1985. Inversion of multimode surface wave data: evidence for sub-lithospheric anisotropy. Geophys. J. R. Astron. Soc. 83:753–73 [Google Scholar]
  69. Lin FC, Ritzwoller MH, Yang Y, Moschetti MP, Fouch MJ. 2010. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nat. Geosci. 4:55–61 [Google Scholar]
  70. Lizarralde D, Gaherty JB, Collins JA, Hirth G, Kim SD. 2004. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data. Nature 432:744–47 [Google Scholar]
  71. Long M, Silver PG. 2008. The subduction zone flow field from seismic anisotropy: a global view. Science 319:315–18 [Google Scholar]
  72. MacGregor L, Sinha M, Constable S. 2001. Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled-source electromagnetic sounding. Geophys. J. Int. 146:217–36 [Google Scholar]
  73. Maggi A, Debayle E, Priestley K, Barruol G. 2006a. Azimuthal anisotropy of the Pacific region. Earth Planet. Sci. Lett. 250:53–71 [Google Scholar]
  74. Maggi A, Debayle E, Priestley K, Barruol G. 2006b. Multimode surface waveform tomography of the Pacific Ocean: a closer look at the lithospheric cooling signature. Geophys. J. Int. 166:1384–97 [Google Scholar]
  75. Mainprice D. 2015. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. In Treatise on Geophysics, Vol. 2: Mineral Physics G Schubert 487–538 Amsterdam: Elsevier. 2nd ed. [Google Scholar]
  76. Matsuno T, Seama N, Evans RL, Chave AD, Baba K. et al. 2010. Upper mantle electrical resistivity structure beneath the central Mariana subduction system. Geochem. Geophys. Geosyst. 11:Q09003 [Google Scholar]
  77. Matsuno T, Suetsugu D, Baba K, Tada N, Shimizu H. et al. 2017. Mantle transition zone beneath a normal seafloor in the northwestern Pacific: electrical conductivity, seismic thickness, and water content. Earth Planet. Sci. Lett. 462:189–98 [Google Scholar]
  78. McKenzie D, Jackson J, Priestley K. 2005. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233:337–49 [Google Scholar]
  79. Mei S, Kohlstedt DL. 2000a. Influence of water on plastic deformation of olivine aggregates. 1. Diffusion creep regime. J. Geophys. Res. 105:21457–69 [Google Scholar]
  80. Mei S, Kohlstedt DL. 2000b. Influence of water on plastic deformation of olivine aggregates. 2. Dislocation creep regime. J. Geophys. Res. 105:21471–81 [Google Scholar]
  81. Montagner JP. 1985. Seismic anisotropy of the Pacific Ocean inferred from long-period surface waves dispersion. Phys. Earth Planet. Inter. 38:28–50 [Google Scholar]
  82. Naif S, Key K, Constable S, Evans RL. 2013. Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature 495:356–59 [Google Scholar]
  83. Nettles M, Dziewonski AM. 2008. Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America. J. Geophys. Res. 113:B02303 [Google Scholar]
  84. Nettles M, Dziewoński AM. 2011. Effect of higher-mode interference on measurements and models of fundamental-mode surface-wave dispersion. Bull. Seismol. Soc. Am. 101:2270–80 [Google Scholar]
  85. Nishida K, Kawakatsu H, Obara K. 2008. Three-dimensional crustal S-wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters. J. Geophys. Res. 113:B10302 [Google Scholar]
  86. Nishimura CE, Forsyth DW. 1989. The anisotropic structure of the upper mantle in the Pacific. Geophys. J. Int. 96:203–29 [Google Scholar]
  87. Parsons B, McKenzie D. 1978. Mantle convection and the thermal structure of the plates. J. Geophys. Res. 83:4485–96 [Google Scholar]
  88. Parsons B, Sclater J. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82:803–27 [Google Scholar]
  89. Phipps-Morgan J, Morgan WJ, Zhang YS, Smith WHF. 1995. Observational hints for a plume-fed, sub-oceanic asthenosphere and its role in mantle convection. J. Geophys. Res. 100:12753–67 [Google Scholar]
  90. Pommier A, Leinenweber K, Kohlstedt D, Chao Q, Garnero E. et al. 2015. Experimental constraints on the electrical anisotropy of the lithosphere-asthenosphere system. Nature 522:202–6 [Google Scholar]
  91. Priestley K, McKenzie D. 2006. The thermal structure of the lithosphere from shear wave velocities. Earth Planet. Sci. Lett. 244:285–301 [Google Scholar]
  92. Priestley K, McKenzie D. 2013. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett. 381:78–91 [Google Scholar]
  93. Raitt RW, Shor GG, Francis TJG, Morris GB. 1969. Anisotropy of the Pacific upper mantle. J. Geophys. Res. 74:3095–109 [Google Scholar]
  94. Revenaugh J, Jordan TH. 1991. Mantle layering from ScS reverberations: 3. The upper mantle. J. Geophys. Res. 96:781–810 [Google Scholar]
  95. Richards MA, Yang WS, Baumgardner JR, Bunge HP. 2001. Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst. 2:1026 [Google Scholar]
  96. Ritzwoller MH, Shapiro NM, Zhong SJ. 2004. Cooling history of the Pacific lithosphere. J. Geophys. Res. 226:69–84 [Google Scholar]
  97. Roth EG, Wiens DA, Dorman LM, Hildebrand J, Webb SC. 1999. Seismic attenuation tomography of the Tonga-Fiji region using phase pair methods. J. Geophys. Res 104(B3):4795–-809 [Google Scholar]
  98. Rychert CA, Schmerr N, Harmon N. 2012. The Pacific lithosphere–asthenosphere boundary: seismic imaging and anisotropic constraints from SS waveforms. Geochem. Geophys. Geosyst. 13:Q0AK10 [Google Scholar]
  99. Rychert CA, Shearer PM. 2011. Imaging the lithosphere–asthenosphere boundary beneath the Pacific using SS waveform modeling. J. Geophys. Res. 116:B07307 [Google Scholar]
  100. Schaeffer AJ, Lebedev S. 2013. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194:417–49 [Google Scholar]
  101. Schlue JW, Knopoff L. 1977. Shear-wave polarization anisotropy in the Pacific Basin. Geophys. J. R. Astron. Soc. 49:145–65 [Google Scholar]
  102. Schmerr N. 2012. The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary. Science 335:1480–83 [Google Scholar]
  103. Shankland TJ, Waff HS. 1977. Partial melting and electrical conductivity anomalies in the upper mantle. J. Geophys. Res. 82:5409–17 [Google Scholar]
  104. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–18 [Google Scholar]
  105. Shimamura H, Asada T, Suyehiro K, Yamada T, Inatani H. 1983. Longshot experiments to study velocity anisotropy in the oceanic lithosphere of the northwestern Pacific. Phys. Earth Planet. Inter. 31:348–62 [Google Scholar]
  106. Shinohara M, Fukano T, Kanazawa T, Araki E, Suyehiro K. et al. 2008. Upper mantle and crustal seismic structure beneath the northwestern Pacific basin using a seafloor borehole broadband seismometer and ocean bottom seismometers. Phys. Earth Planet. Inter. 170:95–106 [Google Scholar]
  107. Shito A, Suetsugu D, Furumura T. 2015. Evolution of the oceanic lithosphere inferred from Po/So waves traveling in the Philippine Sea Plate. J. Geophys. Res. Solid Earth 120:5238–48 [Google Scholar]
  108. Shito A, Suetsugu D, Furumura T, Sugioka H, Ito A. 2013. Small-scale heterogeneities in the oceanic lithosphere inferred from guided waves. Geophys. Res. Lett. 40:1708–12 [Google Scholar]
  109. Smith DB, Ritzwoller MH, Shapiro NM. 2004. Stratification of anisotropy in the Pacific upper mantle. J. Geophys. Res. 109:B11309 [Google Scholar]
  110. Song TRA, Kawakatsu H. 2012. Subduction of oceanic asthenosphere: evidence from sub-slab seismic anisotropy. Geophys. Res. Lett. 39:L17301 [Google Scholar]
  111. Song TRA, Kawakatsu H. 2013. Subduction of oceanic asthenosphere: a critical appraisal in central Alaska. Earth Planet. Sci. Lett. 367:82–94 [Google Scholar]
  112. Song TRA, Kim YH. 2011. Anisotropic uppermost mantle in young subducted slab underplating Central Mexico. Nat. Geosci. 5:55–59 [Google Scholar]
  113. Stern TA, Henrys SA, Okaya D, Louie JN, Savage MK. et al. 2015. A seismic reflection image for the base of a tectonic plate. Nature 518:85–90 [Google Scholar]
  114. Stixrude L, Lithgow-Bertelloni C. 2005. Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J. Geophys. Res. 110:B03204 [Google Scholar]
  115. Suetsugu D, Shiobara H. 2014. Broadband ocean-bottom seismology. Annu. Rev. Earth Planet. Sci. 42:27–43 [Google Scholar]
  116. Tada N, Baba K, Utada H. 2014. Three-dimensional inversion of seafloor magnetotelluric data collected in the Philippine Sea and the western margin of the northwest Pacific Ocean. Geochem. Geophys. Geosyst. 15:2895–917 [Google Scholar]
  117. Takei Y. 2002. Effect of pore geometry on Vp/Vs: from equilibrium geometry to crack. J. Geophys. Res. 107:B2ECV6-1–12 [Google Scholar]
  118. Takei Y, Holtzman BK. 2009. Viscous constitutive relations of solid–liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J. Geophys. Res. 114:B06205 [Google Scholar]
  119. Takei Y, Karasawa F, Yamauchi H. 2014. Temperature, grain size, and chemical controls on polycrystal anelasticity over a broad frequency range extending into the seismic range. J. Geophys. Res. Solid Earth 119:5414–43 [Google Scholar]
  120. Takeo A, Kawakatsu H, Isse T, Nishida K, Sugioka H. et al. 2016. Seismic azimuthal anisotropy in the oceanic lithosphere and asthenosphere from broadband surface wave analysis of OBS array records at 60 Ma seafloor. J. Geophys. Res. Solid Earth 121:1927–47 [Google Scholar]
  121. Takeo A, Nishida K, Isse T, Kawakatsu H, Shiobara H. et al. 2013. Radially anisotropic structure beneath the Shikoku Basin from broadband surface wave analysis of ocean bottom seismometer records. J. Geophys. Res. Solid Earth 118:1–15 [Google Scholar]
  122. Takeuchi H, Press F, Kobayashi N. 1959. Rayleigh-wave evidence for the low-velocity zone in the mantle. Bull. Seismol. Soc. Am. 49:355–64 [Google Scholar]
  123. Tan Y, Helmberger DV. 2007. Trans-Pacific upper mantle shear velocity structure. J. Geophys. Res. 112:B08301 [Google Scholar]
  124. Tanimoto T, Anderson DL. 1984. Mapping convection in the mantle. Geophys. Res. Lett. 11:287–90 [Google Scholar]
  125. Tommasi A, Ishikawa A. 2014. Microstructures, composition, and seismic properties of the Ontong Java Plateau mantle root. Geochem. Geophys. Geosyst. 15:4547–69 [Google Scholar]
  126. Tonegawa T, Helffrich G. 2012. Basal reflector under the Philippine Sea Plate. Geophys. J. Int. 189:659–68 [Google Scholar]
  127. Toomey DR, Jousselin D, Dunn RA, Wilcock WSD, Detrick RS. 2007. Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature 446:409–14 [Google Scholar]
  128. Toramaru A, Fujii N. 1986. Connectivity of melt phase in a partially molten peridotite. J. Geophys. Res. 91:9239–52 [Google Scholar]
  129. Utada H. 2015. Electromagnetic exploration of the oceanic mantle. Proc. Jpn. Acad. B 91:390–405 [Google Scholar]
  130. Utada H, Baba K. 2014. Estimating the electrical conductivity of the melt phase of a partially molten asthenosphere from seafloor magnetotelluric sounding data. Phys. Earth Planet. Inter. 227:41–47 [Google Scholar]
  131. Walker DA. 1977. High-frequency Pn phases observed in the Pacific at great distances. Science 197:257–59 [Google Scholar]
  132. Weeraratne DS, Forsyth DW, Yang Y, Webb SC. 2007. Rayleigh wave tomography beneath intraplate volcanic ridges in the South Pacific. J. Geophys. Res. 112:B06303 [Google Scholar]
  133. White R, McKenzie D, O'Nions R. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. 97:19683–715 [Google Scholar]
  134. Yang Y, Forsyth DW, Weeraratne DS. 2007. Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone. Earth Planet. Sci. Lett. 258:260–68 [Google Scholar]
  135. Yoshii T, Kono Y, Ito K. 1976. Thickening of the oceanic lithosphere. In The Geophysics of the Pacific Ocean Basin and Its Margin GH Sutton, MH Manghnani, R Moberly, EU McAfee 423–30 Washington, DC: Am. Geophys. Union [Google Scholar]
  136. Yoshino T, Katsura T. 2013. Electrical conductivity of mantle minerals: effects of water in conductivity anomalies. Annu. Rev. Earth Planet. Sci. 41:605–28 [Google Scholar]
  137. Yoshizawa K. 2014. Radially anisotropic 3-D shear wave structure of the Australian lithosphere and asthenosphere from multi-mode surface waves. Phys. Earth Planet. Inter. 235:33–48 [Google Scholar]
  138. Zhu H, Tromp J. 2013. Mapping tectonic deformation in the crust and upper mantle beneath Europe and the North Atlantic Ocean. Science 341:871–75 [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-020319
Loading
/content/journals/10.1146/annurev-earth-063016-020319
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error