1932

Abstract

Jupiter is in the class of planets that we call gas giants, not because they consist of gas but because they were primarily made from hydrogen-helium gas, which upon gravitational compression becomes a metallic fluid. Juno, in orbit about Jupiter since 2016, has changed our view: The gravity data are much improved, and the simplest interpretation of the higher order even harmonics implies that the planet may have a diluted central concentration of heavy elements. Jupiter has strong winds extending to perhaps ∼3,000-km depth that are evident in the odd zonal harmonics of the gravity field. Jupiter's distinctive magnetic field displays some limited local structure, most notably the Great Blue Spot (a region of downward flux near the equator), and some evidence for secular variation, possibly arising from the winds. However, Juno is ongoing; it has not answered all questions and has posed new ones.

  • ▪   Juno's mission reveals Jupiter's interior.
  • ▪   A core exists but is diluted by hydrogen.
  • ▪   The mission revealed wind depth and magnetic field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-081619-052855
2020-05-30
2024-05-27
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-081619-052855.html?itemId=/content/journals/10.1146/annurev-earth-081619-052855&mimeType=html&fmt=ahah

Literature Cited

  1. Bodenheimer P, Pollack JB. 1986. Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus 67:3391–408
    [Google Scholar]
  2. Bodenheimer P, Stevenson DJ, Lissauer JJ, D'Angelo G 2018. New formation models for the Kepler-36 system. Astrophys. J. 868:2138
    [Google Scholar]
  3. Bolton SJ, Adriani A, Adumitroaie V, Allison M, Anderson J et al. 2017. Jupiter's interior and deep atmosphere: the initial pole-to-pole passes 327 with the Juno spacecraft. Science 356:821–25
    [Google Scholar]
  4. Bolton SJ, Lunine J, Stevenson D, Connerney JEP, Levin S et al. 2019. The Juno mission. Space Sci. Rev. 213:5–37
    [Google Scholar]
  5. Brown S, Janssen M, Adumitroaie V, Atreya S, Bolton S et al. 2018. Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Nature 558:770887–90
    [Google Scholar]
  6. Burke BF, Franklin KL. 1955. Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. 60:2213–17
    [Google Scholar]
  7. Cao H, Dougherty MK, Hunt GJ, Provan G, Cowley SW et al. 2019. The landscape of Saturn's internal magnetic field from the Cassini Grand Finale. Icarus 11:1135411
    [Google Scholar]
  8. Chandrasekhar S. 1958. 1939. An Introduction to the Study of Stellar Structure New York: Dover
  9. Connerney JE, Acuna MH, Ness NF 1996. Octupole model of Jupiter's magnetic field from Ulysses observations. J. Geophys. Res. Space Phys. 101:A1227453–58
    [Google Scholar]
  10. Darwin GH. 1899. The theory of the figure of the Earth carried to the second order in small quantities. Mon. Not. R. Astron. Soc. 60:82–124
    [Google Scholar]
  11. de Pater I, Sault RJ, Butler B, DeBoer D, Wong MH 2016. Peering through Jupiter's clouds with radio spectral imaging. Science 352:62901198–201
    [Google Scholar]
  12. Debras F, Chabrier G. 2019. New models of Jupiter in the context of Juno and Galileo. Astrophys. J. 872:1100
    [Google Scholar]
  13. Demarcus WC. 1958. The constitution of Jupiter and Saturn. Astron. J. 63:12–28
    [Google Scholar]
  14. Dias RP, Silvera IF. 2017. Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355:715–18
    [Google Scholar]
  15. Fortney JJ, Ikoma M, Nettelmann N, Guillot T, Marley MS 2011. Self-consistent model atmospheres and the cooling of the Solar System's giant planets. Astrophys. J. 729:132
    [Google Scholar]
  16. Fortney JJ, Nettelmann N. 2010. The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152:1–4423–47
    [Google Scholar]
  17. French M, Becker A, Lorenzen W, Nettelmann N, Bethkenhagen M et al. 2012. Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. 202:15
    [Google Scholar]
  18. Gao P, Stevenson DJ. 2013. Nonhydrostatic effects and the determination of icy satellites' moment of inertia. Icarus 226:21185–91
    [Google Scholar]
  19. Grasset O, Castillo-Rogez J, Guillot T, Fletcher LN, Tosi F 2017. Water and volatiles in the outer solar system. Space Sci. Rev. 212:1–2835–75
    [Google Scholar]
  20. Guillot T. 2005. The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33:493–530
    [Google Scholar]
  21. Guillot T, Chabrier G, Morel P, Gautier D 1994. Nonadiabatic models of Jupiter and Saturn. Icarus 112:2354–67
    [Google Scholar]
  22. Helled R, Anderson JD, Schubert G, Stevenson DJ 2011. Jupiter's moment of inertia: a possible determination by Juno. Icarus 216:2440–48
    [Google Scholar]
  23. Helled R, Stevenson D. 2017. The fuzziness of giant planets' cores. Astrophys. J. Lett. 840:L4
    [Google Scholar]
  24. Hubbard WB. 1968. Thermal structure of Jupiter. Astrophys. J. 152:745–54
    [Google Scholar]
  25. Hubbard WB. 1969. Thermal models of Jupiter and Saturn. Astrophys. J. 155:333–44
    [Google Scholar]
  26. Hubbard WB. 1999. Gravitational signature of Jupiter's deep zonal flows. Icarus 137:2357–59
    [Google Scholar]
  27. Hubbard WB, Smoluchowski R. 1973. Structure of Jupiter and Saturn. Space Sci. Rev. 14:5599–662
    [Google Scholar]
  28. Iess L, Militzer B, Kaspi Y, Nicholson P, Durante D et al. 2019. Measurement and implications of Saturn's gravity field and ring mass. Science 364:6445eaat2965
    [Google Scholar]
  29. Jeffreys H. 1924. On the internal constitution of Jupiter and Saturn. Mon. Not. R. Astron. Soc. 84:534–38
    [Google Scholar]
  30. Kaspi Y, Galanti E, Hubbard WB, Stevenson DJ, Bolton SJ et al. 2018. Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature 555:223–26
    [Google Scholar]
  31. Kruijer TS, Burkhardt C, Budde G, Kleine T 2017. Dating the formation of Jupiter using the distinct genetics and formation times of meteorites. Meteorit. Planet. Sci. 52:A182(Abstr.)
    [Google Scholar]
  32. Le Maistre S, Folkner WM, Jacobson RA, Serra D 2016. Jupiter spin-pole precession rate and moment of inertia from Juno radio-science observations. Planet. Space Sci. 126:78–92
    [Google Scholar]
  33. Leconte J, Chabrier G. 2012. A new vision of giant planet interiors: impact of double diffusive convection. Astron. Astrophys. 540:A20
    [Google Scholar]
  34. Li C, Ingersoll A, Janssen M, Levin S, Bolton S et al. 2017. The distribution of ammonia on Jupiter from a preliminary inversion of Juno 323 microwave radiometer data. Geophys. Res. Lett. 44:5317–25
    [Google Scholar]
  35. Liu J, Goldreich PM, Stevenson DJ 2008. Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196:2653–64
    [Google Scholar]
  36. Liu S-F, Hori Y, Muller S, Zheng X, Helled R et al. 2019. The formation of Jupiter's diluted core by a giant impact. Nature 572:355–57
    [Google Scholar]
  37. Low FJ. 1966. Observations of Venus, Jupiter and Saturn at λ20 μ. Astron. J. 71:391 (Abstr.)
    [Google Scholar]
  38. Mankovich C, Marley MS, Fortney JJ, Movshovitz N 2019. Cassini ring seismology as a probe of Saturn's interior. I. Rigid rotation. Astrophys. J. 871:11
    [Google Scholar]
  39. Markham S, Stevenson D. 2018. Excitation mechanisms for Jovian seismic modes. Icarus 306:200–13
    [Google Scholar]
  40. Miguel Y, Guillot T, Fayon L 2018. Jupiter internal structure: the effect of different equations of state (Corrigendum). Astron. Astrophys. 618:C2
    [Google Scholar]
  41. Militzer B, Hubbard WB. 2013. Ab initio equation of state for hydrogen-helium mixtures with recalibration of the giant-planet mass-radius relation. Astrophys. J. 774:2148
    [Google Scholar]
  42. Moore KM, Cao H, Bloxham J, Stevenson DJ, Connerney J, Bolton S 2019. Time variation of Jupiter's magnetic field consistent with zonal wind advection. Nat. Astron. 3:730–35
    [Google Scholar]
  43. Moore KM, Yadav RK, Kulowski L, Cao H, Bloxham J et al. 2018. A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Nature 561:772176–78
    [Google Scholar]
  44. Morales MA, Hamel S, Caspersen K, Schwegler E 2013. Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors. Phys. Rev. B 87:17174105
    [Google Scholar]
  45. Nettelmann N, Becker A, Holst B, Redmer R 2012. Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys. J. 750:152
    [Google Scholar]
  46. Owen T, Encrenaz T. 2003. Element abundances and isotope ratios in the giant planets and Titan. Space Sci. Rev. 106:1–4121–38
    [Google Scholar]
  47. Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y 1996. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:162–85
    [Google Scholar]
  48. Radau R. 1885. Sur la loi des densités à l'intérieur de la terre. C.R. Acad. Sci. Paris 100:972–74
    [Google Scholar]
  49. Raymond SN, Izidoro A. 2017. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion. Icarus 297:134–48
    [Google Scholar]
  50. Soubiran F, Militzer B. 2016. The properties of heavy elements in giant planet envelopes. Astrophys. J. 829:114
    [Google Scholar]
  51. Stevenson DJ. 1979. Solubility of helium in metallic hydrogen. J. Phys. F Metal Phys. 9:5791–801
    [Google Scholar]
  52. Stevenson DJ. 1982a. Interiors of the giant planets. Annu. Rev. Earth Planet. Sci. 10:257–95
    [Google Scholar]
  53. Stevenson DJ. 1982b. Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn. Geophys. Astrophys. Fluid Dyn. 21:1–2113–27
    [Google Scholar]
  54. Stevenson DJ. 1985. Cosmochemistry and structure of the giant planets and their satellites. Icarus 62:14–15
    [Google Scholar]
  55. Stevenson DJ. 2003. Planetary magnetic fields. Earth Planet. Sci. Lett. 208:1–21–11
    [Google Scholar]
  56. Stevenson DJ, Salpeter EE. 1977a. Dynamics and helium distribution in hydrogen-helium fluid planets. Astrophys. J. Suppl. 35:2239–61
    [Google Scholar]
  57. Stevenson DJ, Salpeter EE. 1977b. Phase-diagram and transport properties for hydrogen-helium fluid planets. Astrophys. J. Suppl. 35:2221–37
    [Google Scholar]
  58. Wahl SM, Hubbard WB, Militzer B 2016. Tidal response of preliminary Jupiter model. Astrophys. J. 831:114
    [Google Scholar]
  59. Wahl SM, Hubbard WB, Militzer B, Guillot T, Miguel Y et al. 2017. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44:104649–59
    [Google Scholar]
  60. Wigner E, Huntington HB. 1935. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3:12764–70
    [Google Scholar]
/content/journals/10.1146/annurev-earth-081619-052855
Loading
/content/journals/10.1146/annurev-earth-081619-052855
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error