1932

Abstract

Since the discovery of the ash tree ( spp.) killer emerald ash borer (EAB; ) in the United States in 2002 and Moscow, Russia in 2003, substantial detection and management efforts have been applied to contain and monitor its spread and mitigate impacts. Despite these efforts, the pest continues to spread within North America. It has spread to European Russia and Ukraine and is causing sporadic outbreaks in its native range in China. The dynamics of EAB's range expansion events appear to be linked to the lack of resistant ash trees in invaded ranges, facilitated by the abundance of native or planted North American susceptible ash species. We review recently gained knowledge of the range expansion of EAB; its ecological, economic, and social impacts; and past management efforts with their successes and limitations. We also highlight advances in biological control, mechanisms of ash resistance, and new detection and management approaches under development, with the aim of guiding more effective management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-012323-032231
2024-01-25
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-012323-032231.html?itemId=/content/journals/10.1146/annurev-ento-012323-032231&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abella SR, Hausman CE, Jaeger JF, Menard KS, Schetter TA, Rocha OJ. 2019.. Fourteen years of swamp forest change from the onset, during, and after invasion of emerald ash borer. Russ. J. Biol. Invasions 21:3685–96
    [Google Scholar]
  2. 2.
    Aubin I, Cardou F, Ryall K, Kreutzweiser D, Scarr T. 2015. Ash regeneration capacity after emerald ash borer (EAB) outbreaks: some early results. For. Chron. 91:291–98
    [Google Scholar]
  3. 3.
    Baranchikov Y, Mozolevskaya E, Yurchenko G, Kenis M. 2008. Occurrence of the emerald ash borer, Agrilus planipennis in Russia and its potential impact on European forestry. Bull. OEPP 38:233–38
    [Google Scholar]
  4. 4.
    Baranchikov Y, Seraya LG, Grinash MN. 2014. All European ash species are susceptible to emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae)—a Far Eastern invader. Sib. J. For. Sci. 6:80–85 (In Russian with English summary)
    [Google Scholar]
  5. 5.
    Burr SJ, McCullough DG. 2014. Condition of green ash (Fraxinus pennsylvanica) overstory and regeneration at three stages of the emerald ash borer invasion wave. Can. J. For. Res. 44:768–76
    [Google Scholar]
  6. 6.
    Bushaj S, Büyüktahtakın İE, Yemshanov D, Haight RG. 2020. Optimizing surveillance and management of emerald ash borer in urban environments. Nat. Resour. Model. 34:e12267
    [Google Scholar]
  7. 7.
    Cao HX, Vu GTH, Gailing O. 2022. From genome sequencing to CRISPR-based genome editing for climate-resilient forest trees. Int. J. Mol. Sci. 23:966
    [Google Scholar]
  8. 8.
    Cipollini D, Peterson DL. 2018. The potential for host switching via ecological fitting in the emerald ash borer-host plant system. Oecologia 187:507–19
    [Google Scholar]
  9. 9.
    Cipollini D, Rigsby CM. 2015. Incidence of infestation and larval success of emerald ash borer (Agrilus planipennis) on white fringetree (Chionanthus virginicus), Chinese fringetree (Chionanthus retusus), and devilwood (Osmanthus americanus). Environ. Entomol. 44:1375–83
    [Google Scholar]
  10. 10.
    Cipollini D, Rigsby CM, Peterson DL. 2017. Feeding and development of emerald ash borer (Coleoptera: Buprestidae) on cultivated olive, Olea europaea. J. Econ. Entomol. 110:1935–37
    [Google Scholar]
  11. 11.
    Crook DJ, Francese JA, Rietz ML, Lance DR, Hull-Sanders HM et al. 2014. Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): comparison of multifunnel traps, prism traps, and lure types at varying population densities. J. Econ. Entomol. 107:1496–501
    [Google Scholar]
  12. 12.
    Dang Y, Wei K, Wang X, Duan JJ, Jennings DE, Poland TM. 2021. Introduced plants induce outbreaks of a native pest and facilitate invasion in the plants' native range: evidence from the emerald ash borer. J. Ecol. 110:593–604Showed that widespread planting of susceptible ash trees is responsible for recent EAB spread in China.
    [Google Scholar]
  13. 13.
    Dang Y, Zhang Y, Wang X, Wei K, Yang Z. 2021. Tolerability of emerald ash borer to high temperature and humidity. Linye Kexue 57:189–94
    [Google Scholar]
  14. 14.
    Dang Y-Q, Wang X-Y. 2021. Prediction of potential geographic distribution of Agrilus planipennis in China based on an improved method. J. Environ. Entomol. 43:1368–75
    [Google Scholar]
  15. 15.
    Dang Y-Q, Zhang Y-L, Wang X-Y, Xin B, Quinn NF, Duan JJ. 2021. Retrospective analysis of factors affecting the distribution of an invasive wood-boring insect using native range data: the importance of host plants. J. Pest Sci. 94:981–90
    [Google Scholar]
  16. 16.
    Dara SK, Montalva C, Barta M. 2019. Microbial control of invasive forest pests with entomopathogenic fungi: a review of the current situation. Insects 10:341
    [Google Scholar]
  17. 17.
    Davis JC, Shannon JP, Bolton NW, Kolka RK, Pypker TG. 2017. Vegetation responses to simulated emerald ash borer infestation in Fraxinus nigra dominated wetlands of Upper Michigan, USA. Can. J. For. Res. 47:319–30
    [Google Scholar]
  18. 18.
    Davis JC, Shannon JP, Van Grinsven MJ, Bolton NW, Wagenbrenner JW et al. 2019. Nitrogen cycling responses to simulated emerald ash borer infestation in Fraxinus nigra-dominated wetlands. Biogeochemistry 145:275–94
    [Google Scholar]
  19. 19.
    Davydenko K, Skrylnyk Y, Borysenko O, Menkis A, Vysotska N et al. 2022. Invasion of emerald ash borer Agrilus planipennis and ash dieback pathogen Hymenoscyphus fraxineus in Ukraine—a concerted action. Forests 13:789
    [Google Scholar]
  20. 20.
    de Andrade RB, Abell K, Duan JJ, Shrewsbury P, Gruner DS. 2021. Protective neighboring effect from ash trees treated with systemic insecticide against emerald ash borer. Pest Manag. Sci. 77:474–81
    [Google Scholar]
  21. 21.
    Diamond JS, McLaughlin DL, Slesak RA, D'Amato AW, Palik BJ 2018. Forested versus herbaceous wetlands: Can management mitigate ecohydrologic regime shifts from invasive emerald ash borer?. J. Environ. Manag. 222:436–46
    [Google Scholar]
  22. 22.
    Drogvalenko AN, Orlova-Bienkowskaja MJ, Bienkowski AO. 2019. Record of the emerald ash borer (Agrilus planipennis) in Ukraine is confirmed. Insects 10:338
    [Google Scholar]
  23. 23.
    Duan J, Bauer L, van Driesche R, Gould J. 2018. Progress and challenges of protecting North American ash trees from the emerald ash borer using biological control. Forests 9:142
    [Google Scholar]
  24. 24.
    Duan JJ, Abell KJ, Bauer LS, Gould J, Van Driesche R. 2014. Natural enemies implicated in the regulation of an invasive pest: a life table analysis of the population dynamics of the emerald ash borer. Agric. For. Entomol. 16:406–16
    [Google Scholar]
  25. 25.
    Duan JJ, Bauer LS, Van Driesche RG. 2017. Emerald ash borer biocontrol in ash saplings: the potential for early stage recovery of North American ash trees. For. Ecol. Manag. 394:64–72
    [Google Scholar]
  26. 26.
    Duan JJ, Van Driesche RG, Crandall RS, Schmude JM, Rutledge CE et al. 2019. Establishment and early impact of Spathius galinae (Hymenoptera: Braconidae) on emerald ash borer (Coleoptera: Buprestidae) in the northeastern United States. J. Econ. Entomol. 112:2121–30
    [Google Scholar]
  27. 27.
    Duan JJ, Van Driesche RG, Schmude J, Crandall R, Rutlege C et al. 2021. Significant suppression of invasive emerald ash borer by introduced parasitoids: potential for North American ash recovery. J. Pest. Sci. 95::1081–90Found that S. galinae appears to be established and demonstrated a sudden increase in EAB control success.
    [Google Scholar]
  28. 28.
    Duan JJ, Yurchenko G, Fuester R. 2012. Occurrence of emerald ash borer (Coleoptera: Buprestidae) and biotic factors affecting its immature stages in the Russian Far East. Environ. Entomol. 41:245–54
    [Google Scholar]
  29. 29.
    Feng RX, Zhao J, Zhang SF, Wang JJ, Wei JR, Liu JF. 2021. Transcriptome changes in the phloem of Fraxinus velutina (Torr) response to infection of Agrilus planipennis (Fairmaire). For. Res. 34:47–55 (In Chinese)
    [Google Scholar]
  30. 30.
    Finley K, Chhin S, Nzokou P, O'Brien J. 2016. Use of near-infrared spectroscopy as an indicator of emerald ash borer infestation in white ash stem tissue. For. Ecol. Manag. 366:41–52
    [Google Scholar]
  31. 31.
    Flower C, Fant J, Hoban S, Knight K, Steger L et al. 2018. Optimizing conservation strategies for a threatened tree species: in situ conservation of white ash (Fraxinus americana L.) genetic diversity through insecticide treatment. Forests 9:202
    [Google Scholar]
  32. 32.
    Flower CE, Long LC, Knight KS, Rebbeck J, Brown JS et al. 2014. Native bark-foraging birds preferentially forage in infected ash (Fraxinus spp.) and prove effective predators of the invasive emerald ash borer (Agrilus planipennis Fairmaire). For. Ecol. Manag. 313:300–6
    [Google Scholar]
  33. 33.
    Friedman MS, Rigsby CM, Cipollini D. 2020. Light limitation impacts growth but not constitutive or jasmonate induced defenses relevant to emerald ash borer (Agrilus planipennis) in white fringetree (Chionanthus virginicus) or black ash (Fraxinus nigra). J. Chem. Ecol. 46:1117–30
    [Google Scholar]
  34. 34.
    Gould J, Fierke MK, Hickin M. 2022. Mortality of emerald ash borer larvae in small regenerating ash in New York forests. J. Econ. Entomol. 115:1442–54
    [Google Scholar]
  35. 35.
    Grinde AR, Youngquist MB, Slesak RA, Kolbe RS, Bednar JD et al. 2022. Potential impacts of emerald ash borer and adaptation strategies on wildlife communities in black ash wetlands. Ecol. Appl. 32:e2567
    [Google Scholar]
  36. 36.
    Haack RA, Petrice TR. 2022. Mortality of bark- and wood-boring beetles (Coleoptera: Buprestidae, Cerambycidae, and Curculionidae) in naturally infested heat-treated ash, birch, oak, and pine bolts. J. Econ. Entomol. 115:1964–75
    [Google Scholar]
  37. 37.
    Held BW, Simeto S, Rajtar NN, Cotton AJ, Showalter DN et al. 2021. Fungi associated with galleries of the emerald ash borer. Fungal Biol. 125:551–59First investigation of EAB gallery microbiota (fungal) community.
    [Google Scholar]
  38. 38.
    Herms DA, McCullough DG. 2014. Emerald ash borer invasion of North America: history, biology, ecology, impacts and management. Annu. Rev. Entomol. 59:13–30
    [Google Scholar]
  39. 39.
    Herms DA, McCullough DG, Smitley DR, Sadof CS, Miller FD, Cranshaw W. 2019. Insecticide options for protecting ash trees from emerald ash borer Bull., North Cent. IPM Cent. US Dept. Agric. Ames, IA:
  40. 40.
    Host TK, Russell MB, Windmuller-Campione MA, Slesak RA, Knight JF. 2020. Ash presence and abundance derived from composite Landsat and Sentinel-2 time series and Lidar surface models in Minnesota, USA. Remote Sens. 12:1341
    [Google Scholar]
  41. 41.
    Hoven BM, Gorchov DL, Knight KS, Peters VE. 2017. The effect of emerald ash borer-caused tree mortality on the invasive shrub Amur honeysuckle and their combined effects on tree and shrub seedlings. Russ. J. Biol. Invasions 19:2813–36
    [Google Scholar]
  42. 42.
    Huff M, Seaman J, Wu D, Zhebentyayeva T, Kelly LJ et al. 2022. A high-quality reference genome for Fraxinus pennsylvanica for ash species restoration and research. Mol. Ecol. Resour. 22:1284–302
    [Google Scholar]
  43. 43.
    Imrei Z, Lohonyai Z, Csóka G, Muskovits J, Szanyi S et al. 2020. Improving trapping methods for buprestid beetles to enhance monitoring of native and invasive species. Forestry 93:254–64
    [Google Scholar]
  44. 44.
    Jennings DE, Duan JJ, Bauer LS, Schmude JM, Wetherington MT, Shrewsbury PM. 2016. Temporal dynamics of woodpecker predation on emerald ash borer (Agrilus planipennis) in the northeastern U.S.A.. Agric. For. Entomol. 18:174–81
    [Google Scholar]
  45. 45.
    Joga MR, Mogilicherla K, Smagghe G, Roy A. 2021. RNA interference-based forest protection products (FPPs) against wood-boring Coleopterans: hope or hype?. Front. Plant Sci. 12:733608
    [Google Scholar]
  46. 46.
    Jones BA. 2016. Work more and play less? Time use impacts of changing ecosystem services: the case of the invasive emerald ash borer. Ecol. Econ. 124:49–58
    [Google Scholar]
  47. 47.
    Jones BA. 2017. Invasive species impacts on human well-being using the life satisfaction index. Ecol. Econ. 134:250–57
    [Google Scholar]
  48. 48.
    Jones BA. 2019. Tree shade, temperature, and human health: evidence from invasive species-induced deforestation. Ecol. Econ. 156:12–23
    [Google Scholar]
  49. 49.
    Jones BA. 2020. Labor market impacts of deforestation caused by invasive species spread. Environ. Resour. Econ. 77:159–90
    [Google Scholar]
  50. 50.
    Jones BA, McDermott SM. 2015. Linking environmental management to health outcomes: a case study of the emerald ash borer. Appl. Econ. Lett. 22:1409–14
    [Google Scholar]
  51. 51.
    Jones BA, McDermott SM. 2017. Health impacts of invasive species through an altered natural environment: assessing air pollution sinks as a causal pathway. Environ. Resour. Econ. 71:23–43
    [Google Scholar]
  52. 52.
    Kashian D, Bauer L, Spei B, Duan J, Gould J. 2018. Potential impacts of emerald ash borer biocontrol on ash health and recovery in southern Michigan. Forests 9:296
    [Google Scholar]
  53. 53.
    Kelly LJ, Plumb WJ, Carey DW, Mason ME, Cooper ED et al. 2020. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat. Ecol. Evol. 4:1116–28First comprehensive investigation of genetic basis of ash resistance.
    [Google Scholar]
  54. 54.
    Klooster W, Gandhi K, Long L, Perry K, Rice K, Herms D. 2018. Ecological impacts of emerald ash borer in forests at the epicenter of the invasion in North America. Forests 9:250
    [Google Scholar]
  55. 55.
    Koch JL, Carey DW, Knight KS, Poland T, Herms DA, Mason ME. 2012. Breeding strategies for the development of emerald ash borer-resistant North American ash. Proceedings of the Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees235–39. Albany, NY: Pac. Southwest Res. Stn., For. Serv., US Dept. Agric.
    [Google Scholar]
  56. 56.
    Koch JL, Carey DW, Mason ME, Poland TM, Knight KS. 2015. Intraspecific variation in Fraxinus pennsylvanica responses to emerald ash borer (Agrilus planipennis). New For. 46:995–1011
    [Google Scholar]
  57. 57.
    Kondo MC, Han S, Donovan GH, MacDonald JM. 2017. The association between urban trees and crime: evidence from the spread of the emerald ash borer in Cincinnati. Landsc. Urban Plan. 157:193–99
    [Google Scholar]
  58. 58.
    Kreutzweiser D, Dutkiewicz D, Capell S, Sibley P, Scarr T. 2020. Changes in streamside riparian forest canopy and leaf litter nutrient flux to soils during an emerald ash borer infestation in an agricultural landscape. Russ. J. Biol. Invasions 22:1865–78
    [Google Scholar]
  59. 59.
    Kreutzweiser D, Nisbet D, Sibley P, Scarr T. 2019. Loss of ash trees in riparian forests from emerald ash borer infestations has implications for aquatic invertebrate leaf-litter consumers. Can. J. For. Res. 49:134–44
    [Google Scholar]
  60. 60.
    Lane T, Best T, Zembower N, Davitt J, Henry N et al. 2016. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. BMC Genom. 17:702
    [Google Scholar]
  61. 61.
    Lee JH, Pijut PM. 2018. Optimization of agrobacterium-mediated genetic transformation of Fraxinus nigra and development of black ash for possible emerald ash borer resistance. Plant Cell Tissue Organ. Cult. 134:217–29
    [Google Scholar]
  62. 62.
    Leelesh RS, Rieske LK. 2020. Oral ingestion of bacterially expressed dsRNA can silence genes and cause mortality in a highly invasive, tree-killing pest, the emerald ash borer. Insects 11:440Showed that Escherichia coli can be modified and used to deliver RNAi to EAB via oral ingestion and is the first investigation of microbial delivery of RNAi to EAB.
    [Google Scholar]
  63. 63.
    Li H, Boyle C, Nelson. 2019. Hedonic analysis of forest pest invasion: the case of emerald ash borer. Forests 10:820
    [Google Scholar]
  64. 64.
    Liu H, Bauer LS, Miller DL, Zhao T, Gao R et al. 2007. Seasonal abundance of Agrilus planipennis (Coleoptera: Buprestidae) and its natural enemies Oobius agrili (Hymenoptera: Encyrtidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae) in China. Biol. Control 42:61–71
    [Google Scholar]
  65. 65.
    Liu H, Wu C. 2018. Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach. Int. J. Appl. Earth Obs. 68:298–307
    [Google Scholar]
  66. 66.
    Liu J, Feng R, Fu X, Zhao J, Zhang S et al. 2021. Lignans dramatically enhance the resistance of Fraxinus velutina Torr. by adjusting the dominant bacterium group of Agrilus planipennis Fairmaire. Pest Manag. Sci. 78:1386–97
    [Google Scholar]
  67. 67.
    Lu J-F, Cai J-Y, Zhan M-K, Wang X-Y, Tang Y-L et al. 2017. Spatial population niche of Agrilus planipennis Fairmaire larvae and their natural enemies. Chin. J. Appl. Entomol. 54:506–14
    [Google Scholar]
  68. 68.
    Lu J-F, Wang Z-Y, Yang Z-Q, Wei K, Yang Y-L et al. 2013. Life table of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), based on special time survey data. Acta Entomol. Sin. 56:1294–305
    [Google Scholar]
  69. 69.
    Lu J-F, Zhan M-K, Cai J-Y, Wang X-Y, Tang Y-L et al. 2017. Key factors for population fluctuation in the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Bubrestidae). Chin. J. Biol. Control 33:188–92
    [Google Scholar]
  70. 70.
    Lutscher F, Musgrave JA. 2017. Behavioral responses to resource heterogeneity can accelerate biological invasions. Ecology 98:1229–38
    [Google Scholar]
  71. 71.
    Lyons DB, Iavallée R, Kyei-Poku G, Van Frankenhuyzen K, Johny S et al. 2012. Towards the development of an autocontamination trap system to manage populations of emerald ash borer (Coleoptera: Buprestidae) with the native entomopathogenic fungus, Beauveria bassiana. J. Econ. Entomol. 105:1929–39
    [Google Scholar]
  72. 72.
    Lyttek E, Lal P, Nieddu G, Forgoston E, Wieczerak T. 2019. Modeling Agrilus planipennis F. (Coleoptera: Buprestidae) spread in New Jersey. J. Econ. Entomol. 112:2482–88
    [Google Scholar]
  73. 73.
    MacLean MG, Holt J, Borsuk M, Markowski-Lindsay M, Butler BJ et al. 2020. Potential impacts of insect-induced harvests in the mixed forests of New England. Forests 11:498
    [Google Scholar]
  74. 74.
    Margulies E, Bauer L, Ibáñez I. 2017. Buying time: preliminary assessment of biocontrol in the recovery of native forest vegetation in the aftermath of the invasive emerald ash borer. Forests 8:369
    [Google Scholar]
  75. 75.
    Marshall JM. 2020. Forest compositional changes after a decade of emerald ash borer. Forests 11:9
    [Google Scholar]
  76. 76.
    McCullough DG. 2019. Challenges, tactics and integrated management of emerald ash borer in North America. Forestry 93:197–211Summary of EAB management approaches in the United States.
    [Google Scholar]
  77. 77.
    McCullough DG, Mercader RJ. 2012. Evaluation of potential strategies to SLow Ash Mortality (SLAM) caused by emerald ash borer (Agrilus planipennis): SLAM in an urban forest. Int. J. Pest. Manag. 58:9–23
    [Google Scholar]
  78. 78.
    McCullough DG, Mercader RJ, Siegert NW. 2015. Developing and integrating tactics to slow ash (Oleaceae) mortality caused by emerald ash borer (Coleoptera: Buprestidae). Can. Entomol. 147:349–58
    [Google Scholar]
  79. 79.
    McCullough DG, Poland TM, Lewis PA. 2016. Lethal trap trees: a potential option for emerald ash borer (Agrilus planipennis Fairmaire) management. Pest Manag. Sci. 72:1023–30
    [Google Scholar]
  80. 80.
    Menkis A, Bakys R, Stein Åslund M, Davydenko K, Elfstrand M et al. 2020. Identifying Fraxinus excelsior tolerant to ash dieback: visual field monitoring versus a molecular marker. Eur. J. For. Pathol. 50:e12572
    [Google Scholar]
  81. 81.
    Mercader RJ, McCullough DG, Bedford JM. 2013. A comparison of girdled ash detection trees and baited artificial traps for Agrilus planipennis (Coleoptera: Buprestidae) detection. Environ. Entomol. 42:1027–39
    [Google Scholar]
  82. 82.
    Mercader RJ, McCullough DG, Storer AJ, Bedford JM, Heyd R et al. 2015. Evaluation of the potential use of a systemic insecticide and girdled trees in area wide management of the emerald ash borer. For. Ecol. Manag. 350:70–80
    [Google Scholar]
  83. 83.
    Merkle SA, Koch JL, Tull AR, Dassow JE, Carey DW et al. 2023. Application of somatic embryogenesis for development of emerald ash borer-resistant white ash and green ash varietals. New For 54:697–720
    [Google Scholar]
  84. 84.
    Mittapalli O, Bai X, Mamidala P, Rajarapu SP, Bonello P, Herms DA. 2010. Tissue-specific transcriptomics of the exotic invasive insect pest emerald ash borer (Agrilus planipennis). PLOS ONE 5:e13708
    [Google Scholar]
  85. 85.
    Mogouong J, Constant P, Lavallee R, Guertin C. 2020. Gut microbiome of the emerald ash borer, Agrilus planipennis Fairmaire, and its relationship with insect population density. FEMS Microbiol. Ecol. 96:fiaa141
    [Google Scholar]
  86. 86.
    Mogouong J, Constant P, Legendre P, Guertin C. 2021. The phyllosphere microbiome of host trees contributes more than leaf phytochemicals to variation in the Agrilus planipennis Fairmaire gut microbiome structure. Sci. Rep. 11:15911
    [Google Scholar]
  87. 87.
    Murphy TC, Gould JR, Van Driesche RG, Elkinton JS. 2018. Interactions between woodpecker attack and parasitism by introduced parasitoids of the emerald ash borer. Biol. Control 122:109–17
    [Google Scholar]
  88. 88.
    Musolin DL, Kirichenko NI, Karpun NN, Aksenenko EV, Golub VB et al. 2022. Invasive insect pests of forests and urban trees in Russia: origin, pathways, damage, and management. Forests 13:521
    [Google Scholar]
  89. 89.
    Olson DG, Rieske LK. 2018. Host range expansion may provide enemy free space for the highly invasive emerald ash borer. Russ. J. Biol. Invasions 21:625–35
    [Google Scholar]
  90. 90.
    Orlova-Bienkowskaja MJ. 2015. Cascading ecological effects caused by the establishment of the emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae) in European Russia. Eur. J. Entomol. 112:778–89
    [Google Scholar]
  91. 91.
    Orlova-Bienkowskaja MJ, Bieńkowski AO. 2016. The life cycle of the emerald ash borer Agrilus planipennis in European Russia and comparisons with its life cycles in Asia and North America. Acric. For. Entomol. 18:182–88
    [Google Scholar]
  92. 92.
    Orlova-Bienkowskaja MJ, Bienkowski AO. 2020. Minimum winter temperature as a limiting factor of the potential spread of Agrilus planipennis, an alien pest of ash trees, in Europe. Insects 11:58
    [Google Scholar]
  93. 93.
    Orlova-Bienkowskaja MJ, Bienkowski AO. 2022. Low heat availability could limit the potential spread of the emerald ash borer to Northern Europe (prognosis based on growing degree days per year). Insects 13:52
    [Google Scholar]
  94. 94.
    Orlova-Bienkowskaja MJ, Bieńkowski AO. 2022. Southern range expansion of the emerald ash borer, Agrilus planipennis, in Russia threatens ash and olive trees in the Middle East and southern Europe. Forests 13:541Provides the latest range maps of EAB in European Russia and Ukraine.
    [Google Scholar]
  95. 95.
    Orlova-Bienkowskaja MJ, Drogvalenko AN, Zabaluev IA, Sazhnev AS, Peregudova EY et al. 2020. Current range of Agrilus planipennis Fairmaire, an alien pest of ash trees, in European Russia and Ukraine. Ann. For. Sci. 77:29
    [Google Scholar]
  96. 96.
    Orlova-Bienkowskaja MJ, Volkovitsh MG. 2017. Are native ranges of the most destructive invasive pests well known? A case study of the native range of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). Biol. Invasions 20:1275–86
    [Google Scholar]
  97. 97.
    Palik B, D'Amato AW, Slesak RA 2021. A collaborative approach to preparing for and reacting to emerald ash borer: a case study from Colorado. Forestry 93:239–53
    [Google Scholar]
  98. 98.
    Pampolini F, Rodrigues TB, Leelesh RS, Kawashima T, Rieske LK. 2020. Confocal microscopy provides visual evidence and confirms the feasibility of dsRNA delivery to emerald ash borer through plant tissues. J. Pest Sci. 93:1143–53
    [Google Scholar]
  99. 99.
    Perry K, Herms D, Klooster W, Smith A, Hartzler D et al. 2018. Downed coarse woody debris dynamics in ash (Fraxinus spp.) stands invaded by emerald ash borer (Agrilus planipennis Fairmaire). Forests 9:191
    [Google Scholar]
  100. 100.
    Perry KI, Herms DA. 2017. Effects of late stages of emerald ash borer (Coleoptera: Buprestidae)-induced ash mortality on forest floor invertebrate communities. J. Insect Sci. 17:119
    [Google Scholar]
  101. 101.
    Petter F, Orlinski A, Suffert M, Roy AS, Ward M. 2019. EPPO perspective on Agrilus planipennis (emerald ash borer) and Agrilus anxius (bronze birch borer). Forestry 93:220–24
    [Google Scholar]
  102. 102.
    Poland TM, McCullough DG. 2014. Comparison of trap types and colors for capturing emerald ash borer adults at different population densities. Environ. Entomol. 43:157–70Provides visual representations of the various traps used to survey and monitor EAB.
    [Google Scholar]
  103. 103.
    Rajarapu SP, Mittapalli O. 2013. Glutathione-S-transferase profiles in the emerald ash borer, Agrilus planipennis. Comp. Biochem. Physiol. B 165:66–72
    [Google Scholar]
  104. 104.
    Rigsby CM, Herms DA, Bonello P, Cipollini D. 2016. Higher activities of defense-associated enzymes may contribute to greater resistance of Manchurian ash to emerald ash borer than a closely related and susceptible congener. J. Chem. Ecol. 42:782–92
    [Google Scholar]
  105. 105.
    Rigsby CM, Showalter DN, Herms DA, Koch JL, Bonello P, Cipollini D. 2015. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations. J. Insect Physiol. 78:47–54
    [Google Scholar]
  106. 106.
    Rigsby CM, Villari C, Peterson DL, Herms DA, Bonello P, Cipollini D. 2019. Girdling increases survival and growth of emerald ash borer larvae on Manchurian ash. Agric. For. Entomol. 21:130–35
    [Google Scholar]
  107. 107.
    Rodrigues TB, Duan JJ, Palli SR, Rieske LK. 2018. Identification of highly effective target genes for RNAi-mediated control of emerald ash borer, Agrilus planipennis. Sci. Rep. 8:5020Identified the target genes for RNAi-based control of EAB.
    [Google Scholar]
  108. 108.
    Rodrigues TB, Rieske LK, Duan JJ, Mogilicherla K, Palli SR. 2017. Development of RNAi method for screening candidate genes to control emerald ash borer, Agrilus planipennis. Sci. Rep. 7:7379
    [Google Scholar]
  109. 109.
    Rutledge CE, Arango-Velez A. 2017. Larval survival and growth of emerald ash borer (Coleoptera: Buprestidae) on white ash and white fringetree saplings under well-watered and water-deficit conditions. Environ. Entomol. 46:243–50
    [Google Scholar]
  110. 110.
    Ryall K. 2015. Detection and sampling of emerald ash borer (Coleoptera: Buprestidae) infestations. Can. Entomol. 147:290–99
    [Google Scholar]
  111. 111.
    Sadof CS, Mockus L, Ginzel MD. 2021. Factors influencing efficacy of an area-wide pest management program in three urban forests. Urban For. Urban Green 58:126965
    [Google Scholar]
  112. 112.
    Sapkota BB, Liang L. 2020. High-resolution mapping of ash (Fraxinus spp.) in bottomland hardwoods to slow emerald ash borer infestation. Sci. Remote Sens. 1:100004
    [Google Scholar]
  113. 113.
    Semizer-Cuming D, Krutovsky KV, Baranchikov YN, Kjær ED, Williams CG. 2019. Saving the world's ash forests calls for international cooperation now. Nat. Ecol. Evol. 3:141–44
    [Google Scholar]
  114. 114.
    Shannon J, Van Grinsven M, Davis J, Bolton N, Noh N et al. 2018. Water level controls on sap flux of canopy species in black ash wetlands. Forests 9:147
    [Google Scholar]
  115. 115.
    Shchurov VI, Zamotajlov AS. 2022. The first records of emerald ash borer Agrilus planipennis Fairmaire, 1888 (Coleoptera: Buprestidae) in the Krasnodar Territory. Proceedings of the XXIV International Scientific Conference “Biological Diversity of the Caucasus and the South of Russia,” Magas, Nov. 17–20558–65. Magas, Russ.: ALEF Publ. (In Russian)
    [Google Scholar]
  116. 116.
    Showalter DN, Raffa KF, Sniezko RA, Herms DA, Liebhold AM et al. 2018. Strategic development of tree resistance against forest pathogen and insect invasions in defense-free space. Front. Ecol. Evol. 6:124
    [Google Scholar]
  117. 117.
    Showalter DN, Saville RJ, Orton ES, Buggs RJA, Bonello P, Brown JKM. 2019. Resistance of European ash (Fraxinus excelsior) saplings to larval feeding by the emerald ash borer (Agrilus planipennis). Plants People Planet 2:41–46
    [Google Scholar]
  118. 118.
    Showalter DN, Villari C, Herms DA, Bonello P. 2018. Drought stress increased survival and development of emerald ash borer larvae on coevolved Manchurian ash and implicates phloem-based traits in resistance. Agric. For. Entomol. 20:170–79
    [Google Scholar]
  119. 119.
    Silk PJ, Ryall K, Roscoe L. 2019. Emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), detection and monitoring in Canada. Forestry 93:273–79
    [Google Scholar]
  120. 120.
    Smitley D, Davis T, Rebek E. 2008. Progression of ash canopy thinning and dieback outward from the initial infestation of emerald ash borer (Coleoptera: Buprestidae) in southeastern Michigan. J. Econ. Entomol. 101:1643–50
    [Google Scholar]
  121. 121.
    Smitley DR, Herms DA, Davis TW. 2015. Efficacy of soil-applied neonicotinoid insecticides for long-term protection against emerald ash borer (Coleoptera: Buprestidae). J. Econ. Entomol. 108:2344–53
    [Google Scholar]
  122. 122.
    Sollars ES, Harper AL, Kelly LJ, Sambles CM, Ramirez-Gonzalez RH et al. 2017. Genome sequence and genetic diversity of European ash trees. Nature 541:212–16
    [Google Scholar]
  123. 123.
    Srei N, Guertin C, Lavallee R, Lajoie ME, Brousseau C et al. 2020. Microbial control of the emerald ash borer (Coleoptera: Buprestidae) using Beauveria bassiana (Hypocreales: Cordycipitaceae) by the means of an autodissemination device. J. Econ. Entomol. 113:2657–65Demonstrated the efficacy of the FraxiProtec device in autodissemination of Beauvaria bassiana spores as a potential entomopathic control method for EAB.
    [Google Scholar]
  124. 124.
    Stack SC, Sadof CS, Ginzel MD. 2018. Effects of grafting on host plant resistance in ash (Fraxinus spp.) to emerald ash borer (Agrilus planipennis Fairmaire). Agric. For. Entomol. 21:180–89
    [Google Scholar]
  125. 125.
    Stock NL, Doran MC, Bonner RF, March RE. 2018. Liquid chromatography/mass spectrometry for the detection of ash tree metabolites following Emerald Ash Borer infestation. Rapid Commun. Mass Spectrom. 32:385–92
    [Google Scholar]
  126. 126.
    Sun J, Lu M, Gillette NE, Wingfield MJ. 2013. Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu. Rev. Entomol. 58:293–311
    [Google Scholar]
  127. 127.
    Sutin A, Yakubovskiy A, Salloum HR, Flynn TJ, Sedunov N, Nadel H. 2019. Towards an automated acoustic detection algorithm for wood-boring beetle larvae (Coleoptera: Cerambycidae and Buprestidae). J. Econ. Entomol. 112:1327–36
    [Google Scholar]
  128. 128.
    Tobin PC, Strom BL, Francese JA, Herms DA, McCullough DG et al. 2021. Evaluation of trapping schemes to detect emerald ash borer (Coleoptera: Buprestidae). J. Econ. Entomol. 114:1201–10
    [Google Scholar]
  129. 129.
    Toczydlowski AJZ, Slesak RA, Kolka RK, Venterea RT. 2020. Temperature and water-level effects on greenhouse gas fluxes from black ash (Fraxinus nigra) wetland soils in the Upper Great Lakes region, USA.. Appl. Soil. Ecol. 153:103565
    [Google Scholar]
  130. 130.
    Tull AR, Gladfelter H, Pampolini F, Rieske L, Nelson CD, Merkle S 2022. Development of a new genetic transformation system for white and green ash using embryogenetic cultures. Forests 13:671
    [Google Scholar]
  131. 131.
    Valenta V, Moser D, Kapeller S, Essl F. 2017. A new forest pest in Europe: a review of emerald ash borer (Agrilus planipennis) invasion. J. Appl. Entomol. 141:507–26
    [Google Scholar]
  132. 132.
    Vasanthakumar A, Handelsman J, Schloss PD, Bauer LS, Raffa KF. 2008. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Environ. Entomol. 37:1344–53
    [Google Scholar]
  133. 133.
    Vecherskii MV, Orlova-Bienkowskaja MJ, Kuznetsova TA, Bieńkowski AO. 2022. Discovery of Rickettsia and Rickettsiella intracellular bacteria in emerald ash borer Agrilus planipennis by metagenomic study of larval gut microbiome in European Russia. Forests 13:974
    [Google Scholar]
  134. 134.
    Villari C, Herms DA, Whitehill JG, Cipollini D, Bonello P. 2016. Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms. New Phytol. 209:63–79A review of ash resistance and its mechanisms.
    [Google Scholar]
  135. 135.
    Volkovitsh MG, Bieńkowski AO, Orlova-Bienkowskaja MJ. 2021. Emerald ash borer approaches the borders of the European Union and Kazakhstan and is confirmed to infest European ash. Forests 12:691
    [Google Scholar]
  136. 136.
    Wagner DL, Todd KJ. 2016. New ecological assessment for the emerald ash borer: a cautionary tale about unvetted host-plant literature. Am. Entomol. 62:26–35
    [Google Scholar]
  137. 137.
    Wagner DL, Turo KJ 2015. Ecological impacts of emerald ash borer. Biology and Control of Emerald Ash Borer RG Van Driesche, RC Reardon 15–63. Washington, DC: US Dept. Agric. For. Serv.
    [Google Scholar]
  138. 138.
    Wallander E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst. Evol. 273:25–49
    [Google Scholar]
  139. 139.
    Wang X-Y, Cao L-M, Yang Z-Q, Duan JJ, Gould JR, Bauer LS 2015. Natural enemies of emerald ash borer (Coleoptera: Buprestidae) in northeast China, with notes on two species of parasitic Coleoptera. Can. Entomol. 148:329–42
    [Google Scholar]
  140. 140.
    Ward SF, Fei S, Liebhold AM. 2020. Temporal dynamics and drivers of landscape-level spread by emerald ash borer. J. Appl. Ecol. 57:1020–30
    [Google Scholar]
  141. 141.
    Ward SF, Liebhold AM, Morin RS, Fei S. 2021. Population dynamics of ash across the eastern USA following invasion by emerald ash borer. For. Ecol. Manag. 479:118574
    [Google Scholar]
  142. 142.
    Whitehill JG, Rigsby C, Cipollini D, Herms DA, Bonello P. 2014. Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside. Oecologia 176:1047–59
    [Google Scholar]
  143. 143.
    Wilson AD, Forse LB, Babst BA, Bataineh MM. 2019. Detection of emerald ash borer infestations in living green ash by noninvasive electronic-nose analysis of wood volatiles. Biosensors 9:123
    [Google Scholar]
  144. 144.
    Wu YG, Wang YM, Lu KA, Chen ZG, Xing ZL, Dong YY. 2019. Integrated technology research on the green prevention and control of Agrilus planipennis Fairmaire. Beijing Gard. 35:57–59 (In Chinese)
    [Google Scholar]
  145. 145.
    Yang Z. 2004. Advance in bio-control research of the important forest insect pests with natural enemies in China. Chin. J. Biol. Control 20:221–27
    [Google Scholar]
  146. 146.
    Yang Z-Q, Wang X-Y, Zhang Y-N. 2014. Recent advances in biological control of important native and invasive forest pests in China. Biol. Control 68:117–28
    [Google Scholar]
  147. 147.
    Yao Y-X, Duan JJ, Hopper KP, Mottern JL, Gates MW. 2016. A new Species of Oobius trjapitzin (Hymenoptera: Encyrtidae) from the Russian Far East that parasitizes eggs of emerald ash borer (Coleoptera: Buprestidae). Ann. Entomol. Soc. Am. 109:629–38
    [Google Scholar]
  148. 148.
    Yemshanov D, Koch FH, Lu B, Lyons DB, Prestemon JP et al. 2014. There is no silver bullet: the value of diversification in planning invasive species surveillance. Ecol. Econ. 104:61–72
    [Google Scholar]
  149. 149.
    Yurchenko G, Turova GI, Kuzmin EA. 2007. Towards distribution and ecology of the emerald ash borer Agrilus planipennis Fairmaire at the Russian Far East. A.I. Kurentsov's Annu. Meml. Meet. 18:94–98 (In Russian)
    [Google Scholar]
  150. 150.
    Zhang K, Hu B, Robinson J. 2014. Early detection of emerald ash borer infestation using multisourced data: a case study in the town of Oakville, Ontario, Canada. J. Appl. Remote Sens. 8:083602
    [Google Scholar]
/content/journals/10.1146/annurev-ento-012323-032231
Loading
/content/journals/10.1146/annurev-ento-012323-032231
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error