- Home
- A-Z Publications
- Annual Review of Entomology
- Previous Issues
- Volume 69, 2024
Annual Review of Entomology - Volume 69, 2024
Volume 69, 2024
-
-
Pest Elaterids of North America: New Insights and Opportunities for Management
Vol. 69 (2024), pp. 1–20More LessThe larval stages of click beetle (Coleoptera: Elateridae) species, several of which are serious agricultural pests, are called wireworms. Their cryptic subterranean habitat, resilience, among-species differences in ecology and biology, and broad host range, as well as the lack of objective economic injury thresholds, have rendered wireworms a challenging pest complex to control. Significant progress has been made in recent years, introducing a new effective class of insecticides and improving species identification and our understanding of species-specific phenology, chemical ecology (i.e., adult sex pheromones and larval olfactory cues), and abiotic and biotic factors influencing the efficacy of biological control agents. These new developments have created opportunities for further research into improving our risk assessment, monitoring, and integrated pest management capabilities.
-
-
-
The Evolutionary Importance of Intraspecific Variation in Sexual Communication Across Sensory Modalities
Vol. 69 (2024), pp. 21–40More LessThe evolution of sexual communication is critically important in the diversity of arthropods, which are declining at a fast pace worldwide. Their environments are rapidly changing, with increasing chemical, acoustic, and light pollution. To predict how arthropod species will respond to changing climates, habitats, and communities, we need to understand how sexual communication systems can evolve. In the past decades, intraspecific variation in sexual signals and responses across different modalities has been identified, but never in a comparative way. In this review, we identify and compare the level and extent of intraspecific variation in sexual signals and responses across three different modalities, chemical, acoustic, and visual, focusing mostly on insects. By comparing causes and possible consequences of intraspecific variation in sexual communication among these modalities, we identify shared and unique patterns, as well as knowledge needed to predict the evolution of sexual communication systems in arthropods in a changing world.
-
-
-
Host Plant Effects on Sexual Selection Dynamics in Phytophagous Insects
Vol. 69 (2024), pp. 41–57More LessNatural selection is notoriously dynamic in nature, and so, too, is sexual selection. The interactions between phytophagous insects and their host plants have provided valuable insights into the many ways in which ecological factors can influence sexual selection. In this review, we highlight recent discoveries and provide guidance for future work in this area. Importantly, host plants can affect both the agents of sexual selection (e.g., mate choice and male–male competition) and the traits under selection (e.g., ornaments and weapons). Furthermore, in our rapidly changing world, insects now routinely encounter new potential host plants. The process of adaptation to a new host may be hindered or accelerated by sexual selection, and the unexplored evolutionary trajectories that emerge from these dynamics are relevant to pest management and insect conservation strategies. Examining the effects of host plants on sexual selection has the potential to advance our fundamental understanding of sexual conflict, host range evolution, and speciation, with relevance across taxa.
-
-
-
The Emergence and Sustainability of Urban Entomology
Vol. 69 (2024), pp. 59–79More LessUrban entomology is the study of arthropod and other pests of the urban environment. It has gained worldwide recognition as a distinct discipline. Its origin is associated with Walter Ebeling's publication Urban Entomology in 1975. Urbanization, invasive pests, increased demand for pest management services, and changes in legislation collided in the 1970s to create a need for research and extension activities worldwide. This resulted in urban entomology as a discipline and, within two decades, its national and international recognition. In this review, we present the factors that led to the development of urban entomology and how they have shaped its current meaning. As urbanization intensifies and the global economy increases, the demands for urban pest management will continue to grow. We discuss how these future challenges may shape and alter the discipline.
-
-
-
Insect Bacteriocytes: Adaptation, Development, and Evolution
Vol. 69 (2024), pp. 81–98More LessBacteriocytes are host cells specialized to harbor symbionts in certain insect taxa. The adaptation, development, and evolution of bacteriocytes underlie insect symbiosis maintenance. Bacteriocytes carry enriched host genes of insect and bacterial origin whose transcription can be regulated by microRNAs, which are involved in host–symbiont metabolic interactions. Recognition proteins of peptidoglycan, the bacterial cell wall component, and autophagy regulate symbiont abundance in bacteriocytes. Horizontally transferred genes expressed in bacteriocytes influence the metabolism of symbiont peptidoglycan, which may affect the bacteriocyte immune response against symbionts. Bacteriocytes release or transport symbionts into ovaries for symbiont vertical transmission. Bacteriocyte development and death, regulated by transcriptional factors, are variable in different insect species. The evolutionary origin of insect bacteriocytes remains unclear. Future research should elucidate bacteriocyte cell biology, the molecular interplay between bacteriocyte metabolic and immune functions, the genetic basis of bacteriocyte origin, and the coordination between bacteriocyte function and host biology in diverse symbioses.
-
-
-
The Extraordinary Alkali Bee, Nomia melanderi (Halictidae), the World's Only Intensively Managed Ground-Nesting Bee
Vol. 69 (2024), pp. 99–116More LessAmong the ground-nesting bees are several proven crop pollinators, but only the alkali bee (Nomia melanderi) has been successfully managed. In <80 years, it has become the world's most intensely studied ground-nesting solitary bee. In many ways, the bee seems paradoxical. It nests during the torrid, parched midsummer amid arid valleys and basins of the western United States, yet it wants damp nesting soil. In these basins, extensive monocultures of an irrigated Eurasian crop plant, alfalfa (lucerne), subsidize millions of alkali bees. Elsewhere, its polylectic habits and long foraging range allow it to stray into neighboring crops contaminated with insecticides. Primary wild floral hosts are either non-native or poorly known. Kleptoparasitic bees plague most ground nesters, but not alkali bees, which do, however, host other well-studied parasitoids. Building effective nesting beds requires understanding the hydraulic conductivity of silty nesting soils and its important interplay with specific soil mineral salts. Surprisingly, some isolated populations endure inhospitably cold climates by nesting amid hot springs. Despite the peculiarities and challenges associated with its management, the alkali bee remains the second most valuable managed solitary bee for US agriculture and perhaps the world.
-
-
-
Toward an Integrated Understanding of the Lepidoptera Microbiome
Vol. 69 (2024), pp. 117–137More LessResearch over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts’ performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host–microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
-
-
-
Biology, Ecology, and Management of the Potato Psyllid, Bactericera cockerelli (Hemiptera: Triozidae), and Zebra Chip Disease in Potato
Vol. 69 (2024), pp. 139–157More LessThe potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), transmits the pathogen “Candidatus liberibacter solanacearum” (Lso), the putative causal agent of zebra chip disease (ZC). ZC is a disease of potato that reduces yield and quality and has disrupted integrated pest management programs in parts of the Americas and New Zealand. Advances in our understanding of the ecological factors that influence ZC epidemiology have been accelerated by the relatively recent identification of Lso and motivated by the steady increase in ZC distribution and the potential for devastating economic losses on a global scale. Management of ZC remains heavily reliant upon insecticides, which is not sustainable from the standpoint of insecticide resistance, nontarget effects on natural enemies, and regulations that may limit such tools. This review synthesizes the literature on potato psyllids and ZC, outlining recent progress, identifying knowledge gaps, and proposing avenues for further research on this important pathosystem of potatoes.
-
-
-
Chemical Ecology and Management of Dengue Vectors
Vol. 69 (2024), pp. 159–182More LessDengue, caused by the dengue virus, is the most widespread arboviral infectious disease of public health significance globally. This review explores the communicative function of olfactory cues that mediate host-seeking, egg-laying, plant-feeding, and mating behaviors in Aedes aegypti and Aedes albopictus, two mosquito vectors that drive dengue virus transmission. Aedes aegypti has adapted to live in close association with humans, preferentially feeding on them and laying eggs in human-fabricated water containers and natural habitats. In contrast, Ae. albopictus is considered opportunistic in its feeding habits and tends to inhabit more vegetative areas. Additionally, the ability of both mosquito species to locate suitable host plants for sugars and find mates for reproduction contributes to their survival. Advances in chemical ecology, functional genomics, and behavioral analyses have improved our understanding of the underlying neural mechanisms and reveal novel and specific olfactory semiochemicals that these species use to locate and discriminate among resources in their environment. Physiological status; learning; and host- and habitat-associated factors, including microbial infection and abundance, shape olfactory responses of these vectors. Some of these semiochemicals can be integrated into the toolbox for dengue surveillance and control.
-
-
-
The Use and Prospects of Nonlethal Methods in Entomology
Vol. 69 (2024), pp. 183–198More LessArthropods are declining globally, and entomologists ought to be in the forefront of protecting them. However, entomological study methods are typically lethal, and we argue that this makes the ethical status of the profession precarious. Lethal methods are used in most studies, even those that aim to support arthropod conservation. Additionally, almost all collecting methods result in bycatch, and a first step toward less destructive research practices is to minimize bycatch and/or ensure its proper storage and use. In this review, we describe the available suite of nonlethal methods with the aim of promoting their use. We classify nonlethal methods into (a) reuse of already collected material, (b) methods that are damaging but not lethal, (c) methods that modify behavior, and (d) true nonlethal methods. Artificial intelligence and miniaturization will help to extend the nonlethal methodological toolkit, but the need for further method development and testing remains.
-
-
-
Biology, Ecology, and Management of Flea Beetles in Brassica Crops
Vol. 69 (2024), pp. 199–217More LessBrassica vegetable and oilseed crops are attacked by several different flea beetle species (Chrysomelidae: Alticini). Over the past decades, most research has focused on two Phyllotreta species, Phyllotreta striolata and Phyllotreta cruciferae, which are major pests of oilseed rape in North America. More recently, and especially after the ban of neonicotinoids in the European Union, the cabbage stem flea beetle, Psylliodes chrysocephala, has become greatly important and is now considered to be the major pest of winter oilseed rape in Europe. The major challenges to flea beetle control are the prediction of population dynamics in the field, differential susceptibility to insecticides, and the lack of resistant plant cultivars and other economically viable alternative management strategies. At the same time, many fundamental aspects of flea beetle biology and ecology, which may be relevant for the development of sustainable control strategies, are not well understood. This review focuses on the interactions between flea beetles and plants and summarizes the literature on current management strategies with an emphasis on the potential for biological control in flea beetle management.
-
-
-
The Global Epidemic of Bactrocera Pests: Mixed-Species Invasions and Risk Assessment
Vol. 69 (2024), pp. 219–237More LessThroughout the past century, the global spread of Bactrocera pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of Bactrocera pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of Bactrocera. We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of Bactrocera pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of Bactrocera invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of Bactrocera pests and to share experience and knowledge to combat it.
-
-
-
Emerald Ash Borer Management and Research: Decades of Damage and Still Expanding
Vol. 69 (2024), pp. 239–258More LessSince the discovery of the ash tree (Fraxinus spp.) killer emerald ash borer (EAB; Agrilus planipennis) in the United States in 2002 and Moscow, Russia in 2003, substantial detection and management efforts have been applied to contain and monitor its spread and mitigate impacts. Despite these efforts, the pest continues to spread within North America. It has spread to European Russia and Ukraine and is causing sporadic outbreaks in its native range in China. The dynamics of EAB's range expansion events appear to be linked to the lack of resistant ash trees in invaded ranges, facilitated by the abundance of native or planted North American susceptible ash species. We review recently gained knowledge of the range expansion of EAB; its ecological, economic, and social impacts; and past management efforts with their successes and limitations. We also highlight advances in biological control, mechanisms of ash resistance, and new detection and management approaches under development, with the aim of guiding more effective management.
-
-
-
The Biology and Social Life of Earwigs (Dermaptera)
Vol. 69 (2024), pp. 259–276More LessEarwigs are often known for the forceps-like appendage at the end of their abdomen, urban legends about them crawling into human ears, and their roles as pest and biological control agents. However, they are much less known for their social life. This is surprising, as many of the 1,900 species of earwigs show social behaviors toward eggs, juveniles, and adults. These behaviors typically occur during family and group living, which may be obligatory or facultative, last up to several months, and involve only a few to several hundred related or unrelated individuals. Moreover, many individuals can alternate between solitary and group living during their life cycle, an ability that probably prevailed during the emergence of social life. In this review, I detail the diversity of group living and social behavior in earwigs and show how further developing this knowledge in Dermaptera can improve our general understanding of the early evolution of social life in insects.
-
-
-
The Hidden Secrets of Psylloidea: Biology, Behavior, Symbionts, and Ecology
Vol. 69 (2024), pp. 277–302More LessPsyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.
-
-
-
Dietary and Therapeutic Benefits of Edible Insects: A Global Perspective
Vol. 69 (2024), pp. 303–331More LessEdible insects are gaining traction worldwide for research and development. This review synthesizes a large and well-established body of research literature on the high nutritional value and variety of pharmacological properties of edible insects. Positive benefits of insect-derived products include immune enhancement; gastrointestinal protection; antitumor, antioxidant, and anti-inflammatory capacities; antibacterial activities; blood lipid and glucose regulation; lowering of blood pressure; and decreased risk of cardiovascular diseases. However, the pharmacological mechanisms of these active components of edible insects in humans have received limited research attention. In addition, we discuss health risks (safety); application prospects; regulations and policies governing their production and consumption with a view to promote innovations, intraglobal trade, and economic development; and suggestions for future directions for further pharmacological functional studies. The aim is to review the current state of knowledge and research trends on edible insects as functional ingredients beneficial to the nutrition and health of humans and animals (livestock, aquatic species, and pets).
-
-
-
Vector Biology and Integrated Management of Malaria Vectors in China
Tongyan Zhao, and Rui-De XueVol. 69 (2024), pp. 333–354More LessMalaria is an infectious disease caused by Plasmodium parasites, transmitted by Anopheles sinensis, Anopheles lesteri, Anopheles minimus, and Anopheles dirus in China. In 2021, the disease was eliminated in China after more than 70 years of efforts implementing an integrated mosquito management strategy. This strategy comprised indoor residual spray, insecticide-treated bed nets, irrigation management, and rice–fish coculture based on an understanding of taxonomic status and ecological behaviors of vector species, in conjunction with mass drug administration and promotion of public education. However, China still faces postelimination challenges, including the importation of approximately 2,000–4,000 cases of malaria into the country each year, as well as widespread resistance to pyrethroid insecticides in An. sinensis; these challenges require long-term vector surveillance to understand the distribution, population density, and development of resistance in vector mosquitoes to prevent local epidemics caused by imported malaria cases.
-
-
-
Fruit Flies: Challenges and Opportunities to Stem the Tide of Global Invasions
Vol. 69 (2024), pp. 355–373More LessGlobal trade in fresh fruit and vegetables, intensification of human mobility, and climate change facilitate fruit fly (Diptera: Tephritidae) invasions. Life-history traits, environmental stress response, dispersal stress, and novel genetic admixtures contribute to their establishment and spread. Tephritids are among the most frequently intercepted taxa at ports of entry. In some countries, supported by the rules-based trade framework, a remarkable amount of biosecurity effort is being arrayed against the range expansion of tephritids. Despite this effort, fruit flies continue to arrive in new jurisdictions, sometimes triggering expensive eradication responses. Surprisingly, scant attention has been paid to biosecurity in the recent discourse about new multilateral trade agreements. Much of the available literature on managing tephritid invasions is focused on a limited number of charismatic (historically high-profile) species, and the generality of many patterns remains speculative.
-
-
-
150 Years of Coevolution Research: Evolution and Ecology of Yucca Moths (Prodoxidae) and Their Hosts
Vol. 69 (2024), pp. 375–391More LessYucca moths (Tegeticula and Parategeticula) are specialized pollinators of yucca plants, possessing unique, tentacle-like mouthparts used to actively collect pollen and deposit it onto the flowers of their hosts. The moths' larvae feed on the developing seeds and fruit tissue. First described in 1873, the yucca–yucca moth pollination system is now considered the archetypical example of a coevolved intimate mutualism. Research conducted over the past three decades has transformed our understanding of yucca moth diversity and host plant interactions. We summarize the current understanding of the diversity, ecology, and evolution of this group, review evidence for coevolution of the insects and their hosts, and describe how the nature of the interaction varies across evolutionary time and ecological contexts. Finally, we identify unresolved questions and areas for future research.
-
Previous Volumes
-
Volume 69 (2024)
-
Volume 68 (2023)
-
Volume 67 (2022)
-
Volume 66 (2021)
-
Volume 65 (2020)
-
Volume 64 (2019)
-
Volume 63 (2018)
-
Volume 62 (2017)
-
Volume 61 (2016)
-
Volume 60 (2015)
-
Volume 59 (2014)
-
Volume 58 (2013)
-
Volume 57 (2012)
-
Volume 56 (2011)
-
Volume 55 (2010)
-
Volume 54 (2009)
-
Volume 53 (2008)
-
Volume 52 (2007)
-
Volume 51 (2006)
-
Volume 50 (2005)
-
Volume 49 (2004)
-
Volume 48 (2003)
-
Volume 47 (2002)
-
Volume 46 (2001)
-
Volume 45 (2000)
-
Volume 44 (1999)
-
Volume 43 (1998)
-
Volume 42 (1997)
-
Volume 41 (1996)
-
Volume 40 (1995)
-
Volume 39 (1994)
-
Volume 38 (1993)
-
Volume 37 (1992)
-
Volume 36 (1991)
-
Volume 35 (1990)
-
Volume 34 (1989)
-
Volume 33 (1988)
-
Volume 32 (1987)
-
Volume 31 (1986)
-
Volume 30 (1985)
-
Volume 29 (1984)
-
Volume 28 (1983)
-
Volume 27 (1982)
-
Volume 26 (1981)
-
Volume 25 (1980)
-
Volume 24 (1979)
-
Volume 23 (1978)
-
Volume 22 (1977)
-
Volume 21 (1976)
-
Volume 20 (1975)
-
Volume 19 (1974)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1971)
-
Volume 15 (1970)
-
Volume 14 (1969)
-
Volume 13 (1968)
-
Volume 12 (1967)
-
Volume 11 (1966)
-
Volume 10 (1965)
-
Volume 9 (1964)
-
Volume 8 (1963)
-
Volume 7 (1962)
-
Volume 6 (1961)
-
Volume 5 (1960)
-
Volume 4 (1959)
-
Volume 3 (1958)
-
Volume 2 (1957)
-
Volume 1 (1956)
-
Volume 0 (1932)