- Home
- A-Z Publications
- Annual Review of Entomology
- Previous Issues
- Volume 55, 2010
Annual Review of Entomology - Volume 55, 2010
Volume 55, 2010
- Preface
-
-
-
The Making of a Medical Entomologist
Vol. 55 (2010), pp. 1–17More LessThis article describes the childhood of Mike Service, his very early interest in insects, his time at Imperial College, London University, and his career in Nigeria studying the taxonomy and biology of anopheline malaria vectors. On his return to England he became increasingly interested in the ecology and population dynamics of hematophagous insects. After almost eight years undertaking only research, he joined the Liverpool School of Tropical Medicine, where he was involved in lecturing as well as research and engaged in frequent overseas travel mainly to Africa, Central and South America, and Asia. On retirement he retains an active interest in medical entomology. Although he undertook a considerable amount of taxonomic work on mosquitoes, he believes his most important, and possibly influential, work was introducing ecological methods that were used by agricultural scientists to the study of mosquitoes. For example, the construction of life tables, calculating the percentage mortality of pre-adult mosquitoes, and the identification of predators by serological methods.
-
-
-
Ecology of Herbivorous Arthropods in Urban Landscapes
Vol. 55 (2010), pp. 19–38More LessUrbanization affects communities of herbivorous arthropods and provides opportunities for dramatic changes in their abundance and richness. Underlying these changes are creation of impervious surfaces; variation in the density, diversity, and complexity of vegetation; and maintenance practices including pulsed inputs of fertilizers, water, and pesticides. A rich body of knowledge provides theoretical underpinnings for predicting and understanding impacts of urbanization on arthropods. However, relatively few studies have elucidated mechanisms that explain patterns of insect and mite abundance and diversity across urbanization gradients. Published accounts suggest that responses to urbanization are often taxon specific, highly variable, and linked to properties of urbanization that weaken top-down and/or bottom-up processes, thereby destabilizing populations of herbivores and their natural enemies. In addition to revealing patterns in diversity and abundance of herbivores across urbanization gradients, a primary objective of this review is to examine mechanisms underlying these patterns and to identify potential hypotheses for future testing.
-
-
-
Causes and Consequences of Cannibalism in Noncarnivorous Insects
Vol. 55 (2010), pp. 39–53More LessWe review the primary literature to document the incidence of cannibalism among insects that typically are not carnivorous. Most of the cannibalistic species were coleopterans and lepidopterans, and the cannibals often were juveniles that aggregate or that overlap in phenology with the egg stage. Cannibalism can be adaptive by improving growth rate, survivorship, vigor, longevity, and fecundity. It also can play an important role in regulating population density and suppressing population outbreaks, stabilizing host plant–insect relationships, and reducing parasitism rates. Cannibalism often was favored by density-dependent factors for herbivores that feed in concealed feeding situations (such as stem borers, leafminers), but also by density-independent factors (such as high ambient temperature) for herbivores that feed in exposed feeding situations.
-
-
-
Insect Biodiversity and Conservation in Australasia
Vol. 55 (2010), pp. 55–75More LessAustralasia, which consists of Australia and the adjacent islands of the southwestern Pacific Ocean, has an insect diversity approximately proportional to the land mass. This diversity is distinctive, with some major groups missing and others having radiated. Iconic species are familiar to most people living in Australia and New Zealand, and a range of insects once contributed to Aboriginal Australian culture and diet. Conservation of Australasian entomological biodiversity is an increasing challenge for contemporary scientists. Examples are provided of insect conservation schemes from New Guinea, New Zealand, and Australia. Funding for insect biodiversity studies beyond flagship species is needed.
-
-
-
Ekbom Syndrome: The Challenge of “Invisible Bug” Infestations
Vol. 55 (2010), pp. 77–94More LessEkbom Syndrome is synonymous with delusory parasitosis, a belief that one's body is infested by invisible bugs. Persons suffering from this syndrome often claim to feel dermal sensations and to visualize the bugs, although no one else can see them. Ekbom Syndrome is a delusional condition; it is intractable and cannot be corrected by argument or evidence. Ekbom Syndrome sufferers exhibit a range of predictable behaviors in their attempts to eliminate their infestations, including seeking identifications and treatment from physicians and entomologists. Frequently they also experience comorbid psychological conditions. Because this is a delusional affliction, successful treatment typically requires neuroleptic medications, necessitating intervention by medical professionals.
-
-
-
Update on Powassan Virus: Emergence of a North American Tick-Borne Flavivirus
Vol. 55 (2010), pp. 95–110More LessPowassan virus (POW) (Flaviviridae: Flavivirus) is the cause of rare but severe neuroinvasive disease in North America and Russia. The virus is transmitted among small- and medium-sized mammals by ixodid ticks. Human infections occur via spillover from the main transmission cycle(s). Since the late 1990s, the incidence of human disease seems to be increasing. In addition, POW constitutes a genetically diverse group of virus genotypes, including Deer tick virus, that are maintained in distinct enzootic transmission cycles. This review highlights recent research into POW, focusing on virus genetics and ecology and human disease. Important directions for future research are also discussed.
-
-
-
Beyond Drosophila: RNAi In Vivo and Functional Genomics in Insects
Vol. 55 (2010), pp. 111–128More LessThe increasing availability of insect genomes has revealed a large number of genes with unknown functions and the resulting problem of how to discover these functions. The RNA interference (RNAi) technique, which generates loss-of-function phenotypes by depletion of a chosen transcript, can help to overcome this challenge. RNAi can unveil the functions of new genes, lead to the discovery of new functions for old genes, and find the genes for old functions. Moreover, the possibility of studying the functions of homologous genes in different species can allow comparisons of the genetic networks regulating a given function in different insect groups, thereby facilitating an evolutionary insight into developmental processes. RNAi also has drawbacks and obscure points, however, such as those related to differences in species sensitivity. Disentangling these differences is one of the main challenges in the RNAi field.
-
-
-
Dicistroviruses
Vol. 55 (2010), pp. 129–150More LessDicistroviruses are members of a recently defined and rapidly growing family of picornavirus-like RNA viruses called the Dicistroviridae. Dicistroviruses are pathogenic to beneficial arthropods such as honey bees and shrimp and to insect pests of medical and agricultural importance. Our understanding of these viruses is uneven. We present highly advanced studies of the virus particle structure, remarkable mechanisms of internal ribosome entry in translation of viral RNA, and the use of dicistroviruses to study the insect immune system. However, little is known about dicistrovirus RNA replication mechanisms or gene function, except by comparison with picornaviruses. The recent construction of infectious clones of dicistrovirus genomes may fill these gaps in knowledge. We discuss economically important diseases caused by dicistroviruses. Future research may lead to protection of beneficial arthropods from dicistroviruses and to application of dicistroviruses as biopesticides targeting pestiferous insects.
-
-
-
Olive Fruit Fly: Managing an Ancient Pest in Modern Times
Vol. 55 (2010), pp. 151–169More LessOlive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), is the major pest of commercial olives worldwide. Various aspects of its biology, ecology, management, and impact on olive production are highlighted. With the discovery of insecticidal resistance in some populations frequently treated with organophosphates, old and new control options are being investigated. The potential of biological control is examined. Surveys suggest that a small group of braconids in the Opiinae subfamily best represent the primary parasitoids attacking olive fruit fly in its native range. These species include Psyttalia lounsburyi, P. dacicida, P. concolor, P. ponerophaga, and Utetes africanus. Bracon celer, another braconid but in the Braconinae subfamily, is also reared from the fruit fly in its native range. The potential of these and other natural enemies is discussed with respect to olive fruit fly biology, commercial olive production, and biological constraints that may limit their success. We suggest that numerous species exist that should be further investigated as control agents for olive fruit fly in the many climatic regimes where the pest is found.
-
-
-
Insect Silk: One Name, Many Materials
Vol. 55 (2010), pp. 171–188More LessSilks play a crucial role in the survival and reproduction of many insects. Labial glands, Malpighian tubules, and a variety of dermal glands have evolved to produce these silks. The glands synthesize silk proteins, which become semicrystalline when formed into fibers. Although each silk contains one dominant crystalline structure, the range of molecular structures that can form silk fibers is greater than any other structural protein group. On the basis of silk gland type, silk protein molecular structure, and the phylogenetic relationship of silk-producing species, we grouped insect silks into 23 distinct categories, each likely to represent an independent evolutionary event. Despite having diverse functions and fundamentally different protein structures, these silks typically have high levels of protein crystallinity and similar amino acid compositions. The substantial crystalline content confers extraordinary mechanical properties and stability to silk and appears to be required for production of fine protein fibers.
-
-
-
Bayesian Phylogenetics and Its Influence on Insect Systematics
Vol. 55 (2010), pp. 189–206More LessBayesian inference and Markov chain Monte Carlo techniques have enjoyed enormous popularity since they were introduced into phylogenetics about a decade ago. We provide an overview of the field, with emphasis on recent developments of importance to empirical systematists. In particular, we describe a number of recent advances in the stochastic modeling of evolution that address major deficiencies in current models in a computationally efficient way. These include models of process heterogeneity across sites and lineages, as well as alignment-free models and model averaging approaches. Many of these methods should find their way into standard analyses in the near future. We also summarize the influence of Bayesian methods on insect systematics, with particular focus on current practices and how they could be improved using existing and emerging techniques.
-
-
-
Insect Fat Body: Energy, Metabolism, and Regulation
Vol. 55 (2010), pp. 207–225More LessThe fat body plays major roles in the life of insects. It is a dynamic tissue involved in multiple metabolic functions. One of these functions is to store and release energy in response to the energy demands of the insect. Insects store energy reserves in the form of glycogen and triglycerides in the adipocytes, the main fat body cell. Insect adipocytes can store a great amount of lipid reserves as cytoplasmic lipid droplets. Lipid metabolism is essential for growth and reproduction and provides energy needed during extended nonfeeding periods. This review focuses on energy storage and release and summarizes current understanding of the mechanisms underlying these processes in insects.
-
-
-
Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology to Evolution
Vol. 55 (2010), pp. 227–245More LessMales and females of nearly all animals differ in their body size, a phenomenon called sexual size dimorphism (SSD). The degree and direction of SSD vary considerably among taxa, including among populations within species. A considerable amount of this variation is due to sex differences in body size plasticity. We examine how variation in these sex differences is generated by exploring sex differences in plasticity in growth rate and development time and the physiological regulation of these differences (e.g., sex differences in regulation by the endocrine system). We explore adaptive hypotheses proposed to explain sex differences in plasticity, including those that predict that plasticity will be lowest for traits under strong selection (adaptive canalization) or greatest for traits under strong directional selection (condition dependence), but few studies have tested these hypotheses. Studies that combine proximate and ultimate mechanisms offer great promise for understanding variation in SSD and sex differences in body size plasticity in insects.
-
-
-
Facultative Symbionts in Aphids and the Horizontal Transfer of Ecologically Important Traits
Vol. 55 (2010), pp. 247–266More LessAphids engage in symbiotic associations with a diverse assemblage of heritable bacteria. In addition to their obligate nutrient-provisioning symbiont, Buchnera aphidicola, aphids may also carry one or more facultative symbionts. Unlike obligate symbionts, facultative symbionts are not generally required for survival or reproduction and can invade novel hosts, based on both phylogenetic analyses and transfection experiments. Facultative symbionts are mutualistic in the context of various ecological interactions. Experiments on pea aphids (Acyrthosiphon pisum) have demonstrated that facultative symbionts protect against entomopathogenic fungi and parasitoid wasps, ameliorate the detrimental effects of heat, and influence host plant suitability. The protective symbiont, Hamiltonella defensa, has a dynamic genome, exhibiting evidence of recombination, phage-mediated gene uptake, and horizontal gene transfer and containing virulence and toxin-encoding genes. Although transmitted maternally with high fidelity, facultative symbionts occasionally move horizontally within and between species, resulting in the instantaneous acquisition of ecologically important traits, such as parasitoid defense.
-
-
-
Honey Bees as a Model for Vision, Perception, and Cognition
Vol. 55 (2010), pp. 267–284More LessAmong the so-called simpler organisms, the honey bee is one of the few examples of an animal with a highly evolved social structure, a rich behavioral repertoire, an exquisite navigational system, an elaborate communication system, and an extraordinary ability to learn colors, shapes, fragrances, and navigational routes quickly and accurately. This review examines vision and complex visually mediated behavior in the honey bee, outlining the structure and function of the compound eyes, the perception and discrimination of colors and shapes, the learning of complex tasks, the ability to establish and exploit complex associations, and the capacity to abstract general principles from a task and apply them to tackle novel situations. All this is accomplished by a brain that weighs less than a milligram and carries fewer than a million neurons, thus making the bee a promising subject in which to study a variety of fundamental questions about behavior and brain function.
-
-
-
Invasion Biology, Ecology, and Management of the Light Brown Apple Moth (Tortricidae)
Vol. 55 (2010), pp. 285–306More LessEpiphyas postvittana (Walker) (Lepidoptera: Tortricidae), the light brown apple moth (LBAM), is an important leafroller pest with an exceptionally wide host range that includes many horticultural crops and other woody and herbaceous plants. LBAM is native to southeastern Australia but has invaded Western Australia, New Zealand, Hawaii, much of England, and in 2007, it was confirmed as established in California. The discovery of this pest in California has led to a major detection and regulatory effort because of concerns about economic and environmental impacts. Its recent discovery in Sweden is also of note. LBAM has often been intercepted on imports of fruit and other plant parts, and it has the potential to become a successful invader in temperate and subtropical regions worldwide. The importance of the insect has prompted development of classical biological control programs together with a wide variety of other management interventions that can be used in integrated pest management or integrated pest eradication.
-
-
-
Feeding Mechanisms of Adult Lepidoptera: Structure, Function, and Evolution of the Mouthparts
Vol. 55 (2010), pp. 307–327More LessThe form and function of the mouthparts in adult Lepidoptera and their feeding behavior are reviewed from evolutionary and ecological points of view. The formation of the suctorial proboscis encompasses a fluid-tight food tube, special linking structures, modified sensory equipment, and novel intrinsic musculature. The evolution of these functionally important traits can be reconstructed within the Lepidoptera. The proboscis movements are explained by a hydraulic mechanism for uncoiling, whereas recoiling is governed by the intrinsic proboscis musculature and the cuticular elasticity. Fluid uptake is accomplished by the action of the cranial sucking pump, which enables uptake of a wide range of fluid quantities from different food sources. Nectar-feeding species exhibit stereotypical proboscis movements during flower handling. Behavioral modifications and derived proboscis morphology are often associated with specialized feeding preferences or an obligatory switch to alternative food sources.
-
-
-
Integrated Management of Sugarcane Whitegrubs in Australia: An Evolving Success
Vol. 55 (2010), pp. 329–349More LessCanegrubs, larvae of a complex of endemic melolonthine scarabs, are the key pests in Australian sugarcane. In the early 1990s, following the withdrawal of organochlorines, the Australian sugarcane industry faced a crisis with increasing canegrub damage. A comprehensive integrated pest management strategy was developed on the basis of research on a wide range of topics such as basic taxonomy, species identification, ecology and biology of the different species within the sugarcane system, development of new insecticides and new formulations of insecticides, potential development of genetically modified pest-resistant canes, and methods for predicting risk of infestations. The value of the research depended on a wide-ranging extension program that saw broadscale adoption of the new strategies. However, the cropping system is not static, and recent changes have the potential to alter plant architecture and phenology and therefore could affect canegrub biology, canegrub feeding, the impact of natural controls on canegrubs, and the accessibility to soil for sampling and insecticide application. Growers also demand cheaper, easier-to-use options.
-
-
-
The Developmental, Molecular, and Transport Biology of Malpighian Tubules
Vol. 55 (2010), pp. 351–374More LessMolecular biology is reaching new depths in our understanding of the development and physiology of Malpighian tubules. In Diptera, Malpighian tubules derive from ectodermal cells that evaginate from the primitive hindgut and subsequently undergo a sequence of orderly events that culminates in an active excretory organ by the time the larva takes its first meal. Thereafter, the tubules enlarge by cell growth. Just as modern experimental strategies have illuminated the development of tubules, genomic, transcriptomic, and proteomic studies have uncovered new tubule functions that serve immune defenses and the breakdown and renal clearance of toxic substances. Moreover, genes associated with specific diseases in humans are also found in flies, some of which, astonishingly, express similar pathophenotypes. However, classical experimental approaches continue to show their worth by distinguishing between -omic possibilities and physiological reality while providing further detail about the rapid regulation of the transport pathway through septate junctions and the reversible assembly of proton pumps.
-
Previous Volumes
-
Volume 70 (2025)
-
Volume 69 (2024)
-
Volume 68 (2023)
-
Volume 67 (2022)
-
Volume 66 (2021)
-
Volume 65 (2020)
-
Volume 64 (2019)
-
Volume 63 (2018)
-
Volume 62 (2017)
-
Volume 61 (2016)
-
Volume 60 (2015)
-
Volume 59 (2014)
-
Volume 58 (2013)
-
Volume 57 (2012)
-
Volume 56 (2011)
-
Volume 55 (2010)
-
Volume 54 (2009)
-
Volume 53 (2008)
-
Volume 52 (2007)
-
Volume 51 (2006)
-
Volume 50 (2005)
-
Volume 49 (2004)
-
Volume 48 (2003)
-
Volume 47 (2002)
-
Volume 46 (2001)
-
Volume 45 (2000)
-
Volume 44 (1999)
-
Volume 43 (1998)
-
Volume 42 (1997)
-
Volume 41 (1996)
-
Volume 40 (1995)
-
Volume 39 (1994)
-
Volume 38 (1993)
-
Volume 37 (1992)
-
Volume 36 (1991)
-
Volume 35 (1990)
-
Volume 34 (1989)
-
Volume 33 (1988)
-
Volume 32 (1987)
-
Volume 31 (1986)
-
Volume 30 (1985)
-
Volume 29 (1984)
-
Volume 28 (1983)
-
Volume 27 (1982)
-
Volume 26 (1981)
-
Volume 25 (1980)
-
Volume 24 (1979)
-
Volume 23 (1978)
-
Volume 22 (1977)
-
Volume 21 (1976)
-
Volume 20 (1975)
-
Volume 19 (1974)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1971)
-
Volume 15 (1970)
-
Volume 14 (1969)
-
Volume 13 (1968)
-
Volume 12 (1967)
-
Volume 11 (1966)
-
Volume 10 (1965)
-
Volume 9 (1964)
-
Volume 8 (1963)
-
Volume 7 (1962)
-
Volume 6 (1961)
-
Volume 5 (1960)
-
Volume 4 (1959)
-
Volume 3 (1958)
-
Volume 2 (1957)
-
Volume 1 (1956)
-
Volume 0 (1932)