1932

Abstract

Silks play a crucial role in the survival and reproduction of many insects. Labial glands, Malpighian tubules, and a variety of dermal glands have evolved to produce these silks. The glands synthesize silk proteins, which become semicrystalline when formed into fibers. Although each silk contains one dominant crystalline structure, the range of molecular structures that can form silk fibers is greater than any other structural protein group. On the basis of silk gland type, silk protein molecular structure, and the phylogenetic relationship of silk-producing species, we grouped insect silks into 23 distinct categories, each likely to represent an independent evolutionary event. Despite having diverse functions and fundamentally different protein structures, these silks typically have high levels of protein crystallinity and similar amino acid compositions. The substantial crystalline content confers extraordinary mechanical properties and stability to silk and appears to be required for production of fine protein fibers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-112408-085401
2010-01-07
2024-06-14
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-ento-112408-085401
Loading
/content/journals/10.1146/annurev-ento-112408-085401
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error