1932

Abstract

Arthropods are declining globally, and entomologists ought to be in the forefront of protecting them. However, entomological study methods are typically lethal, and we argue that this makes the ethical status of the profession precarious. Lethal methods are used in most studies, even those that aim to support arthropod conservation. Additionally, almost all collecting methods result in bycatch, and a first step toward less destructive research practices is to minimize bycatch and/or ensure its proper storage and use. In this review, we describe the available suite of nonlethal methods with the aim of promoting their use. We classify nonlethal methods into () reuse of already collected material, () methods that are damaging but not lethal, () methods that modify behavior, and () true nonlethal methods. Artificial intelligence and miniaturization will help to extend the nonlethal methodological toolkit, but the need for further method development and testing remains.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-024402
2024-01-25
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-120220-024402.html?itemId=/content/journals/10.1146/annurev-ento-120220-024402&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akassou I, Zapponi L, Verrastro V, Ciolli M, Mazzoni V. 2022. Extending the vibroscape to agroecosystems: investigating the influence of abiotic factors and monitoring insect vibrational signaling. PeerJ 10:e14143
    [Google Scholar]
  2. 2.
    Assandri G, Bazzi G. 2022. Natural and anthropogenic determinants of peatland dragonfly assemblages: implications for management and conservation. Biodivers. Conserv. 31:2703–22
    [Google Scholar]
  3. 3.
    Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. PNAS 115:256506–11
    [Google Scholar]
  4. 4.
    Batsleer F, Bonte D, Dekeukeleire D, Goossens S, Poelmans W et al. 2020. The neglected impact of tracking devices on terrestrial arthropods. Methods Ecol. Evol. 11:3350–61
    [Google Scholar]
  5. 5.
    Bjerge K, Nielsen JB, Sepstrup MV, Helsing-Nielsen F, Høye TT. 2021. An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning. Sensors 21:2343
    [Google Scholar]
  6. 6.
    Boiteau G, Colpitts B. 2004. The potential of portable harmonic radar technology for the tracking of beneficial insects. Int. J. Pest Manag. 50:3233–42
    [Google Scholar]
  7. 7.
    Bondì S, Prommer M, Sarà M. 2014. The diet of saker falcon Falco cherrug overwintering in the Mediterranean (Sicily). Avocetta 38:53–58
    [Google Scholar]
  8. 8.
    Bowie MH, Hodge S, Banks JC, Vink CJ. 2006. An appraisal of simple tree-mounted shelters for non-lethal monitoring of weta (Orthoptera: Anostostomatidae and Rhaphidophoridae) in New Zealand nature reserves. J. Insect Conserv. 10:3261–68
    [Google Scholar]
  9. 9.
    Boyle NK, Tripodi AD, Machtley SA, Strange JP, Pitts-Singer TL, Hagler JR. 2018. A nonlethal method to examine non-Apis bees for mark-capture research. J. Insect Sci. 18:310
    [Google Scholar]
  10. 10.
    Broadie A, Pybus EM. 1974. Kant's treatment of animals. Philosophy 49:190375–83
    [Google Scholar]
  11. 11.
    Brown GR, Matthews IM. 2016. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity. Ecol. Evol. 6:123953–64
    [Google Scholar]
  12. 12.
    Brydegaard M. 2015. Towards quantitative optical cross sections in entomological laser radar—potential of temporal and spherical parameterizations for identifying atmospheric fauna. PLOS ONE 10:8e0135231
    [Google Scholar]
  13. 13.
    Cerdá X, Dejean A. 2011. Predation by ants on arthropods and other animals. Predation in the Hymenoptera: An Evolutionary Perspective C Polidori 39–78. Kerala, India: Transworld Res. Netw.
    [Google Scholar]
  14. 14.
    Chesmore ED, Ohya E. 2004. Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition. Bull. Entomol. Res. 94:4319–30
    [Google Scholar]
  15. 15.
    Coetzer W, Moodley D, Gerber A. 2016. Eliciting and representing high-level knowledge requirements to discover ecological knowledge in flower-visiting data. PLOS ONE 11:11e0166559
    [Google Scholar]
  16. 16.
    Costello M, Beard KH, Corlett RT, Cumming GS, Devictor V et al. 2016. Field work ethics in biological research. Biol. Conserv. 203:268–71
    [Google Scholar]
  17. 17.
    Crossley MS, Meier AR, Baldwin EM, Berry LL, Crenshaw LC et al. 2020. No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nat. Ecol. Evol. 4:101368–76
    [Google Scholar]
  18. 18.
    Cull B. 2022. Monitoring trends in distribution and seasonality of medically important ticks in North America using online crowdsourced records from iNaturalist. Insects 13:5404
    [Google Scholar]
  19. 19.
    Daouti E, Feit B, Jonsson M. 2022. Agricultural management intensity determines the strength of weed seed predation. Agric. Ecosyst. Environ. 339:108132
    [Google Scholar]
  20. 20.
    DiBartolomeis M, Kegley S, Mineau P, Radford R, Klein K. 2019. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLOS ONE 14:8e0220029
    [Google Scholar]
  21. 21.
    De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL. 2015. Estimating the normal background rate of species extinction. Conserv. Biol. 29:2452–62
    [Google Scholar]
  22. 22.
    Dent DR, Walton MP. 1997. Methods in Ecological and Agricultural Entomology Wallingford, UK: CABI
    [Google Scholar]
  23. 23.
    Desender K, Ervynck A, Tack G. 1999. Beetle diversity and historical ecology of woodland in Flanders. Belg. J. Zool. 129:139–55
    [Google Scholar]
  24. 24.
    Didham RK, Basset Y, Collins CM, Leather SR, Littlewood NA et al. 2020. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 13:2103–14
    [Google Scholar]
  25. 25.
    Dijkstra K-D, Schröter A. 2020. Field Guide to the Dragonflies of Britain and Europe London: Bloomsbury Publishing. , 2nd ed..
    [Google Scholar]
  26. 26.
    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 2014. Defaunation in the Anthropocene. Science 345:6195401–6
    [Google Scholar]
  27. 27.
    Drake VA, Reynolds DR. 2012. Radar Entomology: Observing Insect Flight and Migration Wallingford, UK: CABI
    [Google Scholar]
  28. 28.
    Drinkwater E, Robinson EJH, Hart AG. 2019. Keeping invertebrate research ethical in a landscape of shifting public opinion. Methods Ecol. Evol. 10:81265–73
    [Google Scholar]
  29. 29.
    Eisemann C, Jorgensen W, Merritt D, Rice M, Cribb B et al. 1984. Do insects feel pain? A biological view. Experientia 40:164–67
    [Google Scholar]
  30. 30.
    Elek Z, Drag L, Pokluda P, Cizek L, Bérces S. 2014. Dispersal of individuals of the flightless grassland ground beetle, Carabus hungaricus (Coleoptera: Carabidae), in three populations and what they tell us about mobility estimates based on mark-recapture. Eur. J. Entomol. 111:5663–68
    [Google Scholar]
  31. 31.
    Fattorini S, Manganaro A, Salvati L. 2001. Insect identification in pellet analysis: implications for the foraging behaviour of raptors. Buteo 12:61–66
    [Google Scholar]
  32. 32.
    Ferrante M, Lamelas-López L, Nunes R, Monjardino P, Lopes DJH et al. 2022. A simultaneous assessment of multiple ecosystem services and disservices in vineyards and orchards on Terceira Island, Azores. Agric. Ecosyst. Environ. 330:107909
    [Google Scholar]
  33. 33.
    Fischer B, Larson BMH. 2019. Collecting insects to conserve them: a call for ethical caution. Insect Conserv. Divers. 12:3173–82
    [Google Scholar]
  34. 34.
    Folliot A, Haupert S, Ducrettet M, Sèbe F, Sueur J. 2022. Using acoustics and artificial intelligence to monitor pollination by insects and tree use by woodpeckers. Sci. Total Environ. 838:155883
    [Google Scholar]
  35. 35.
    Foster SE, Soluk DA. 2004. Evaluating exuvia collection as a management tool for the federally endangered Hine's emerald dragonfly, Somatochlora hineana Williamson (Odonata: Cordulidae). Biol. Conserv. 118:115–20
    [Google Scholar]
  36. 36.
    Francione G. 2010. Introduction to Animal Rights: Your Child or the Dog? Philadelphia, PA: Temple Univ. Press
    [Google Scholar]
  37. 37.
    Gogala M, Trilar T, Krpac VT. 2005. Fauna of singing cicadas (Auchenorrhyncha: Cicadoidea) of Macedonia—a bioacoustic survey. Acta Entomol. Slov. 13:2103–26
    [Google Scholar]
  38. 38.
    Griffiths GJK, Alexander CJ, Birt A, Holland JM, Kennedy PJ et al. 2005. A method for rapidly mass laser-marking individually coded ground beetles (Coleoptera: Carabidae) in the field. Ecol. Entomol. 30:4391–96
    [Google Scholar]
  39. 39.
    Guppy M, Guppy S, Hebrard J. 1983. Behaviour of the riverine tiger beetle Lophyridia dongalensis imperatrix: effect of water availability on thermoregulatory strategy. Entomol. Exp. Appl. 33:3276–82
    [Google Scholar]
  40. 40.
    Hagler JR, Casey MT, Hull AM, Machtley SA. 2023. A labor-saving marking and sampling technique for mark-release-recapture research. Entomol. Exp. Appl. 171:2138–45
    [Google Scholar]
  41. 41.
    Hagler JR, Jackson CG. 2001. Methods for marking insects: current techniques and future prospects. Annu. Rev. Entomol. 46:511–43
    [Google Scholar]
  42. 42.
    Henderson PA. 2021. Southwood's Ecological Methods Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  43. 43.
    Hölldobler B, Wilson EO. 1990. The Ants Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  44. 44.
    Hooker B. 2023. Rule consequentialism. The Stanford Encyclopedia of Philosophy EN Zalta, U Nodelman Stanford, CA: Stanford Univ. https://plato.stanford.edu/entries/consequentialism-rule/
    [Google Scholar]
  45. 45.
    Høye TT, Ärje J, Bjerge K, Hansen OLP, Iosifidis A et al. 2021. Deep learning and computer vision will transform entomology. PNAS 118:2e2002545117
    [Google Scholar]
  46. 46.
    Hribar LJ. 2020. Expanding basic entomological knowledge by using mosquito surveillance bycatch. Ann. Entomol. Soc. Am. 113:6439–46
    [Google Scholar]
  47. 47.
    Hyodo F. 2015. Use of stable carbon and nitrogen isotopes in insect trophic ecology. Entomol. Sci. 18:3295–312
    [Google Scholar]
  48. 48.
    Jiménez-Valverde A, Peña-Aguilera P, Barve V, Burguillo-Madrid L. 2019. Photo-sharing platforms key for characterising niche and distribution in poorly studied taxa. Insect Conserv. Divers. 12:5389–403
    [Google Scholar]
  49. 49.
    Jocqué M, Teofilova T, Kodzhabashev N. 2016. Light trapping as a valuable rapid assessment method for ground beetles (Carabidae) in a Bulgarian wetland. Acta Zool. Bulg. 68:529–34
    [Google Scholar]
  50. 50.
    Johnson SD, Balducci MG, Bijl A, Castañeda-Zárate M, Cozien RJ et al. 2020. From dusk till dawn: Camera traps reveal the diel patterns of flower feeding by hawkmoths. Ecol. Entomol. 45:3751–55
    [Google Scholar]
  51. 51.
    Kádár F, Szél G. 1989. Carabid beetles (Coleoptera, Carabidae) collected by light traps in apple orchards and maize stands in Hungary. Folia Entomol. Hung. 50:27–36
    [Google Scholar]
  52. 52.
    Kemp D, Zalucki MP. 1999. Method of handling affects post-capture encounter probabilities in male Hypolimnas bolina (L.) (Nymphalidae). J. Lepid. Soc. 53:4138–41
    [Google Scholar]
  53. 53.
    Key B, Zalucki O, Brown DJ. 2021. Neural design principles for subjective experience: implications for insects. Front. Behav. Neurosci. 15:658037
    [Google Scholar]
  54. 54.
    Keyghobadi N, Crawford LA, Desjardins S. 2021. High genetic drift in endangered northern peripheral populations of the Behr's hairstreak butterfly (Satyrium behrii). Insect Conserv. Divers. 14:3403–11
    [Google Scholar]
  55. 55.
    Kirse A, Bourlat SJ, Langen K, Fonseca VG. 2021. Metabarcoding Malaise traps and soil eDNA reveals seasonal and local arthropod diversity shifts. Sci. Rep. 11:10498
    [Google Scholar]
  56. 56.
    Kirse A, Bourlat SJ, Langen K, Zapke B, Zizka VMA. 2023. Comparison of destructive and nondestructive DNA extraction methods for the metabarcoding of arthropod bulk samples. Mol. Ecol. Resour. 23:192–105
    [Google Scholar]
  57. 57.
    Knight SM, Pitman GM, Flockhart DTT, Norris DR. 2019. Radio-tracking reveals how wind and temperature influence the pace of daytime insect migration. Biol. Lett. 15:720190327
    [Google Scholar]
  58. 58.
    Korenko S, Pekár S. 2010. Is there intraguild predation between winter-active spiders (Araneae) on apple tree bark?. Biol. Control 54:3206–12
    [Google Scholar]
  59. 59.
    Leather SR. 2009. Taxonomic chauvinism threatens the future of entomology. Biologist 56:110–12
    [Google Scholar]
  60. 60.
    Liu Z, Gao J, Yang G, Zhang H, He Y. 2016. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Sci. Rep. 6:20410
    [Google Scholar]
  61. 61.
    Lövei GL, Ferrante M. 2017. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci 24:4528–42
    [Google Scholar]
  62. 62.
    Lövei GL, Ferrante M., Möller D, Möller G, Vincze E. 2023. The need for a (non-destructive) method revolution in entomology. Biol. Conserv. 282:110075
    [Google Scholar]
  63. 63.
    Lövei GL, Sopp PI, Sunderland KD. 1990. Digestion rate in relation to alternative feeding in three species of polyphagous predators. Ecol. Entomol. 15:3293–300
    [Google Scholar]
  64. 64.
    Lövei GL, Stringer IAN, Devine CD, Cartellieri M. 1997. Harmonic radar—a method using inexpensive tags to study invertebrate movement on land. N. Z. J. Ecol. 21:2187–93
    [Google Scholar]
  65. 65.
    Low PA, Sam K, McArthur C, Posa MRC, Hochuli DF. 2014. Determining predator identity from attack marks left in model caterpillars: guidelines for best practice. Entomol. Exp. Appl. 152:2120–26
    [Google Scholar]
  66. 66.
    McNeil DJ, Grozinger CM. 2020. Singing in the suburbs: Point count surveys efficiently reveal habitat associations for nocturnal Orthoptera across an urban-to-rural gradient. J. Insect Conserv. 24:1031–43
    [Google Scholar]
  67. 67.
    Makinson JC, Woodgate JL, Reynolds A, Capaldi EA, Perry CJ, Chittka L. 2019. Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Sci. Rep. 9:4651
    [Google Scholar]
  68. 68.
    Mankin RW, Hagstrum DW, Smith MT, Roda AL, Kairo MTK. 2011. Perspective and promise: a century of insect acoustic detection and monitoring. Am. Entomol. 57:130–44
    [Google Scholar]
  69. 69.
    Meyer ST, Koch C, Weisser WW. 2015. Towards a standardized rapid ecosystem function assessment (REFA). Trends Ecol. Evol. 30:7390–97
    [Google Scholar]
  70. 70.
    Mikhalevich I, Powell R. 2020. Minds without spines: evolutionarily inclusive animal ethics. Anim. Sentience 29:1 https://doi.org/10.51291/2377-7478.1527
    [Google Scholar]
  71. 71.
    Møller AP. 2019. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9:116581–87
    [Google Scholar]
  72. 72.
    Naqvi Q, Wolff PJ, Molano-Flores B, Sperry JH. 2022. Camera traps are an effective tool for monitoring insect-plant interactions. Ecol. Evol. 12:6e8962
    [Google Scholar]
  73. 73.
    Nasser M, El-Hawagry M, Okely M. 2019. Environmental niche modeling for some species of the genus Anthrax Scopoli (Diptera: Bombyliidae) in Egypt, with special notes on St. Catherine protected area as a suitable habitat. J. Insect Conserv. 23:5831–41
    [Google Scholar]
  74. 74.
    Noriega JA, Hortal J, Azcárate FM, Berg MP, Bonada N et al. 2018. Research trends in ecosystem services provided by insects. Basic Appl. Ecol. 26:8–23
    [Google Scholar]
  75. 75.
    Noriega JA, March-Salas M, Castillo S, García-Q H, Hortal J, Santos AMC 2021. Human perturbations reduce dung beetle diversity and dung removal ecosystem function. Biotropica 53:3753–66
    [Google Scholar]
  76. 76.
    Nott MP, Rogers E, Pimm S. 1995. Extinction rates: modern extinctions in the kilo-death range. Curr. Biol. 5:114–17
    [Google Scholar]
  77. 77.
    Novotny JL, Reeher P, Varvaro M, Lybbert A, Smith J et al. 2021. Bumble bee species distributions and habitat associations in the Midwestern USA, a region of declining diversity. Biodivers. Conserv. 30:3865–87
    [Google Scholar]
  78. 78.
    Nussbaum MC. 2005. Beyond “compassion and humanity”: justice for nonhuman animals. Animal Rights: Current Debates and New Directions CR Sunstein, MC Nussbaum 299–320. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  79. 79.
    Nussbaum MC. 2022. Justice for Animals: Our Collective Responsibility New York: Simon & Schuster
    [Google Scholar]
  80. 80.
    Ohba S-Y, Takahashi J-I, Okuda N. 2013. A non-lethal sampling method for estimating the trophic position of an endangered giant water bug using stable isotope analysis. Insect Conserv. Divers. 6:2155–61
    [Google Scholar]
  81. 81.
    Oleksa A, Chybicki IJ, Larsson MC, Svensson GP, Gawroński R. 2015. Rural avenues as dispersal corridors for the vulnerable saproxylic beetle Elater ferrugineus in a fragmented agricultural landscape. J. Insect Conserv. 19:3567–80
    [Google Scholar]
  82. 82.
    Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR et al. 1999. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36:4519–33
    [Google Scholar]
  83. 83.
    Ožana S, Pyszko P, Dolný A. 2020. Determination of suitable insect part for non-lethal DNA sampling: case study of DNA quality and regeneration capability of dragonflies. Insect Conserv. Divers. 13:4319–27
    [Google Scholar]
  84. 84.
    Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW et al. 2014. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92:10823–35
    [Google Scholar]
  85. 85.
    Prudic KL, Oliver JC, Brown BV, Long EC. 2018. Comparisons of citizen science data-gathering approaches to evaluate urban butterfly diversity. Insects 9:4186
    [Google Scholar]
  86. 86.
    Rao RSP, Girish MKS. 2007. Road kills: assessing insect casualties using flagship taxon. Curr. Sci. 92:6830–37
    [Google Scholar]
  87. 87.
    Rawls J. 2013. Political liberalism and the idea of an overlapping consensus. Moral Disagreements: Classic and Contemporary Readings CW Gowans 217–28. London: Routledge. , 2nd ed..
    [Google Scholar]
  88. 88.
    Rees HC, Maddison BC, Middleditch DJ, Patmore JR, Gough KC. 2014. The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51:51450–59
    [Google Scholar]
  89. 89.
    Regan T. 1986. The Case for Animal Rights Berkeley, CA: Univ. Calif. Press
    [Google Scholar]
  90. 90.
    Roger F, Ghanavi HR, Danielsson N, Wahlberg N, Löndahl J et al. 2022. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—a proof of concept from the field. Environ. DNA 4:4790–807
    [Google Scholar]
  91. 91.
    Rosemond AD, Pringle CM, Ramírez A. 1998. Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshw. Biol. 39:3515–23
    [Google Scholar]
  92. 92.
    Rößler DC, Lötters S, Veith M, Fugmann M, Peters C et al. 2020. An amplicon sequencing protocol for attacker identification from DNA traces left on artificial prey. Methods Ecol. Evol. 11:101338–47
    [Google Scholar]
  93. 93.
    Rubene D, Wikars L-O, Ranius T. 2014. Importance of high quality early-successional habitats in managed forest landscapes to rare beetle species. Biodivers. Conserv. 23:2449–66
    [Google Scholar]
  94. 94.
    Rytkönen S, Vesterinen EJ, Westerduin C, Leviäkangas T, Vatka E et al. 2019. From feces to data: a metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecol. Evol. 9:1631–39
    [Google Scholar]
  95. 95.
    Salman INA, Ferrante M, Möller DM, Gavish-Regev E, Lubin Y. 2020. Trunk refugia: a simple, inexpensive method for sampling tree trunk arthropods. J. Insect Sci. 20:25
    [Google Scholar]
  96. 96.
    Saska P, Koprdova S, Martinkova Z, Honěk A. 2014. Comparing methods of weed seed exposure to predators. Ann. Appl. Biol. 164:2301–12
    [Google Scholar]
  97. 97.
    Schjøtz-Christensen B. 1965. Biology and Population Studies of Carabidae of the Corynephoretum. Nat Jutl. 11 Aarhus, Den.: Nat. Mus.
    [Google Scholar]
  98. 98.
    Schowalter TD. 2016. Insect Ecology: An Ecosystem Approach London: Academic
    [Google Scholar]
  99. 99.
    Schwerdt L, de Villalobos AE, Pérez-Miles F. 2019. Factors that affect the occupancy, activity and distribution patterns of Grammostola vachoni, an endemic tarantula from the austral mountains of Argentina. J. Insect Conserv. 23:5967–75
    [Google Scholar]
  100. 100.
    Short AEZ, Dikow T, Moreau CS. 2018. Entomological collections in the age of big data. Annu. Rev. Entomol. 63:513–30
    [Google Scholar]
  101. 101.
    Simaika JP, Samways MJ. 2018. Insect conservation psychology. J. Insect Conserv. 22:3635–42
    [Google Scholar]
  102. 102.
    Singer P. 1973. Animal liberation. Animal Rights R Garner 7–18. London: Palgrave Macmillan
    [Google Scholar]
  103. 103.
    Sint D, Guenay Y, Mayer R, Traugott M, Wallinger C. 2018. The effect of plant identity and mixed feeding on the detection of seed DNA in regurgitates of carabid beetles. Ecol. Evol. 8:2210834–46
    [Google Scholar]
  104. 104.
    Skórka P. 2016. The detectability and persistence of road-killed butterflies: an experimental study. Biol. Conserv. 200:36–43
    [Google Scholar]
  105. 105.
    Skórka P, Lenda M, Moroń D, Kalarus K, Tryjanowski P. 2013. Factors affecting road mortality and the suitability of road verges for butterflies. Biol. Conserv. 159:148–57
    [Google Scholar]
  106. 106.
    Skvarla MJ, Larson JL, Fisher JR, Dowling APG. 2021. A review of terrestrial and canopy Malaise traps. Ann. Entomol. Soc. Am. 114:127–47
    [Google Scholar]
  107. 107.
    Smith KW, Smith L, Charman E, Briggs K, Burgess M et al. 2011. Large-scale variation in the temporal patterns of the frass fall of defoliating caterpillars in oak woodlands in Britain: implications for nesting woodland birds. Bird Study 58:4506–11
    [Google Scholar]
  108. 108.
    Soga M, Gaston KJ. 2016. Extinction of experience: the loss of human-nature interactions. Front. Ecol. Environ. 14:294–101
    [Google Scholar]
  109. 109.
    Spears LR, Ramirez RA. 2015. Learning to love leftovers: using by-catch to expand our knowledge in entomology. Am. Entomol. 61:3168–73
    [Google Scholar]
  110. 110.
    Spence JR, Niemelä JK. 1994. Sampling carabid assemblages with pitfall traps: the madness and the method. Can. Entomol. 126:3881–94
    [Google Scholar]
  111. 111.
    Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63:31–45
    [Google Scholar]
  112. 112.
    Suárez-Tovar CM, Rocha-Ortega M, González-Voyer A, González-Tokman D, Córdoba-Aguilar A. 2019. The larger the damselfly, the more likely to be threatened: a sexual selection approach. J. Insect Conserv. 23:3535–45
    [Google Scholar]
  113. 113.
    Sudd JH. 1965. The transport of prey by ants. Behaviour 25:3–4234–71
    [Google Scholar]
  114. 114.
    Sunderland KD, Lövei GL, Fenlon J. 1995. Diets and reproductive phenologies of the introduced ground beetles Harpalus affinis and Clivina australasiae (Coleoptera, Carabidae) in New Zealand. Aust. J. Zool. 43:139–50
    [Google Scholar]
  115. 115.
    Suzuki K, Okada I, Yoshino M. 2019. Effect of wing mass on the free flight of a butterfly-like model using immersed boundary-lattice Boltzmann simulations. J. Fluid Mech. 877:614–47
    [Google Scholar]
  116. 116.
    Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH. 2012. Environmental DNA. Mol. Ecol. 21:81789–93
    [Google Scholar]
  117. 117.
    Tan CKW, Corlett RT. 2012. Scavenging of dead invertebrates along an urbanisation gradient in Singapore. Insect Conserv. Divers. 5:2138–45
    [Google Scholar]
  118. 118.
    Taylor P, Crewe T, Mackenzie S, Lepage D, Aubry Y et al. 2017. The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement. Avian Conserv. Ecol. 12:18
    [Google Scholar]
  119. 119.
    Tinsley-Marshall P, Skilbeck A, Riggs A. 2021. Bugs Matter citizen science survey demonstrates temporal difference in invertebrate abundance in Kent and South East England Rep. Kent Wildl. Trust Maidstone, UK: https://www.gwentwildlife.org/sites/default/files/2022-04/Bugs%20Matter%20County%20Report%20-%20Gwent%20Mar22.pdf
    [Google Scholar]
  120. 120.
    Titley MA, Snaddon JL, Turner EC. 2017. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLOS ONE 12:12e0189577
    [Google Scholar]
  121. 121.
    Toft S, Cuende E, Olesen AL, Mathiesen A, Meisner Larsen M, Jensen K. 2019. Food and specific macronutrient limitation in an assemblage of predatory beetles. Oikos 128:101467–77
    [Google Scholar]
  122. 122.
    Turin H, Kotze J, Müller-Kroehling S, Saska P, Spence JR, Heijerman T. 2022. Ecology and Conservation of the Dutch Ground Beetle Fauna: Lessons from 66 Years of Pitfall Trapping Wageningen, Neth.: Wageningen Acad. Publ.
    [Google Scholar]
  123. 123.
    Valentin RE, Kyle KE, Allen MC, Welbourne DJ, Lockwood JL. 2021. The state, transport, and fate of aboveground terrestrial arthropod eDNA. Environ. DNA 3:61081–92
    [Google Scholar]
  124. 124.
    van der Heyde M, White NE, Nevill P, Austin AD, Stevens N et al. 2023. Taking eDNA underground: factors affecting eDNA detection of subterranean fauna in groundwater. Mol. Ecol. Resour. 23:61257–74
    [Google Scholar]
  125. 125.
    van Klink R, August T, Bas Y, Bodesheim P, Bonn A et al. 2022. Emerging technologies revolutionise insect ecology and monitoring. Trends Ecol. Evol. 37:10872–85
    [Google Scholar]
  126. 126.
    Vanderstock A, Grandi-Nagashiro C, Kudo G, Latty T, Nakamura S et al. 2022. For the love of insects: Gardening grows positive emotions (biophilia) towards invertebrates. J. Insect Conserv. 26:5751–62
    [Google Scholar]
  127. 127.
    Vaudo AD, Fritz ML, López-Uribe MM. 2018. Opening the door to the past: accessing phylogenetic, pathogen, and population data from museum curated bees. Insect Syst. Divers. 2:54
    [Google Scholar]
  128. 128.
    Wagner DL. 2020. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65:457–80
    [Google Scholar]
  129. 129.
    Wäldchen J, Mäder P. 2018. Machine learning for image based species identification. Methods Ecol. Evol. 9:112216–25
    [Google Scholar]
  130. 130.
    Walker TJ, Wineriter SA. 1981. Marking techniques for recognizing individual insects. Fla. Entomol. 64:118–29
    [Google Scholar]
  131. 131.
    Wallinger C, Sint D, Baier F, Schmid C, Mayer R, Traugott M. 2015. Detection of seed DNA in regurgitates of granivorous carabid beetles. Bull. Entomol. Res. 105:6728–35
    [Google Scholar]
  132. 132.
    Wilson EO. 1987. The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1:4344–46
    [Google Scholar]
  133. 133.
    Wilson JS, Pan AD, General DEM, Koch JB. 2020. More eyes on the prize: an observation of a very rare, threatened species of Philippine bumble bee, Bombus irisanensis, on iNaturalist and the importance of citizen science in conservation biology. J. Insect Conserv. 24:4727–29
    [Google Scholar]
  134. 134.
    Woodcock TS, Pekkola LJ, Dawson C, Gadallah FL, Kevan PG. 2014. Development of a pollination service measurement (PSM) method using potted plant phytometry. Environ. Monit. Assess. 186:85041–57
    [Google Scholar]
  135. 135.
    Wu S, Chang C-M, Mai G-S, Rubenstein DR, Yang C-M et al. 2019. Artificial intelligence reveals environmental constraints on colour diversity in insects. Nat Commun. 10:4554
    [Google Scholar]
  136. 136.
    Yahiro K, Yano K. 1997. Ground beetles (Coleoptera, Caraboidea) caught by a light trap during ten years. Esakia 37:57–69
    [Google Scholar]
  137. 137.
    Zou Y, De Kraker J, Bianchi FJ, Van Telgen MD, Xiao H, Van Der Werf W 2017. Video monitoring of brown planthopper predation in rice shows flaws of sentinel methods. Sci. Rep. 7:42210
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-024402
Loading
/content/journals/10.1146/annurev-ento-120220-024402
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error