1932

Abstract

Yucca moths ( and ) are specialized pollinators of yucca plants, possessing unique, tentacle-like mouthparts used to actively collect pollen and deposit it onto the flowers of their hosts. The moths' larvae feed on the developing seeds and fruit tissue. First described in 1873, the yucca–yucca moth pollination system is now considered the archetypical example of a coevolved intimate mutualism. Research conducted over the past three decades has transformed our understanding of yucca moth diversity and host plant interactions. We summarize the current understanding of the diversity, ecology, and evolution of this group, review evidence for coevolution of the insects and their hosts, and describe how the nature of the interaction varies across evolutionary time and ecological contexts. Finally, we identify unresolved questions and areas for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022723-104346
2024-01-29
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-022723-104346.html?itemId=/content/journals/10.1146/annurev-ento-022723-104346&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Addicott JF. 1996. Cheaters in yucca/moth mutualism. Nature 380:6570114–15
    [Google Scholar]
  2. 2.
    Addicott JF. 1998. Regulation of mutualism between yuccas and yucca moths: population level processes. Oikos 81:1119–29
    [Google Scholar]
  3. 3.
    Addicott JF, Bao T. 1999. Limiting the costs of mutualism: multiple modes of interaction between yuccas and yucca moths. Proc. R. Soc. Lond. B 266:1415197–202
    [Google Scholar]
  4. 4.
    Addicott JF, Bronstein J, Kjellberg F. 1990. Evolution of mutualistic life-cycles: yucca moths and fig wasps. Insect Life Cycles F Gilbert 143–61. Berlin: Springer
    [Google Scholar]
  5. 5.
    Addicott JF, Tyre AJ. 1995. Cheating in an obligate mutualism: How often do yucca moths benefit yuccas?. Oikos 72:3382–94
    [Google Scholar]
  6. 6.
    Aker CL, Udovic D. 1981. Oviposition and pollination behavior of the yucca moth, Tegeticula maculata (Lepidoptera: Prodoxidae), and its relation to the reproductive biology of Yucca whipplei (Agavaceae). Oecologia 49:96–101
    [Google Scholar]
  7. 7.
    Alamo-Herrera CR, Arteaga MC, Bello-Bedoy R, Rosas-Pacheco F. 2022. Pollen dispersal and genetic diversity of Yucca valida (Asparagaceae), a plant involved in an obligate pollination mutualism. Biol. J. Linn. Soc. Lond. 136:2364–74
    [Google Scholar]
  8. 8.
    Althoff DM. 2014. Shift in egg-laying strategy to avoid plant defense leads to reproductive isolation in mutualistic and cheating yucca moths. Evolution 68:1301–7
    [Google Scholar]
  9. 9.
    Althoff DM, Segraves KA, Johnson MTJ. 2014. Testing for coevolutionary diversification: linking pattern with process. Trends Ecol. Evol. 29:282–89
    [Google Scholar]
  10. 10.
    Althoff DM, Segraves KA, Leebens-Mack J, Pellmyr O. 2006. Patterns of speciation in the yucca moths: parallel species radiations within the Tegeticula yuccasella species complex. Syst. Biol. 55:3398–410
    [Google Scholar]
  11. 11.
    Althoff DM, Segraves KA, Smith CI, Leebens-Mack J, Pellmyr O. 2012. Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Mol. Phylogenet. Evol. 62:3898–906
    [Google Scholar]
  12. 12.
    Arteaga MC, Bello-Bedoy R, Gasca-Pineda J. 2020. Hybridization between yuccas from Baja California: genomic and environmental patterns. Front. Plant Sci. 11:685
    [Google Scholar]
  13. 13.
    Arteaga MC, Bello-Bedoy R, León de la Luz JL, Delgadillo J, Dominguez R. 2015. Phenotypic variation of flowering and vegetative morphological traits along the distribution for the endemic species Yucca capensis (Agavaceae). Bot. Sci. 93:4765–70
    [Google Scholar]
  14. 14.
    Axelrod R, Hamilton WD. 1981. The evolution of cooperation. Science 211:44891390–96
    [Google Scholar]
  15. 15.
    Bao T, Addicott JF. 1998. Cheating in mutualism: defection of Yucca baccata against its yucca moths. Ecol. Lett. 1:3155–59
    [Google Scholar]
  16. 16.
    Bogler DJ, Neff JL, Simpson BB. 1995. Multiple origins of the yucca-yucca moth association. PNAS 92:6864–67
    [Google Scholar]
  17. 17.
    Borchert MI, DeFalco LA. 2016. Yucca brevifolia fruit production, predispersal seed predation, and fruit removal by rodents during two years of contrasting reproduction. Am. J. Bot. 103:5830–36
    [Google Scholar]
  18. 18.
    Bronstein JL. 1994. Our current understanding of mutualism. Q. Rev. Biol. 69:131–51
    [Google Scholar]
  19. 19.
    Bronstein JL. 2001. The cost of mutualism. Am. Zool. 41:4825–39
    [Google Scholar]
  20. 20.
    Bronstein JL, Alarcón R, Geber M. 2006. The evolution of plant-insect mutualisms. New Phytol. 172:3412–28
    [Google Scholar]
  21. 21.
    Bronstein JL, Ziv Y. 1997. Costs of two non-mutualistic species in a yucca/yucca moth mutualism. Oecologia 112:3379–85
    [Google Scholar]
  22. 22.
    Chamberlain SA, Bronstein JL, Rudgers JA. 2014. How context dependent are species interactions?. Ecol. Lett. 17:7881–90
    [Google Scholar]
  23. 23.
    Clayton DH, Bush SE, Johnson KP. Coevolution of Life on Hosts: Integrating Ecology and History Chicago: Univ. Chicago Press
    [Google Scholar]
  24. 24.
    Cole WS Jr., James AS, Smith CI. 2017. First recorded observations of pollination and oviposition behavior in Tegeticula antithetica (Lepidoptera: Prodoxidae) suggest a functional basis for coevolution with Joshua tree (yucca) hosts. Ann. Entomol. Soc. Am. 110:4390–97
    [Google Scholar]
  25. 25.
    Crabb BA, Pellmyr O. 2004. Defection by plants in the yucca-yucca moth association: a test of the cheater plant hypothesis for Yucca treculeana. Oikos 107:2321–28
    [Google Scholar]
  26. 26.
    Crabb BA, Pellmyr O. 2006. Impact of the third trophic level on an obligate mutualism: Do yucca plants benefit from parasitoids of their pollinators?. Oikos 167:1119–24
    [Google Scholar]
  27. 27.
    Darwell CT, Ayyampalayam S, Leebens-Mack J, Smith CI, Segraves KA et al. 2018. Phylogenomic reconstruction of transcriptome data confirms the basal position of Prodoxidae moths within the order Lepidoptera. Arthropod Systemat. Phylogeny 76:59–64
    [Google Scholar]
  28. 28.
    Darwell CT, Rivers DM, Althoff DM. 2016. RAD-seq phylogenomics recovers a well-resolved phylogeny of a rapid radiation of mutualistic and antagonistic yucca moths. Syst. Entomol. 41:3672–82
    [Google Scholar]
  29. 29.
    Darwin C. 1874 (1994). Letter to J D Hooker, April 7, 1874. A Calendar of the Correspondence of Charles Darwin, 1821–1882 F Burkhardt, S Smith 361 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  30. 30.
    Davis DR. 1967. A Revision of the Moths of the Subfamily Prodoxinae (Lepidoptera: Incurvariidae) Bull. U. S. Natl. Mus. 255 Washington, DC: U. S. Natl. Mus.
    [Google Scholar]
  31. 31.
    De la Rosa-Conroy L, Arteaga MC, Bullock SH, Eguiarte LE, Bello-Bedoy R. 2019. Population variation in the intensity of fruit infestation and pre-dispersal seed predation in Yucca schidigera (Asparagaceae) by its obligate pollinator. Plant Ecol. 220:7–8711–20
    [Google Scholar]
  32. 32.
    Dodd RJ, Linhart YB. 1994. Reproductive consequences of interactions between Yucca glauca (Agavaceae) and Tegeticula yuccasella (Lepidoptera) in Colorado. Am. J. Bot. 81:7815–25
    [Google Scholar]
  33. 33.
    Drummond CS, Smith CI, Pellmyr O. 2009. Species identification and sibship assignment of sympatric larvae in the yucca moths Tegeticula synthetica and Tegeticula antithetica (Lepidoptera: Prodoxidae). Mol. Ecol. Resour. 9:51369–72
    [Google Scholar]
  34. 34.
    Eguiarte LE, Leebens-Mack J, Heyduk K. 2021. Recent advances and future perspectives for Agavoideae research: Agave, Yucca and related taxa. Front. Plant Sci. 12:687596
    [Google Scholar]
  35. 35.
    Ehrlich P, Raven P. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608
    [Google Scholar]
  36. 36.
    Engelmann G. 1873. Notes on the genus Yucca. Trans. St. Louis Acad. Sci. 3:17–54
    [Google Scholar]
  37. 37.
    Flores-Abreu IN, Trejo-Salazar RE, Sánchez-Reyes LL, Good SV, Magallón S et al. 2019. Tempo and mode in coevolution of Agave sensu lato (Agavoideae, Asparagaceae) and its bat pollinators, Glossophaginae (Phyllostomidae). Mol. Phylogenet. Evol. 133:176–88
    [Google Scholar]
  38. 38.
    Galil J. 1969. Intentional pollination in yucca flowers. Teva Va'aretz 11:4–12
    [Google Scholar]
  39. 39.
    Gaunt MW, Miles MA. 2002. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol. Biol. Evol. 19:5748–61
    [Google Scholar]
  40. 40.
    Godsoe W, Yoder JB, Smith CI, Drummond CS, Pellmyr O. 2010. Absence of population-level phenotype matching in an obligate pollination mutualism. J. Evol. Biol. 23:122739–46
    [Google Scholar]
  41. 41.
    Godsoe W, Yoder JB, Smith CI, Pellmyr O. 2008. Coevolution and divergence in the Joshua tree/yucca moth mutualism. Am. Nat. 171:6816–23
    [Google Scholar]
  42. 42.
    Good-Avila SV, Souza V, Gaut BS, Eguiarte LE. 2006. Timing and rate of speciation in Agave (Agavaceae). PNAS 103:249124–29
    [Google Scholar]
  43. 43.
    Harrower J, Gilbert GS. 2018. Context-dependent mutualisms in the Joshua tree-yucca moth system shift along a climate gradient. Ecosphere 9:9e02439
    [Google Scholar]
  44. 44.
    Hembry DH, Althoff DM. 2016. Diversification and coevolution in brood pollination mutualisms: windows into the role of biotic interactions in generating biological diversity. Am. J. Bot. 103:101783–92
    [Google Scholar]
  45. 45.
    Heyduk K, McAssey EV, Grimwood J, Shu S, Schmutz J et al. 2021. Hybridization history and repetitive element content in the genome of a homoploid hybrid, Yucca gloriosa (Asparagaceae). Front. Plant Sci. 11:2220
    [Google Scholar]
  46. 46.
    Heyduk K, McKain MR, Lalani F, Leebens-Mack J. 2016. Evolution of a CAM anatomy predates the origins of Crassulacean acid metabolism in the Agavoideae (Asparagaceae). Mol. Phylogenet. Evol. 105:102–13
    [Google Scholar]
  47. 47.
    Holland JN, Fleming TH. 1999. Mutualistic interactions between Upiga virescens (Pyralidae), a pollinating seed-consumer, and Lophocereus schottii (Cactaceae). Ecology 80:62074–84
    [Google Scholar]
  48. 48.
    Huth CJ, Pellmyr O. 2000. Pollen-mediated selective abortion promotes evolutionary stability of mutualism between yuccas and yucca moths. Ecology 81:41100–7
    [Google Scholar]
  49. 49.
    Jadeja S, Tenhumberg B. 2018. Presence of fruits decreases probability of retaining flowers in a sequentially flowering plant. AoB Plants 10:3ply033
    [Google Scholar]
  50. 50.
    Janzen D. 1980. When is it coevolution?. Evolution 34:611–12
    [Google Scholar]
  51. 51.
    Johnson CA, Smith GP, Yule K, Davidowitz G, Bronstein JL, Ferrière R 2021. Coevolutionary transitions from antagonism to mutualism explained by the Co-Opted Antagonist Hypothesis. Nat. Commun. 12:2867
    [Google Scholar]
  52. 52.
    Jones EI, Afkhami ME, Akçay E, Bronstein JL, Bshary R et al. 2015. Cheaters must prosper: reconciling theoretical and empirical perspectives on cheating in mutualism. Ecol. Lett. 18:111270–84
    [Google Scholar]
  53. 53.
    Kato M, Takimura A, Kawakita A. 2003. An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). PNAS 100:95264–67
    [Google Scholar]
  54. 54.
    Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA et al. 2019. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. PNAS 116:4522657–63
    [Google Scholar]
  55. 55.
    Kay KM, Sargent RD. 2009. The role of animal pollination in plant speciation: integrating ecology, geography, and genetics. Annu. Rev. Ecol. Evol. Syst. 40:637–56
    [Google Scholar]
  56. 56.
    Kiester AR, Lande R, Schemske D. 1984. Models of coevolution and speciation in plants and their pollinators. Am. Nat. 124:2220–43
    [Google Scholar]
  57. 57.
    Leebens-Mack J, Pellmyr O. 2004. Patterns of genetic structure among populations of an oligophagous pollinating yucca moth (Tegeticula yuccasella). J. Hered. 95:2127–35
    [Google Scholar]
  58. 58.
    Leebens-Mack J, Pellmyr O, Brock M. 1998. Host specificity and the genetic structure of two yucca moth species in a yucca hybrid zone. Evolution 52:51376–82
    [Google Scholar]
  59. 59.
    Lenz LW. 2007. Reassessment of Y. brevifolia and recognition of Y. jaegeriana as a distinct species. Aliso 24:97–104
    [Google Scholar]
  60. 60.
    Lenz LW, Hanson M. 2000. Typification and change in status of Yucca schottii (Agavaceae). Aliso 19:193–98
    [Google Scholar]
  61. 61.
    Lenz LW, Hanson MA. 2000. Yuccas (Agavaceae) of the International Four Corners: Southwestern USA and Northwestern Mexico. Aliso 19:2165–79
    [Google Scholar]
  62. 62.
    Luna-Ortiz A, Arteaga MC, Bello-Bedoy R, Gasca-Pineda J, León de la Luz JL et al. 2021. High genetic diversity and low structure in an endemic long-lived tree, Yucca capensis (Asparagaceae). Plant Biol. 24:1185–91
    [Google Scholar]
  63. 63.
    Magallán-Hernández F, Maruri-Aguilar B, Sánchez-Martínez E, Hernández-Sandoval L, Luna-Zúñiga J, Robledo-MeJía M. 2014. Consideraciones taxonómicas de Yucca queretaroensis Piña (Agavaceae), una especie endémica del semidieserto Queretano-Hidalguense. Acta Bot. Mex. 66:51–66
    [Google Scholar]
  64. 64.
    Marr DL, Leebens-Mack JH, Elms L, Pellmyr O. 2000. Pollen dispersal in Yucca filamentosa (Agavaceae): the paradox of self-pollination behavior by Tegeticula yuccasella (Prodoxidae). Am. J. Bot. 87:5670–77
    [Google Scholar]
  65. 65.
    Marr DL, Pellmyr O. 2003. Effect of pollinator-inflicted ovule damage on floral abscission in the yucca-yucca moth mutualism: the role of mechanical and chemical factors. Oecologia 136:236–43
    [Google Scholar]
  66. 66.
    McKain MR, McNeal JR, Kellar PR, Eguiarte LE, Pires JC, Leebens-Mack J. 2016. Timing of rapid diversification and convergent origins of active pollination within agavoideae (Asparagaceae). Am. J. Bot. 103:101717–29
    [Google Scholar]
  67. 67.
    McKain MR, Wickett N, Zhang Y, Ayyampalayam S, McCombie WR et al. 2012. Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae). Am. J. Bot. 99:2397–406
    [Google Scholar]
  68. 68.
    McKelvey SD. 1938. Yuccas of the Southwestern United States, Vol. I Jamaica Plain, MA: Arnold Arbor.
    [Google Scholar]
  69. 69.
    Nuismer S, Gomulkiewicz R, Ridenhour B. 2010. When is correlation coevolution?. Am. Nat. 175:5525–37
    [Google Scholar]
  70. 70.
    One Thousand Plant Transcr. Init. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:7780679–85
    [Google Scholar]
  71. 71.
    Pellmyr O. 1997. Pollinating seed eaters: Why is active pollination so rare?. Ecology 78:61655–60
    [Google Scholar]
  72. 72.
    Pellmyr O. 1999. Systematic revision of the yucca moths in the Tegeticula yuccasella complex (Lepidoptera: Prodoxidae) north of Mexico. Syst. Entomol. 24:3243–71
    [Google Scholar]
  73. 73.
    Pellmyr O. 2003. Yuccas, yucca moths and coevolution: a review. Ann. Mo. Bot. Gard. 90:35–55
    [Google Scholar]
  74. 74.
    Pellmyr O. 2012. Pollen load in an active pollinator, the yucca moth Tegeticula yuccasella (Prodoxidae). J. Lepid. Soc. 66:150–51
    [Google Scholar]
  75. 75.
    Pellmyr O, Balcázar-Lara M. 2000. Systematics of the yucca moth genus Parategeticula (Lepidoptera: Prodoxidae), with description of three Mexican species. Ann. Entomol. Soc. Am. 93:3432–39
    [Google Scholar]
  76. 76.
    Pellmyr O, Balcázar-Lara M, Segraves KA, Althoff DM, Leebens-Mack JH. 2006. Phylogeny and life history evolution of Prodoxus yucca moths (Lepidoptera: Prodoxidae). Syst. Entomol. 31:1–20
    [Google Scholar]
  77. 77.
    Pellmyr O, Balcázar-Lara M, Segraves KA, Althoff DM, Leebens-Mack J. 2008. Phylogeny of the pollinating yucca moths, with revision of Mexican species (Tegeticula and Parategeticula; Lepidoptera, Prodoxidae). Zool. J. Linn. Soc. 152:2297–314
    [Google Scholar]
  78. 78.
    Pellmyr O, Huth CJ. 1994. Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372:6503257–60
    [Google Scholar]
  79. 79.
    Pellmyr O, Kjellberg F, Herre EA, Kawakita A, Hembry DH et al. 2020. Active pollination drives selection for reduced pollen-ovule ratios. Am. J. Bot. 107:1164–70
    [Google Scholar]
  80. 80.
    Pellmyr O, Krenn HW. 2002. Origin of a complex key innovation in an obligate plant-insect mutualism. PNAS 99:5498–502
    [Google Scholar]
  81. 81.
    Pellmyr O, Leebens-Mack J. 1999. Forty million years of mutualism: evidence for Eocene origin of yucca-yucca moth association. PNAS 96:169178–83
    [Google Scholar]
  82. 82.
    Pellmyr O, Leebens-Mack J. 2000. Reversal of mutualism as a mechanism for adaptive radiation in yucca moths. Am. Nat. 156:S62–76
    [Google Scholar]
  83. 83.
    Pellmyr O, Leebens-Mack J, Huth CJ. 1996. Non-mutualistic yucca moths and their evolutionary consequences. Nature 380:6570155–56
    [Google Scholar]
  84. 84.
    Pellmyr O, Segraves KA. 2003. Pollinator divergence within an obligate mutualism: two yucca moth species (Lepidoptera; Prodoxidae: Tegeticula) on the Joshua tree (Yucca brevifolia; Agavaceae). Ann. Entomol. Soc. Am. 96:716–22
    [Google Scholar]
  85. 85.
    Pellmyr O, Segraves KA, Althoff DM, Balcázar-Lara M, Leebens-Mack J. 2007. The phylogeny of yuccas. Mol. Phylogenet. Evol. 43:2493–501
    [Google Scholar]
  86. 86.
    Pellmyr O, Thompson JN, Brown JM, Harrison RG. 1996. Evolution of pollination and mutualism in the yucca moth lineage. Am. Nat. 148:5827–47
    [Google Scholar]
  87. 87.
    Pellmyr O, Yoder JB, Godsoe W. 2009. Prodoxus praedictus, n. sp., a new bogus yucca moth from Southern California. J. Lepid. Soc. 63:3137–40
    [Google Scholar]
  88. 88.
    Powell JA. 1984. Biological Interrelationships of Moths and Yucca schottii Univ. Calif. Publ. Entomol. Vol. 100 Berkely, CA: Univ. Calif. Press
    [Google Scholar]
  89. 89.
    Powell JA. 2013. Longevity and individual activity of the yucca moth, Tegeticula maculata extranea (Prodoxidae), based on mark-release monitoring. J. Lepid. Soc. 67:3187–95
    [Google Scholar]
  90. 90.
    Rentsch JD, Leebens-Mack J. 2012. Homoploid hybrid origin of Yucca gloriosa: intersectional hybrid speciation in yucca (Agavoideae, Asparagaceae). Ecol. Evol. 2:92213–22
    [Google Scholar]
  91. 91.
    Rentsch JD, Leebens-Mack J. 2014. Yucca aloifolia (Asparagaceae) opts out of an obligate pollination mutualism. Am. J. Bot. 101:122062–67
    [Google Scholar]
  92. 92.
    Riley CV. 1873. On a new genus in the lepidopterous family Tineidae, with remarks on the fertilization of Yucca. Trans. Acad. Sci. St. Louis 3:55–64
    [Google Scholar]
  93. 93.
    Royer AM, Streisfeld MA, Smith CI. 2016. Population genomics of divergence within an obligate pollination mutualism: Selection maintains differences between Joshua tree species. Am. J. Bot. 103:101730–41
    [Google Scholar]
  94. 94.
    Royer AM, Waite-Himmelwright J, Smith CI. 2020. Strong selection against early generation hybrids in Joshua tree hybrid zone not explained by pollinators alone. Front. Plant Sci. 100:640
    [Google Scholar]
  95. 95.
    Sargent RD. 2004. Floral symmetry affects speciation rates in angiosperms. Proc. R. Soc. Lond. B 271:603–8
    [Google Scholar]
  96. 96.
    Segraves KA. 2003. Understanding stability in mutualisms: Can extrinsic factors balance the yucca-yucca moth interaction?. Ecology 84:112943–51
    [Google Scholar]
  97. 97.
    Segraves KA. 2008. Florivores limit cost of mutualism in the yucca-yucca moth association. Ecology 89:113215–21
    [Google Scholar]
  98. 98.
    Segraves KA, Althoff DM, Pellmyr O. 2005. Limiting cheaters in mutualism: evidence from hybridization between mutualist and cheater yucca moths. Proc. Biol. Sci. 272:15772195–201
    [Google Scholar]
  99. 99.
    Segraves KA, Althoff DM, Pellmyr O. 2008. The evolutionary ecology of cheating: Does superficial oviposition facilitate the evolution of a cheater yucca moth?. Ecol. Entomol. 33:765–70
    [Google Scholar]
  100. 100.
    Segraves KA, Pellmyr O. 2001. Phylogeography of the yucca moth Tegeticula maculata: the role of historical biogeography in reconciling high genetic structure with limited speciation. Mol. Ecol. 10:51247–53
    [Google Scholar]
  101. 101.
    Smith CI, Drummond CS, Yoder JB, Godsoe W, Pellmyr O. 2009. Host specificity and reproductive success of yucca moths (Tegeticula spp. Lepidoptera: Prodoxidae) mirror patterns of gene flow between host plant varieties of the Joshua tree (Yucca brevifolia: Agavaceae). Mol. Ecol. 18:245218–29
    [Google Scholar]
  102. 102.
    Smith CI, Godsoe WKW, Tank S, Yoder JB, Pellmyr O. 2008. Distinguishing coevolution from covariance in an obligate pollination mutualism: asynchronous divergence in Joshua tree and its pollinators. Evolution 62:102676–87
    [Google Scholar]
  103. 103.
    Smith CI, McKain MR, Guimond A, Flatz R. 2021. Genome-scale data resolves the timing of divergence in Joshua trees. Am. J. Bot. 108:4647–63
    [Google Scholar]
  104. 104.
    Smith CI, Pellmyr O, Althoff DM, Balcázar-Lara M, Leebens-Mack J, Segraves KA. 2008. Pattern and timing of diversification in Yucca (Agavaceae): Specialized pollination does not escalate rates of diversification. Proc. Biol. Sci. 275:1632249–58
    [Google Scholar]
  105. 105.
    Smith CI, Sweet LC, Yoder J, McKain MR, Heyduk K, Barrows C. 2023. Dust storms ahead: climate change, green energy development and endangered species in the Mojave Desert. Biol. Conserv. 277:109819
    [Google Scholar]
  106. 106.
    Starr TN, Gadek KE, Yoder JB, Flatz R, Smith CI. 2013. Asymmetric hybridization and gene flow between Joshua trees (Agavaceae: Yucca) reflect differences in pollinator host specificity. Mol. Ecol. 22:2437–49
    [Google Scholar]
  107. 107.
    Svensson GP, Hickman MO Jr., Bartram S, Boland W, Pellmyr O, Raguso RA. 2005. Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae). Am. J. Bot. 92:101624–31
    [Google Scholar]
  108. 108.
    Svensson GP, Pellmyr O, Raguso RA. 2011. Pollinator attraction to volatiles from virgin and pollinated host flowers in a yucca/moth obligate mutualism. Oikos 120:101577–83
    [Google Scholar]
  109. 109.
    Svensson GP, Raguso RA, Flatz R, Smith CI. 2016. Floral scent of Joshua trees (Yucca brevifolia sensu lato): divergence in scent profiles between species but breakdown of signal integrity in a narrow hybrid zone. Am. J. Bot. 103:101793–802
    [Google Scholar]
  110. 110.
    Thiede J. 2001. Agavaceae. Illustrated Handbook of Succulent Plants: Monocotyledons U Eggli 5–102. Berlin: Springer
    [Google Scholar]
  111. 111.
    Thompson JN. 1994. The Coevolutionary Process Chicago: Univ. Chicago Press
    [Google Scholar]
  112. 112.
    Thompson JN, Pellmyr O. 1992. Mutualism with pollinating seed parasites amid co-pollinators: constraints on specialization. Ecology 73:51780–91
    [Google Scholar]
  113. 113.
    Tidwell WD, Parker LR. 1990. Protoyucca shadishii genetsp nov, an arborescent monocotyledon with secondary growth from the middle Miocene of northwestern Nevada, USA. Rev. Palaeobot. Palynol. 62:79–95
    [Google Scholar]
  114. 114.
    Trelease W. 1893. Further studies of yuccas and their pollination. Mo. Bot. Gard. Annu. Rep. 1893:181–226
    [Google Scholar]
  115. 115.
    Tröger A, Svensson GP, Galbrecht H-M, Twele R, Patt JM et al. 2021. Tetranorsesquiterpenoids as attractants of yucca moths to yucca flowers. J. Chem. Ecol. 47:121025–41
    [Google Scholar]
  116. 116.
    Tyre AJ, Addicott JF. 1993. Facultative non-mutualistic behaviour by an obligate mutualist—cheating by yucca moths. Oecologia 94:2173–75
    [Google Scholar]
  117. 117.
    Weiblen GD. 2002. How to be a fig wasp. Annu. Rev. Entomol. 47:299–330
    [Google Scholar]
  118. 118.
    Wilson RD, Addicott JF. 1998. Regulation of mutualism between yuccas and yucca moths: Is oviposition behavior responsive to selective abscission of flowers?. Oikos 81:1109–18
    [Google Scholar]
  119. 119.
    Yoder JB, Smith CI, Pellmyr O. 2010. How to become a yucca moth: minimal trait evolution needed to establish the obligate pollination mutualism. Biol. J. Linn. Soc. Lond. 100:4847–55
    [Google Scholar]
  120. 120.
    Yoder JB, Smith CI, Rowley DJ, Flatz R, Godsoe W et al. 2013. Effects of gene flow on phenotype matching between two varieties of Joshua tree (Yucca brevifolia; Agavaceae) and their pollinators. J. Evol. Biol. 26:61220–33
    [Google Scholar]
/content/journals/10.1146/annurev-ento-022723-104346
Loading
/content/journals/10.1146/annurev-ento-022723-104346
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error