1932

Abstract

vegetable and oilseed crops are attacked by several different flea beetle species (Chrysomelidae: Alticini). Over the past decades, most research has focused on two species, and , which are major pests of oilseed rape in North America. More recently, and especially after the ban of neonicotinoids in the European Union, the cabbage stem flea beetle, , has become greatly important and is now considered to be the major pest of winter oilseed rape in Europe. The major challenges to flea beetle control are the prediction of population dynamics in the field, differential susceptibility to insecticides, and the lack of resistant plant cultivars and other economically viable alternative management strategies. At the same time, many fundamental aspects of flea beetle biology and ecology, which may be relevant for the development of sustainable control strategies, are not well understood. This review focuses on the interactions between flea beetles and plants and summarizes the literature on current management strategies with an emphasis on the potential for biological control in flea beetle management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-033023-015753
2024-01-25
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-033023-015753.html?itemId=/content/journals/10.1146/annurev-ento-033023-015753&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agrawal AA, Sherriffs MF. 2001. Induced plant resistance and susceptibility to late-season herbivores of wild radish. Ann. Entomol. Soc. Am. 94:71–75
    [Google Scholar]
  2. 2.
    Ahn S-J, Betzin F, Gikonyo MW, Yang Z-L, Köllner TG, Beran F. 2019. Identification and evolution of glucosinolate sulfatases in a specialist flea beetle. Sci. Rep. 9:15725
    [Google Scholar]
  3. 3.
    Alahakoon U, Adamson J, Grenkow L, Soroka J, Bonham-Smith P, Gruber M. 2016. Field growth traits and insect-host plant interactions of two transgenic canola (Brassicaceae) lines with elevated trichome numbers. Can. Entomol. 148:603–15
    [Google Scholar]
  4. 4.
    Altieri MA, Schmidt LL. 1986. Population trends and feeding preferences of flea beetles (Phyllotreta cruciferae Goeze) in collard-wild mustard mixtures. Crop Prot. 5:170–75
    [Google Scholar]
  5. 5.
    Anderson MD, Peng C, Weissl MJ. 1992. Crambe, Crambe abyssinica Hochst., as a flea beetle resistant crop (Coleoptera: Chrysomelidae). J. Econ. Entomol. 85:594–600
    [Google Scholar]
  6. 6.
    Andert S, Ziesemer A, Zhang H. 2021. Farmers’ perspectives of future management of winter oilseed rape (Brassica napus L.): a case study from north-eastern Germany. Eur. J. Agron. 130:126350
    [Google Scholar]
  7. 7.
    Anooj SS, Raghavendra KV, Shashank PR, Nithya C, Sardana HR, Vaibhav V. 2020. An emerging pest of radish, striped flea beetle Phyllotreta striolata (Fabricius), from Northern India: incidence, diagnosis and molecular analysis. Phytoparasitica 48:743–53
    [Google Scholar]
  8. 8.
    Antwi FB, Olson DL, Carey DR. 2007. Comparisons of ecorational and chemical insecticides against crucifer flea beetle (Coleoptera: Chrysomelidae) on canola. J. Econ. Entomol. 100:1201–9
    [Google Scholar]
  9. 9.
    Antwi FB, Olson DL, Knodel JJ. 2007. Comparative evaluation and economic potential of ecorational versus chemical insecticides for crucifer flea beetle (Coleoptera: Chrysomelidae) management in canola. J. Econ. Entomol. 100:710–16
    [Google Scholar]
  10. 10.
    Antwi FB, Reddy GVP. 2016. Efficacy of entomopathogenic nematodes and sprayable polymer gel against crucifer flea beetle (Coleoptera: Chrysomelidae) on canola. J. Econ. Entomol. 109:1706–12
    [Google Scholar]
  11. 11.
    Barari H, Cook SM, Clark SJ, Williams IH. 2005. Effect of a turnip rape (Brassica rapa) trap crop on stem-mining pests and their parasitoids in winter oilseed rape (Brassica napus). BioControl 50:69–86
    [Google Scholar]
  12. 12.
    Bartelt RJ, Cossé AA, Zilkowski BW, Weisleder D, Momany FA. 2001. Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles. J. Chem. Ecol. 27:2397–423
    [Google Scholar]
  13. 13.
    Bartelt RJ, Zilkowski BW, Cossé AA, Schnupf U, Vermillion K, Momany FA. 2011. Male-specific sesquiterpenes from Phyllotreta flea beetles. J. Nat. Prod. 74:585–95
    [Google Scholar]
  14. 14.
    Bartlet E, Mithen R, Clark S. 1996. Feeding of the cabbage stem flea beetle Psylliodes chrysocephala on high and low glucosinolate cultivars of oilseed rape. Proceedings of the 9th International Symposium on Insect-Plant Relationships87–99. Berlin: Springer
    [Google Scholar]
  15. 15.
    Bartlet E, Parsons D, Williams I, Clark S. 1994. The influence of glucosinolates and sugars on feeding by the cabbage stem flea beetle, Psylliodes chrysocephala. Entomol. Exp. Appl. 73:77–83
    [Google Scholar]
  16. 16.
    Bartlet E, Williams I. 1991. Factors restricting the feeding of the cabbage stem flea beetle (Psylliodes chrysocephala). Entomol. Exp. Appl. 60:233–38
    [Google Scholar]
  17. 17.
    Beran F, Jimenez-Aleman GH, Lin MY, Hsu YC, Mewis I et al. 2016. The aggregation pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) revisited. J. Chem. Ecol. 42:748–55
    [Google Scholar]
  18. 18.
    Beran F, Mewis I, Srinivasan R, Svoboda J, Vial C et al. 2011. Male Phyllotreta striolata (F.) produce an aggregation pheromone: identification of male-specific compounds and interaction with host plant volatiles. J. Chem. Ecol. 37:85–97
    [Google Scholar]
  19. 19.
    Beran F, Pauchet Y, Kunert G, Reichelt M, Wielsch N et al. 2014. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. PNAS 111:7349–54
    [Google Scholar]
  20. 20.
    Beran F, Sporer T, Paetz C, Ahn S-J, Betzin F et al. 2018. One pathway is not enough: The cabbage stem flea beetle Psylliodes chrysocephala uses multiple strategies to overcome the glucosinolate-myrosinase defense in its host plants. Front. Plant Sci. 9:1754
    [Google Scholar]
  21. 21.
    Blažević I, Montaut S, Burčul F, Olsen CE, Burow M et al. 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169:112100
    [Google Scholar]
  22. 22.
    Blubaugh CK, Asplund JS, Judson SM, Snyder WE. 2021. Invasive predator disrupts link between predator evenness and herbivore suppression. Biol. Control 153:104470
    [Google Scholar]
  23. 23.
    Bodnaryk RP. 1992. Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31:2671–77
    [Google Scholar]
  24. 24.
    Bodnaryk RP. 1992. Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze). Can. J. Plant Sci. 72:1295–303
    [Google Scholar]
  25. 25.
    Bodnaryk RP. 1997. Will low-glucosinolate cultivars of the mustards Brassica juncea and Sinapis alba be vulnerable to insect pests?. Can. J. Plant Sci. 77:283–87
    [Google Scholar]
  26. 26.
    Bodnaryk RP, Rymerson RT. 1994. Effect of wounding and jasmonates on the physicochemical properties and flea beetle defense responses of canola seedlings, Brassica napus L. Can. J. Plant Sci. 74:899–907
    [Google Scholar]
  27. 27.
    Bohinc T, Trdan S. 2013. Sowing mixtures of Brassica trap crops is recommended to reduce Phyllotreta beetles injury to cabbage. Acta Agric. Scand. B 63:297–303
    [Google Scholar]
  28. 28.
    Brandt RN, Lamb RJ. 1993. Distribution of feeding damage by Phyllotreta cruciferae (Goeze) (Coleoptera, Chrysomelidae) on oilseed rape and mustard seedlings in relation to crop resistance. Can. Entomol. 125:1011–21
    [Google Scholar]
  29. 29.
    Brandt RN, Lamb RJ. 1994. Importance of tolerance and growth rate in the resistance of oilseed rapes and mustards to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera, Chrysomelidae). Can. J. Plant Sci. 74:169–76
    [Google Scholar]
  30. 30.
    Breitenmoser S, Steinger T, Baux A, Hiltpold I. 2022. Intercropping winter oilseed rape (Brassica napus L.) has the potential to lessen the impact of the insect pest complex. Agronomy 12:723
    [Google Scholar]
  31. 31.
    Briar SS, Antwi F, Shrestha G, Sharma A, Reddy GVP. 2018. Potential biopesticides for crucifer flea beetle, Phyllotreta cruciferae (Coleoptera: Chrysomelidae) management under dryland canola production in Montana. Phytoparasitica 46:247–54
    [Google Scholar]
  32. 32.
    Bukovinszky T, Gols R, Kamp A, de Oliveira-Domingues F, Hambäck PA et al. 2010. Combined effects of patch size and plant nutritional quality on local densities of insect herbivores. Basic Appl. Ecol. 11:396–405
    [Google Scholar]
  33. 33.
    Burgess L, Hinks CF. 1987. Predation on adults of the crucifer flea beetle, Phyllotreta cruciferae (Goeze), by the northern fall field cricket, Gryllus pennsylvanicus Burmeister (Orthoptera, Gryllidae). Can. Entomol. 119:495–96
    [Google Scholar]
  34. 34.
    Butt TM, Ibrahim L, Ball BV, Clark SJ. 1994. Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocontrol Sci. Technol. 4:207–14
    [Google Scholar]
  35. 35.
    Cárcamo HA, Blackshaw RE. 2007. Insect pest incidence and injury to herbicide-tolerant canola in western Canada. Agron. J. 99:842–46
    [Google Scholar]
  36. 36.
    Cárcamo HA, Otani JK, Dosdall LM, Blackshaw RE, Clayton GW et al. 2008. Effects of seeding date and canola species on seedling damage by flea beetles in three ecoregions. J. Appl. Entomol. 132:623–31
    [Google Scholar]
  37. 37.
    Cedden D, Güney G, Scholten S, Rostás M. 2023. Lethal and sublethal effects of orally delivered double-stranded RNA on the cabbage stem flea beetle, Psylliodes chrysocephala. Pest Manag. Sci. In press
    [Google Scholar]
  38. 38.
    Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP. 2015. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 22:119–34
    [Google Scholar]
  39. 39.
    Chen D, Yan R, Xu Z, Qian J, Yu Y et al. 2022. Silencing of dre4 contributes to mortality of Phyllotreta striolata. Insects 13:1072
    [Google Scholar]
  40. 40.
    Chen H, Gu M, Li L, Li S, Wen G. 2006. Preliminary report on a trial of 5% fipronil seed treatment for control of Phyllotreta striolata (Fabricius) in seedlings of Chinese flowering cabbage. Guangdong Agric. Sci. 1:58–59
    [Google Scholar]
  41. 41.
    Culliney TW. 1986. Predation on adult Phyllotreta flea beetles by Podisus maculiventris (Hemiptera: Pentatomidae) and Nabicula americolimbata (Hemiptera: Nabidae). Can. Entomol. 118:731–32
    [Google Scholar]
  42. 42.
    Dewar AM. 2017. The adverse impact of the neonicotinoid seed treatment ban on crop protection in oilseed rape in the United Kingdom. Pest Manag. Sci. 73:1305–9
    [Google Scholar]
  43. 43.
    Döring A, Ulber B. 2020. Performance of cabbage stem flea beetle larvae (Psylliodes chrysocephala) in brassicaceous plants and the effect of glucosinolate profiles. Entomol. Exp. Appl. 168:200–8
    [Google Scholar]
  44. 44.
    Dosdall LM, Dolinski MG, Cowle NT, Conway PM. 1999. The effect of tillage regime, row spacing, and seeding rate on feeding damage by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae), in canola in central Alberta, Canada. Crop Prot. 18:217–24
    [Google Scholar]
  45. 45.
    Dosdall LM, Stevenson FC. 2005. Managing flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola with seeding date, plant density, and seed treatment. Agron. J. 97:1570–78
    [Google Scholar]
  46. 46.
    Eigenbrode SD, Espelie KE. 1995. Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40:171–94
    [Google Scholar]
  47. 47.
    Ekbom B. 2010. Pests and their enemies in spring oilseed rape in Europe and challenges to integrated pest management. Biocontrol-Based Integrated Management of Oilseed Rape Pests IH Williams 151–65. Berlin: Springer
    [Google Scholar]
  48. 48.
    Ekbom B, Kuusk A-K, Malsher G, Astrom S, Cassel-Lundhagen A. 2014. Consumption of flea beetles (Phyllotreta, Coleoptera: Chrysomelidae) by spiders in field habitats detected by molecular analysis. Can. Entomol. 146:639–51
    [Google Scholar]
  49. 49.
    Feeny P, Paauwe KL, Demong NJ. 1970. Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 63:832–41
    [Google Scholar]
  50. 50.
    Ferguson AW, Barari H, Warner DJ, Campbell JM, Smith ET et al. 2006. Distributions and interactions of the stem miners Psylliodes chrysocephala and Ceutorhynchus pallidactylus and their parasitoids in a crop of winter oilseed rape (Brassica napus). Entomol. Exp. Appl. 119:81–92
    [Google Scholar]
  51. 51.
    Fernandez P, Hilker M. 2007. Host plant location by Chrysomelidae. Basic Appl. Ecol. 8:97–116
    [Google Scholar]
  52. 52.
    Gao Z, Wu W, Cui Z. 2004. The effect of intercrop on the densities of Phyllotreta striolata (F.). Chin. Agric. Sci. Bull 20:214–16
    [Google Scholar]
  53. 53.
    Gavloski JE, Ekuere U, Keddie A, Dosdall L, Kott L, Good AG. 2000. Identification and evaluation of flea beetle (Phyllotreta cruciferae) resistance within Brassicaceae. Can. J. Plant Sci. 80:881–87
    [Google Scholar]
  54. 54.
    Ge D, Chesters D, Gomez-Zurita J, Zhang L, Yang X, Vogler AP. 2011. Anti-predator defence drives parallel morphological evolution in flea beetles. Proc. R. Soc. B 278:2133–41
    [Google Scholar]
  55. 55.
    George D, Port G, Collier R. 2019. Living on the edge: using and improving trap crops for flea beetle management in small-scale cropping systems. Insects 10:286
    [Google Scholar]
  56. 56.
    Giamoustaris A, Mithen R. 1995. The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Ann. Appl. Biol. 126:347–63
    [Google Scholar]
  57. 57.
    Gruber M, Xu N, Grenkow L, Li X, Onyilagha J et al. 2009. Responses of the crucifer flea beetle to Brassica volatiles in an olfactometer. Environ. Entomol. 38:1467–79
    [Google Scholar]
  58. 58.
    Guo M, Gao R, Nanda S, Li Y, Guo C et al. 2023. RNAi assays in the striped flea beetle (Phyllotreta striolata) suggest Psγ-COPI and PsArf1COPI as potential molecular targets for pest control. Pestic. Biochem. Physiol. 193:105428
    [Google Scholar]
  59. 59.
    Hallett RH, Ray H, Holowachuk J, Soroka JJ, Gruber MY. 2005. Bioassay for assessing resistance of Arabidopsis thaliana L. (Heynh.) to the adult crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Can. J. Plant Sci. 85:225–35
    [Google Scholar]
  60. 60.
    Heimbach U, Müller A. 2013. Incidence of pyrethroid-resistant oilseed rape pests in Germany. Pest Manag. Sci. 69:209–16
    [Google Scholar]
  61. 61.
    Henderson AE, Hallett RH, Soroka JJ. 2004. Prefeeding behavior of the crucifer flea beetle, Phyllotreta cruciferae, on host and nonhost crucifers. J. Insect Behav. 17:17–39
    [Google Scholar]
  62. 62.
    Hervé MR. 2018. Breeding for insect resistance in oilseed rape: challenges, current knowledge and perspectives. Plant Breed. 137:27–34
    [Google Scholar]
  63. 63.
    Hicks KL. 1974. Mustard oil glucosides: feeding stimulants for adult cabbage flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 67:261–64
    [Google Scholar]
  64. 64.
    Hiiesaar K, Metspalu L, Jőgar K. 2006. Attractiveness and susceptibility of Brassica rapa, B. napus and Sinapis alba to the flea beetles (Coleoptera: Chrysomelidae). Agron. Res. 4:191–96
    [Google Scholar]
  65. 65.
    Hoarau C, Campbell H, Prince G, Chandler D, Pope T. 2022. Biological control agents against the cabbage stem flea beetle in oilseed rape crops. Biol. Control 167:104844
    [Google Scholar]
  66. 66.
    Højland DH, Nauen R, Foster SP, Williamson MS, Kristensen M. 2015. Incidence, spread and mechanisms of pyrethroid resistance in European populations of the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae). PLOS ONE 10:e0146045
    [Google Scholar]
  67. 67.
    Hokkanen H, Zec-Vojinovic M, Husberg G-B, Menzler-Hokkanen I, Büchs W et al. 2006. Effectiveness of entomopathogenic nematodes in the control of oilseed rape pests. Proceedings of the International Symposium on Integrated Pest Management in Oilseed Rape, 3–5 April, Göttingen, Germany96–99. Cambridge, UK: Br. Crop Prod. Counc.
    [Google Scholar]
  68. 68.
    Jeschke V, Gershenzon J, Vassão DG. 2016. Insect detoxification of glucosinolates and their hydrolysis products. Adv. Bot. Res. 80:199–245
    [Google Scholar]
  69. 69.
    Jeschke V, Gershenzon J, Vassão DG. 2016. A mode of action of glucosinolate-derived isothiocyanates: Detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. Insect Biochem. Mol. Biol. 71:37–48
    [Google Scholar]
  70. 70.
    Jordan A, Broad GR, Stigenberg J, Hughes J, Stone J et al. 2020. The potential of the solitary parasitoid Microctonus brassicae for the biological control of the adult cabbage stem flea beetle, Psylliodes chrysocephala. Entomol. Exp. Appl. 168:360–70
    [Google Scholar]
  71. 71.
    Kareiva P. 1985. Finding and losing host plants by Phyllotreta: patch size and surrounding habitat. Ecology 66:1809–16
    [Google Scholar]
  72. 72.
    Knodel JJ, Olson DL, Hanson BK, Henson RA. 2008. Impact of planting dates and insecticide strategies for managing crucifer flea beetles (Coleoptera: Chrysomelidae) in spring-planted canola. J. Econ. Entomol. 101:810–21
    [Google Scholar]
  73. 73.
    Lamb RJ. 1984. Effects of flea beetles, Phyllotreta spp. (Chrysomelidae, Coleoptera), on the survival, growth, seed yield and quality of canola, rape and yellow mustard. Can. Entomol. 116:269–80
    [Google Scholar]
  74. 74.
    Lamb RJ. 1989. Entomology of oilseed Brassica crops. Annu. Rev. Entomol. 34:211–29
    [Google Scholar]
  75. 75.
    Lamb RJ, McVetty PBE, Palaniswamy P, Bodnaryk RP, Jeong SE. 1993. Susceptibility of inbred lines of oilseed rape, Brassica napus, to feeding damage by the crucifer flea beetle, Phyllotreta cruciferae (Goeze) Coleoptera, Chrysomelidae, and its inheritance. Can. J. Plant Sci. 73:615–23
    [Google Scholar]
  76. 76.
    Lamb RJ, Palaniswamy P. 1990. Host discrimination by a crucifer-feeding flea beetle, Phyllotreta striolata (F) (Coleoptera, Chrysomelidae). Can. Entomol. 122:817–24
    [Google Scholar]
  77. 77.
    Lamb RJ, Turnock WJ. 1982. Economics of insecticidal control of flea beetles (Coleoptera, Chrysomelidae) attacking rape in Canada. Can. Entomol. 114:827–40
    [Google Scholar]
  78. 78.
    Larsen LM, Nielsen JK, Sørensen H. 1982. Identification of 3-O-[2-O-(β-D-xylopyranosyl)-β-D-galactopyranosyl] flavonoids in horseradish leaves acting as feeding stimulants for a flea beetle. Phytochemistry 21:1029–33
    [Google Scholar]
  79. 79.
    Latheef MA, Ortiz JH. 1984. Influence of companion herbs on Phyllotreta cruciferae (Coleoptera: Chrysomelidae) on collard plants. J. Econ. Entomol. 77:80–82
    [Google Scholar]
  80. 80.
    Latheef MA, Ortiz JH, Sheikh AQ. 1984. Influence of intercropping on Phyllotreta cruciferae (Coleoptera: Chrysomelidae) populations on collard plants. J. Econ. Entomol. 77:1180–84
    [Google Scholar]
  81. 81.
    Lenssen AW, Johnson GD, Blodgett SL, Goosey HB. 2007. Influence of tillage system, oilseed species, and insecticidal seed treatment on flea beetle (Coleoptera: Chrysomelidae) damage, oilseed production, and postharvest residue cover. J. Entomol. Sci. 42:1–10
    [Google Scholar]
  82. 82.
    Lin R, Zhuang J, Zou H, Fu J, Chen H. 2007. Control effect of several insecticides on striped flea beetle. Nongyao Kexue Yu Guanli 11:29–32
    [Google Scholar]
  83. 83.
    Lundin O. 2019. No-till protects spring oilseed rape (Brassica napus L.) against crop damage by flea beetles (Phyllotreta spp.). Agric. Ecosyst. Environ. 278:1–5
    [Google Scholar]
  84. 84.
    Lundin O. 2020. Economic injury levels for flea beetles (Phyllotreta spp.; Coleoptera: Chrysomelidae) in spring oilseed rape (Brassica napus; Brassicales: Brassicaceae). J. Econ. Entomol. 113:808–13
    [Google Scholar]
  85. 85.
    Lundin O. 2021. Consequences of the neonicotinoid seed treatment ban on oilseed rape production—what can be learnt from the Swedish experience?. Pest Manag. Sci. 77:3815–19
    [Google Scholar]
  86. 86.
    Lundin O, Malsher G, Högfeldt C, Bommarco R. 2020. Pest management and yield in spring oilseed rape without neonicotinoid seed treatments. Crop Prot. 137:105261
    [Google Scholar]
  87. 87.
    Lundin O, Myrbeck Å, Bommarco R. 2018. The effects of reduced tillage and earlier seeding on flea beetle (Phyllotreta spp.) crop damage in spring oilseed rape (Brassica napus L.). Crop Prot. 107:104–7
    [Google Scholar]
  88. 88.
    Meisner J, Mitchell B. 1983. Phagodeterrency induced by two cruciferous plants in adults of the flea beetle Phyllotreta striolata (Coleoptera: Chrysomelidae). Can. Entomol. 115:1209–14
    [Google Scholar]
  89. 89.
    Metspalu L, Kruus E, Ploomi A, Williams IH, Hiiesaar K et al. 2014. Flea beetle (Chrysomelidae: Alticinae) species composition and abundance in different cruciferous oilseed crops and the potential for a trap crop system. Acta Agric. Scand. B 64:572–82
    [Google Scholar]
  90. 90.
    Milbrath LR, Weiss MJ, Schatz BG. 1995. Influence of tillage system, planting date, and oilseed crucifers on flea beetle populations (Coleoptera: Chrysomelidae). Can. Entomol. 127:289–93
    [Google Scholar]
  91. 91.
    Milliron HE. 1953. A European flea beetle injuring crucifers in North America. J. Econ. Entomol. 46:179
    [Google Scholar]
  92. 92.
    Miranpuri GS, Khachatourians GG. 1995. Entomopathogenicity of Beauveria bassiana toward flea beetles, Phyllotreta cruciferae Goeze (Col., Chrysomelidae). J. Appl. Entomol. 119:167–70
    [Google Scholar]
  93. 93.
    Mitchell-Olds T, Siemens D, Pedersen D. 1996. Physiology and costs of resistance to herbivory and disease in Brassica. Entomol. Exp. Appl. 80:231–37
    [Google Scholar]
  94. 94.
    Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M et al. 2015. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ. Int. 74:291–303
    [Google Scholar]
  95. 95.
    Nielsen JK. 1978. Host plant discrimination within Cruciferae: feeding responses of four leaf beetles (Coleoptera: Chrysomelidae) to glucosinolates, cucurbitacins and cardenolides. Entomol. Exp. Appl. 24:41–54
    [Google Scholar]
  96. 96.
    Nielsen JK, Hansen ML, Agerbirk N, Petersen BL, Halkier BA. 2001. Responses of the flea beetles Phyllotreta nemorum and P. cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile. Chemoecology 11:75–83
    [Google Scholar]
  97. 97.
    Noosidum A, Mangtab S, Lewis EE. 2021. Biological control potential of entomopathogenic nematodes against the striped flea beetle, Phyllotreta sinuata Stephens (Coleoptera: Chrysomelidae). Crop Prot. 141:105448
    [Google Scholar]
  98. 98.
    Onyilagha J, Gruber M, Hallett R, Holowachuk J, Buckner A, Soroka J. 2012. Constitutive flavonoids deter flea beetle insect feeding in Camelina sativa L. Biochem. Syst. Ecol. 42:128–33
    [Google Scholar]
  99. 99.
    Ortega-Ramos PA, Coston DJ, Seimandi-Corda G, Mauchline AL, Cook SM. 2022. Integrated pest management strategies for cabbage stem flea beetle (Psylliodes chrysocephala) in oilseed rape. Glob. Change Biol. Bioenergy 14:267–86
    [Google Scholar]
  100. 100.
    Palaniswamy P, Bodnaryk RP. 1994. A wild brassica from Sicily provides trichome-based resistance against flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera, Chrysomelidae). Can. Entomol. 126:1119–30
    [Google Scholar]
  101. 101.
    Palaniswamy P, Lamb RJ. 1992. Host preferences of the flea beetles Phyllotreta cruciferae and P. striolata (Coleoptera, Chrysomelidae) for crucifer seedlings. J. Econ. Entomol. 85:743–52
    [Google Scholar]
  102. 102.
    Palaniswamy P, Lamb RJ. 1993. Wound-induced antixenotic resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera, Chrysomelidae), in crucifers. Can. Entomol. 125:903–12
    [Google Scholar]
  103. 103.
    Palaniswamy P, Lamb RJ, McVetty PBE. 1992. Screening for antixenosis resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera, Chrysomelidae), in rapeseed and related crucifers. Can. Entomol. 124:895–906
    [Google Scholar]
  104. 104.
    Parker JE, Crowder DW, Eigenbrode SD, Snyder WE. 2016. Trap crop diversity enhances crop yield. Agric. Ecosyst. Environ. 232:254–62
    [Google Scholar]
  105. 105.
    Payne JM, Michaels TE, Bradfisch GA, Muller-Cohn J, Fu J. 2000. Bacillus thuringiensis isolates, toxins, and genes selectively active against certain coleopteran pests. US Patent 6,071,511
  106. 106.
    Peng C, Bartelt RJ, Weiss MJ. 1999. Male crucifer flea beetles produce an aggregation pheromone. Physiol. Entomol. 24:98–99
    [Google Scholar]
  107. 107.
    Peng CW, Weiss MJ, Anderson MD. 1992. Flea beetle (Coleoptera, Chrysomelidae) response, feeding, and longevity on oilseed rape and crambe. Environ. Entomol. 21:604–9
    [Google Scholar]
  108. 108.
    Pivnick KA, Lamb RJ, Reed D. 1992. Response of flea beetles, Phyllotreta spp, to mustard oils and nitriles in field trapping experiments. J. Chem. Ecol. 18:863–73
    [Google Scholar]
  109. 109.
    Pucci TM. 2013. Contributions to the classification of North American Microctonus (Braconidae, Euphorinae). Zootaxa 3725:1–150
    [Google Scholar]
  110. 110.
    Reddy GVP, Tangtrakulwanich K, Wu S, Miller JH, Ophus VL, Prewett J. 2014. Sustainable management tactics for control of Phyllotreta cruciferae (Coleoptera: Chrysomelidae) on canola in Montana. J. Econ. Entomol. 107:661–66
    [Google Scholar]
  111. 111.
    Root RB. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43:95–120
    [Google Scholar]
  112. 112.
    Rousseau M, LeSage L. 2016. Earliest North American occurrence of Phyllotreta striolata (Coleoptera: Chrysomelidae) from Québec, Canada. Can. Entomol. 148:476–78
    [Google Scholar]
  113. 113.
    Sekulic G, Rempel CB. 2016. Evaluating the role of seed treatments in canola/oilseed rape production: integrated pest management, pollinator health, and biodiversity. Plants 5:14
    [Google Scholar]
  114. 114.
    Shukla SP, Beran F. 2020. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29:4692–705
    [Google Scholar]
  115. 115.
    Siemens DH, Mitchell-Olds T. 1996. Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): consequences of concentration and induced resistance. Environ. Entomol. 25:1344–53
    [Google Scholar]
  116. 116.
    Soler R, Schaper SV, Bezemer TM, Cortesero AM, Hoffmeister TS et al. 2009. Influence of presence and spatial arrangement of belowground insects on host-plant selection of aboveground insects: a field study. Ecol. Entomol. 34:339–45
    [Google Scholar]
  117. 117.
    Soroka J, Grenkow L. 2013. Susceptibility of brassicaceous plants to feeding by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae). J. Econ. Entomol. 106:2557–67
    [Google Scholar]
  118. 118.
    Soroka J, Grenkow L, Otani J, Gavloski J, Olfert O. 2018. Flea beetle (Coleoptera: Chrysomelidae) species in canola (Brassicaceae) on the northern Great Plains of North America. Can. Entomol. 150:100–15
    [Google Scholar]
  119. 119.
    Soroka JJ, Bartelt RJ, Zilkowski BW, Cossé AA. 2005. Responses of flea beetle Phyllotreta cruciferae to synthetic aggregation pheromone components and host plant volatiles in field trials. J. Chem. Ecol. 31:1829–43
    [Google Scholar]
  120. 120.
    Soroka JJ, Grenkow LF, Irvine RB. 2008. Impact of decreasing ratios of insecticide-treated seed on flea beetle (Coleoptera: Chrysomelidae, Phyllotreta spp.) feeding levels and canola seed yields. J. Econ. Entomol. 101:1811–20
    [Google Scholar]
  121. 121.
    Soroka JJ, Holowachuk JM, Gruber MY, Grenkow LF. 2011. Feeding by flea beetles (Coleoptera: Chrysomelidae; Phyllotreta spp.) is decreased on canola (Brassica napus) seedlings with increased trichome density. J. Econ. Entomol. 104:125–36
    [Google Scholar]
  122. 122.
    Sporer T, Körnig J, Beran F. 2020. Ontogenetic differences in the chemical defence of flea beetles influence their predation risk. Funct. Ecol. 34:1370–79
    [Google Scholar]
  123. 123.
    Sporer T, Körnig J, Wielsch N, Gebauer-Jung S, Reichelt M et al. 2021. Hijacking the mustard-oil bomb: how a glucosinolate-sequestering flea beetle copes with plant myrosinases. Front. Plant Sci. 12:13
    [Google Scholar]
  124. 124.
    Stara J, Kocourek F. 2019. Cabbage stem flea beetle's (Psylliodes chrysocephala L.) susceptibility to pyrethroids and tolerance to thiacloprid in the Czech Republic. PLOS ONE 14:e0214702
    [Google Scholar]
  125. 125.
    Tahvanainen JO, Root RB. 1972. The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia 10:321–46
    [Google Scholar]
  126. 126.
    Tangtrakulwanich K, Reddy GVP, Wu S, Miller JH, Ophus VL, Prewett J. 2014. Developing nominal threshold levels for Phyllotreta cruciferae (Coleoptera: Chrysomelidae) damage on canola in Montana, USA. Crop Prot. 66:8–13
    [Google Scholar]
  127. 127.
    Tansey JA, Dosdall LM, Keddie BA. 2009. Phyllotreta cruciferae and Phyllotreta striolata responses to insecticidal seed treatments with different modes of action. J. Appl. Entomol. 133:201–9
    [Google Scholar]
  128. 128.
    Tansey JA, Dosdall LM, Keddie BA, Sarfraz RM. 2008. Differences in Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) responses to neonicotinoid seed treatments. J. Econ. Entomol. 101:159–67
    [Google Scholar]
  129. 129.
    Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK et al. 2001. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–28
    [Google Scholar]
  130. 130.
    Tóth M, Csonka É, Bartelt RJ, Cossé AA, Zilkowski BW. 2012. Similarities in pheromonal communication of flea beetles Phyllotreta cruciferae Goeze and Ph. vittula Redtenbacher (Coleoptera, Chrysomelidae). J. Appl. Entomol. 136:688–97
    [Google Scholar]
  131. 131.
    Tóth M, Csonka É, Bartelt RJ, Cosse AA, Zilkowski BW et al. 2005. Pheromonal activity of compounds identified from male Phyllotreta cruciferae: field tests of racemic mixtures, pure enantiomers, and combinations with allyl isothiocyanate. J. Chem. Ecol. 31:2705–20
    [Google Scholar]
  132. 132.
    Traw BM, Dawson TE. 2002. Reduced performance of two specialist herbivores (Lepidoptera: Pieridae, Coleoptera: Chrysomelidae) on new leaves of damaged black mustard plants. Environ. Entomol. 31:714–22
    [Google Scholar]
  133. 133.
    Trdan S, Vidrih M, Valič N, Laznik Ž. 2008. Impact of entomopathogenic nematodes on adults of Phyllotreta spp. (Coleoptera: Chrysomelidae) under laboratory conditions. Acta Agric. Scand. B 58:169–75
    [Google Scholar]
  134. 134.
    Turnock WJ, Turnbull SA. 1994. The development of resistance to insecticides by the crucifer flea beetle, Phyllotreta cruciferae (Goeze). Can. Entomol. 126:1369–75
    [Google Scholar]
  135. 135.
    Ulber B, Williams IH, Klukowski Z, Luik A, Nilsson C 2010. Parasitoids of oilseed rape pests in Europe: key species for conservation biocontrol. Biocontrol-Based Integrated Management of Oilseed Rape Pests IH Williams 45–76. Berlin: Springer
    [Google Scholar]
  136. 136.
    Valantin-Morison M, Meynard JM, Doré T. 2007. Effects of crop management and surrounding field environment on insect incidence in organic winter oilseed rape (Brassica napus L.). Crop Prot. 26:1108–20
    [Google Scholar]
  137. 137.
    Vaughn TT, Hoy CW. 1993. Effects of leaf age, injury, morphology, and cultivars on feeding-behavior of Phyllotreta cruciferae (Coleoptera, Chrysomelidae). Environ. Entomol. 22:418–24
    [Google Scholar]
  138. 138.
    Warner DJ, Allen-Williams LJ, Warrington S, Ferguson AW, Williams IH. 2003. Mapping, characterisation, and comparison of the spatio-temporal distributions of cabbage stem flea beetle (Psylliodes chrysocephala), carabids, and Collembola in a crop of winter oilseed rape (Brassica napus). Entomol. Exp. Appl. 109:225–34
    [Google Scholar]
  139. 139.
    Weber DC, Konstantinov AS, Khrimian A, Bier AD, Lubenow LA et al. 2022. Trapping of crucifer-feeding flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) with pheromones and plant kairomones. J. Econ. Entomol. 115:748–56
    [Google Scholar]
  140. 140.
    Weiss MJ, Schatz BG, Gardner JC, Nead BA. 1994. Flea beetle (Coleoptera: Chrysomelidae) populations and crop yield in field pea and oilseed rape intercrops. Environ. Entomol. 23:654–58
    [Google Scholar]
  141. 141.
    Wertheim B, van Baalen EJ, Dicke M, Vet LE. 2005. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective. Annu. Rev. Entomol. 50:321–46
    [Google Scholar]
  142. 142.
    Williams IH. 2010. The major insect pests of oilseed rape in Europe and their management: an overview. Biocontrol-Based Integrated Management of Oilseed Rape Pests IH Williams 1–43. Berlin: Springer
    [Google Scholar]
  143. 143.
    Willis CE, Foster SP, Zimmer CT, Elias J, Chang XM et al. 2020. Investigating the status of pyrethroid resistance in UK populations of the cabbage stem flea beetle (Psylliodes chrysocephala). Crop Prot. 138:105316
    [Google Scholar]
  144. 144.
    Wylie HG. 1988. Release in Manitoba, Canada of Townesilitus bicolor [Hym, Braconidae], an European parasite of Phyllotreta spp. [Col, Chrysomelidae]. Entomophaga 33:25–32
    [Google Scholar]
  145. 145.
    Wylie HG, Loan C. 1984. Five Nearctic and one introduced Euphorine species (Hymenoptera, Braconidae) that parasitize adults of crucifer-infesting flea beetles (Coleoptera, Chrysomelidae). Can. Entomol. 116:235–46
    [Google Scholar]
  146. 146.
    Xia N, Yang G, You M. 2015. Regulation of dominant insect pests and natural enemies by intercropping tomato in cauliflower-based fields. Acta Entomol. Sin. 58:391–99
    [Google Scholar]
  147. 147.
    Xiong TF, Nanda S, Jin FL, Lin QS, Feng X. 2022. Control efficiency and mechanism of spinetoram seed-pelleting against the striped flea beetle Phyllotreta striolata. Sci. Rep. 12:9524
    [Google Scholar]
  148. 148.
    Xu C, De Clercq P, Moens M, Chen S, Han R. 2010. Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the striped flea beetle, Phyllotreta striolata. BioControl 55:789–97
    [Google Scholar]
  149. 149.
    Yan X, Han R, Moens M, Chen S, De Clercq P. 2013. Field evaluation of entomopathogenic nematodes for biological control of striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae). BioControl 58:247–56
    [Google Scholar]
  150. 150.
    Yan X, Lin YY, Huang ZM, Han RC. 2018. Characterisation of biological and biocontrol traits of entomopathogenic nematodes promising for control of striped flea beetle (Phyllotreta striolata). Nematology 20:503–18
    [Google Scholar]
  151. 151.
    Yang Z-L, Seitz F, Grabe V, Nietzsche S, Richter A et al. 2022. Rapid and selective absorption of plant defense compounds from the gut of a sequestering insect. Front. Physiol. 13:846732
    [Google Scholar]
  152. 152.
    Zhang K, Zhang XF, Hu QB, Weng QF. 2022. Entomopathogenic fungi in the soils of China and their bioactivity against striped flea beetles Phyllotreta striolata. Diversity 14:464
    [Google Scholar]
  153. 153.
    Zimmer CT, Müller A, Heimbach U, Nauen R. 2014. Target-site resistance to pyrethroid insecticides in German populations of the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae). Pestic. Biochem. Physiol. 108:1–7
    [Google Scholar]
/content/journals/10.1146/annurev-ento-033023-015753
Loading
/content/journals/10.1146/annurev-ento-033023-015753
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error