1932

Abstract

The potato psyllid, (Šulc) (Hemiptera: Triozidae), transmits the pathogen “ liberibacter solanacearum” (Lso), the putative causal agent of zebra chip disease (ZC). ZC is a disease of potato that reduces yield and quality and has disrupted integrated pest management programs in parts of the Americas and New Zealand. Advances in our understanding of the ecological factors that influence ZC epidemiology have been accelerated by the relatively recent identification of Lso and motivated by the steady increase in ZC distribution and the potential for devastating economic losses on a global scale. Management of ZC remains heavily reliant upon insecticides, which is not sustainable from the standpoint of insecticide resistance, nontarget effects on natural enemies, and regulations that may limit such tools. This review synthesizes the literature on potato psyllids and ZC, outlining recent progress, identifying knowledge gaps, and proposing avenues for further research on this important pathosystem of potatoes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020123-014734
2024-01-25
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-020123-014734.html?itemId=/content/journals/10.1146/annurev-ento-020123-014734&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acosta RIT, Humber RA, Sanchez-Pena SR. 2016. Zoophthora radicans (Entomophthorales), a fungal pathogen of Bagrada hilaris and Bactericera cockerelli (Hemiptera: Pentatomidae and Triozidae): prevalence, pathogenicity, and interplay of environmental influence, morphology, and sequence data on fungal identification. J. Invertebr. Pathol. 139:82–91
    [Google Scholar]
  2. 2.
    Ail-Catzim CE, Cerna-Chávez E, Landeros-Flores J, Ochoa-Fuentes Y, García-López AM, Rodríguez González RE. 2015. Effect of insecticides on the mortality and predation of Chrysoperla carnea (Neuroptera: Chrysopidae). Southwest. Entomol. 40:565–73
    [Google Scholar]
  3. 3.
    Ail-Catzim CE, Cerna-Chávez E, Landeros-Flores J, Ochoa-Fuentes Y, Rodríguez-González RE, Puente EOR. 2018. Functional response of Chrysoperla carnea on early-stage nymphs of Bactericera cockerelli. Southwest. Entomol. 43:723–31
    [Google Scholar]
  4. 4.
    Albuquerque Tomilhero Frias A, Ibanez F, Mendoza A, de Carvalho Nunes WM, Tamborindeguy C 2020. Effects of “Candidatus Liberibacter solanacearum” (haplotype B) on Bactericera cockerelli fitness and vitellogenesis. Insect Sci. 27:58–68
    [Google Scholar]
  5. 5.
    Antolinez CA, Fereres A, Moreno A. 2017. Risk assessment of ‘Candidatus Liberibacter solanacearum’ transmission by the psyllids Bactericera trigonica and B. tremblayi from Apiaceae crops to potato. Sci. Rep. 7:10
    [Google Scholar]
  6. 6.
    Antolínez CA, Moreno A, Ontiveros I, Pla S, Plaza M et al. 2019. Seasonal abundance of psyllid species on carrots and potato crops in Spain. Insects 10:14
    [Google Scholar]
  7. 7.
    Asensio-S-Manzanera MC, Santiago-Calvo Y, Palomo-Gómez JL, Marquínez-Ramírez R, Bastin S et al. 2022. Survey of Candidatus Liberibacter solanacearum and its associated vectors in potato crop in Spain. Insects 13:964
    [Google Scholar]
  8. 8.
    Avosani S, Sullivan TE, Ciolli M, Mazzoni V, Suckling DM. 2020. Can vibrational playbacks disrupt mating or influence other relevant behaviours in Bactericera cockerelli (Triozidae: Hemiptera)?. Insects 11:299
    [Google Scholar]
  9. 9.
    Butler CD, Trumble JT. 2012. Identification and impact of natural enemies of Bactericera cockerelli (Hemiptera: Triozidae) in Southern California. J. Econ. Entomol. 105:1509–19
    [Google Scholar]
  10. 10.
    Butler CD, Trumble JT. 2012. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terr. Arthropod Rev. 5:87–111
    [Google Scholar]
  11. 11.
    Caicedo JD, Simbana LL, Calderon DA, Lalangui KP, Rivera-Vargas LI. 2020. First report of ‘Candidatus Liberibacter solanacearum’ in Ecuador and in South America. Australas. Plant Dis. Notes 15:6
    [Google Scholar]
  12. 12.
    Calvo FJ, Torres A, Gonzalez EJ, Velazque MB. 2018. The potential of Dicyphus hesperus as a biological control agent of potato psyllid and sweet potato whitefly in tomato. Bull. Entomol. Res. 108:765–72
    [Google Scholar]
  13. 13.
    Calvo FJ, Velazquez-Gonzalez JC, Velasquez-Gonzalez MB, Torres A. 2018. Supplemental releases of specialist parasitic wasps improve whitefly and psyllid control by Dicyphus hesperus in tomato. Biocontrol 63:629–39
    [Google Scholar]
  14. 14.
    Castillo Carrillo C, Fu Z, Burckhardt D. 2019. First record of the tomato potato psyllid Bactericera cockerelli from South America. Bull. Insectol. 72:85–91
    [Google Scholar]
  15. 15.
    Cerna E, Ail C, Landeros J, Sánchez S, Badii M et al. 2012. Comparison of toxicity and selectivity of the pest Bactericera cockerelli and its predator Chrysoperla carnea. Agrociencia 46:783–93
    [Google Scholar]
  16. 16.
    Cerna E, Ochoa Y, Aguirre LA, Flores M, Landeros J. 2013. Determination of insecticide resistance in four populations of potato psillid Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae). Phyton Int. J. Exp. Bot. 82:63–68
    [Google Scholar]
  17. 17.
    Cerna Chávez E, Hernandez Bautista O, Landeros Flores J, Aguirre Uribe L, Ochoa Fuentes YM. 2015. Insecticide-resistance ratios of three populations of Bactericera cockerelli (Hemiptera: Psylloidea: Triozidae) in regions of northern Mexico. Fla. Entomol. 98:950–53
    [Google Scholar]
  18. 18.
    Cohen AL, Wohleb CH, Rondon SI, Swisher Grimm KD, Cueva I et al. 2020. Seasonal population dynamics of potato psyllid (Hemiptera: Triozidae) in the Columbia River Basin. Environ. Entomol. 49:974–82
    [Google Scholar]
  19. 19.
    Contreras-Rendón A, Sánchez-Pale JR, Fuentes-Aragón D, Alanís-Martínez I, Silva-Rojas HV. 2020. Conventional and qPCR reveals the presence of ‘Candidatus Liberibacter solanacearum’ haplotypes A, and B in Physalis philadelphica plant, seed, and Bactericera cockerelli psyllids, with the assignment of a new haplotype H in Convolvulaceae. Antonie Van Leeuwenhoek 113:533–51
    [Google Scholar]
  20. 20.
    Cooper WR, Alcala PE, Barcenas NM. 2015. Relationship between plant vascular architecture and within-plant distribution of ‘Candidatus Liberibacter solanacearum’ in potato. Am. J. Potato Res. 92:91–99
    [Google Scholar]
  21. 21.
    Cooper WR, Bamberg JB. 2014. Variation in Bactericera cockerelli (Hemiptera: Triozidae) oviposition, survival, and development on Solanum bulbocastanum germplasm. Am. J. Potato Res. 91:532–37
    [Google Scholar]
  22. 22.
    Cooper WR, Bamberg JB. 2016. Variation in susceptibility to potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), among Solanum verrucosum germplasm accessions. Am. J. Potato Res. 93:386–91
    [Google Scholar]
  23. 23.
    Cooper WR, Horton DR, Miliczky E, Wohleb CH, Waters TD. 2019. The weed link in zebra chip epidemiology: suitability of non-crop Solanaceae and Convolvulaceae to potato psyllid and “Candidatus Liberibacter solanacearum. .” Am. J. Potato Res. 96:262–71
    [Google Scholar]
  24. 24.
    Cooper WR, Horton DR, Swisher-Grimm K, Krey K, Wildung MR. 2022. Bacterial endosymbionts of Bactericera maculipennis and three mitochondrial haplotypes of B. cockerelli (Hemiptera: Psylloidea: Triozidae). Environ. Entomol. 51:94–107
    [Google Scholar]
  25. 25.
    Cooper WR, Horton DR, Thinakaran J, Karasev A. 2019. Dispersal of Bactericera cockerelli (Hemiptera: Triozidae) in relation to phenology of matrimony vine (Lycium spp.; Solanaceae). J. Entomol. Soc. Br. Columbia 116:25–39
    [Google Scholar]
  26. 26.
    Cooper WR, Horton DR, Wildung MR, Jensen AS, Thinakaran J et al. 2019. Host and non-host ‘whistle stops’ for psyllids: Molecular gut content analysis by high-throughput sequencing reveals landscape-level movements of Psylloidea (Hemiptera). Environ. Entomol. 48:554–66
    [Google Scholar]
  27. 27.
    Cooper WR, Sengoda VG, Munyaneza JE. 2014. Localization of ‘Candidatus Liberibacter solanacearum’ (Rhizobiales: Rhizobiaceae) in Bactericera cockerelli (Hemiptera: Triozidae). Ann. Entomol. Soc. Am. 107:204–10
    [Google Scholar]
  28. 28.
    Cooper WR, Swisher KD, Garczynski SF, Mustafa T, Munyaneza JE, Horton DR. 2015. Wolbachia infection differs among divergent mitochondrial haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Ann. Entomol. Soc. Am. 108:137–45
    [Google Scholar]
  29. 29.
    Cruzado RK, Rashidi M, Olsen N, Novy RG, Wenninger EJ et al. 2020. Effect of the level of “Candidatus Liberibacter solanacearum” infection on the development of zebra chip disease in different potato genotypes at harvest and post storage. PLOS ONE 15:4e0231973
    [Google Scholar]
  30. 30.
    Cubero S, Marco-Noales E, Aleixos N, Barbé S, Blasco J. 2020. RobHortic: a field robot to detect pests and diseases in horticultural crops by proximal sensing. Agriculture 10:276
    [Google Scholar]
  31. 31.
    Dahan J, Wenninger EJ, Thompson B, Eid S, Olsen N, Karasev AV. 2017. Relative abundance of potato psyllid haplotypes in Southern Idaho potato fields during 2012 to 2015, and incidence of ‘Candidatus Liberibacter solanacearum’ causing zebra chip disease. Plant Dis. 101:822–29
    [Google Scholar]
  32. 32.
    Dahan J, Wenninger EJ, Thompson BD, Eid S, Olsen N, Karasev AV. 2019. Prevalence of ‘Candidatus Liberibacter solanacearum’ haplotypes in potato tubers and psyllid vectors in Idaho from 2012 to 2018. Plant Dis. 103:2587–91
    [Google Scholar]
  33. 33.
    Dahan J, Wenninger EJ, Thornton M, Reyes Corral CA, Olsen N, Karasev AV. 2021. Haplotyping the potato psyllid (Hemiptera: Triozidae) and the associated pathogenic bacterium ‘Candidatus Liberibacter solanacearum’ in non-crop alternative hosts in Southern Idaho. Environ. Entomol. 50:382–89
    [Google Scholar]
  34. 34.
    Davis TS, Horton DR, Munyaneza JE, Landolt PJ. 2012. Experimental infection of plants with an herbivore-associated bacterial endosymbiont influences herbivore host selection behavior. PLOS ONE 7:11e49330
    [Google Scholar]
  35. 35.
    de Lourdes Ramírez-Ahuja M, Rodríguez-Leyva E, Lomeli-Flores JR, Torres-Ruiz A, Guzmán-Franco AW. 2017. Evaluating combined use of a parasitoid and a zoophytophagous bug for biological control of the potato psyllid, Bactericera cockerelli. Biol. Control 106:9–15
    [Google Scholar]
  36. 36.
    Delgado-Luna C, Villarreal-Quintanilla JA, Sánchez-Peña SR. 2022. Chamaesaracha: new weed host plant genus for Bactericera cockerelli at the potato-growing area of Northeastern Mexico. Southwest. Entomol. 47:251–55
    [Google Scholar]
  37. 37.
    Djaman K, Higgins C, Begay S, Koudahe K, Allen S et al. 2020. Seasonal occurrence of potato psyllid (Bactericera cockerelli) and risk of zebra chip pathogen (Candidatus Liberibacter solanacearum) in Northwestern New Mexico. Insects 11:3
    [Google Scholar]
  38. 38.
    Echegaray ER, Rondon SI. 2017. Incidence of Bactericera cockerelli (Hemiptera: Triozidae) under different pesticide regimes in the Lower Columbia Basin. J. Econ. Entomol. 110:1639–47
    [Google Scholar]
  39. 39.
    Echegaray ER, Rondon SI, Hamm PB. 2015. Assessment of potato psyllid Bactericera cockerelli (Hemiptera: Triozidae) and zebra chip disease in four commercial potato varieties in the Columbia Basin. Am. J. Potato Res. 92:483–90
    [Google Scholar]
  40. 40.
    Echegaray ER, Vinchesi AC, Rondon SI, Alvarez JM, McKinley N. 2017. Potato psyllid (Hemiptera: Triozidae) response to insecticides under controlled greenhouse conditions. J. Econ. Entomol. 110:142–49
    [Google Scholar]
  41. 41.
    Eigenbrode SD, Gomulkiewicz R. 2022. Manipulation of vector host preference by pathogens: implications for virus spread and disease management. J. Econ. Entomol. 115:387–400
    [Google Scholar]
  42. 42.
    Fife AN, Cruzado K, Rashed A, Novy RG, Wenninger EJ. 2020. Potato psyllid (Hemiptera: Triozidae) behavior on three potato genotypes with tolerance to ‘Candidatus Liberibacter solanacearum. ’. J. Insect Sci. 20:10
    [Google Scholar]
  43. 43.
    Fu Z, Meier AR, Epstein B, Bergland AO, Castillo Carrillo CI et al. 2020. Host plants and Wolbachia shape the population genetics of sympatric herbivore populations. Evol. Appl. 13:2740–53
    [Google Scholar]
  44. 44.
    Gao F, Zhao ZH, Jifon J, Liu TX. 2016. Impact of potato psyllid density and timing of infestation on zebra chip disease expression in potato plants. Plant Prot. Sci. 52:262–69
    [Google Scholar]
  45. 45.
    García-Sánchez AN, Yáñez-Macias R, Hernández-Flores JL, Álvarez-Morales A, Valenzuela-Soto JH et al. 2021. Exogenous application of polycationic nanobactericide on tomato plants reduces the Candidatus Liberibacter solanacearum infection. Plants 10:2096
    [Google Scholar]
  46. 46.
    Garhwal AS, Pullanagari RR, Li M, Reis MM, Archer R. 2020. Hyperspectral imaging for identification of zebra chip disease in potatoes. Biosyst. Eng. 197:306–17
    [Google Scholar]
  47. 47.
    Geary IJ, Merfield CN, Hale RJ, Shaw MD, Hodge S. 2016. Predation of nymphal tomato potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), by the predatory mite, Anystis baccarum L. (Trombidiformes: Anystidae). N. Z. Entomol. 39:110–16
    [Google Scholar]
  48. 48.
    Greenway G. 2014. Economic impact of zebra chip control costs on grower returns in seven US states. Am. J. Potato Res. 91:714–19
    [Google Scholar]
  49. 49.
    Greenway GA, Rondon S. 2018. Economic impacts of zebra chip in Idaho, Oregon, and Washington. Am. J. Potato Res. 95:362–67
    [Google Scholar]
  50. 50.
    Guédot C, Horton DR, Landolt PJ, Munyaneza JE. 2013. Effect of mating on sex attraction in Bactericera cockerelli with evidence of refractoriness. Entomol. Exp. Appl. 149:27–35
    [Google Scholar]
  51. 51.
    Guenthner J, Goolsby J, Greenway G. 2012. Use and cost of insecticides to control potato psyllids and zebra chip on potatoes. Southwest. Entomol. 37:263–70
    [Google Scholar]
  52. 52.
    Gutiérrez Illán J, Bloom EH, Wohleb CH, Wenninger EJ, Rondon SI et al. 2020. Landscape structure and climate drive population dynamics of an insect vector within intensely managed agroecoystems. Ecol. Appl. 30:e02109
    [Google Scholar]
  53. 53.
    Gutiérrez-Ramírez JA, Betancourt-Galindo R, Aguirre-Uribe LA, Cerna-Chávez E, Sandoval-Rangel A et al. 2021. Insecticidal effect of zinc oxide and titanium dioxide nanoparticles against Bactericera cockerelli Sulc. (Hemiptera: Triozidae) on tomato Solanum lycopersicum. Agronomy 11:1460
    [Google Scholar]
  54. 54.
    Haapalainen M, Latvala S, Wickström A, Wang JH, Pirhonen M, Nissinen AI. 2020. A novel haplotype of ‘Candidatus Liberibacter solanacearum’ found in Apiaceae and Polygonaceae family plants. Eur. J. Plant Pathol. 156:413–23
    [Google Scholar]
  55. 55.
    Haapalainen M, Wang J, Latvala S, Lehtonen MT, Pirhonen M, Nissinen AI. 2018. Genetic variation of ‘Candidatus Liberibacter solanacearum’ haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology 108:925–34
    [Google Scholar]
  56. 56.
    Hajri A, Cousseau-Suhard P, Gentit P, Loiseau M. 2019. New insights into the genetic diversity of the bacterial plant pathogen ‘Candidatus Liberibacter solanacearum’ as revealed by a new multilocus sequence analysis scheme. bioRxiv 623405. https://doi.org/10.1101/623405
  57. 57.
    Harrison K, Tamborindeguy C, Rondon SI, Levy JG. 2020. Effects of ‘Candidatus Liberibacter Solanacearum’ haplotype on Atlantic potato tuber emergence rate in South Texas. Am. J. Potato Res. 97:489–96
    [Google Scholar]
  58. 58.
    Harrison K, Tamborindeguy C, Scheuring DC, Herrera AM, Silva A et al. 2019. Differences in zebra chip severity between “Candidatus Liberibacter solanacearum” haplotypes in Texas. Am. J. Potato Res. 96:86–93
    [Google Scholar]
  59. 59.
    Henne DC, Thinakaran J. 2020. Spatially explicit changes in potato psyllid (Hemiptera: Triozidae) populations in three South Texas potato fields. J. Econ. Entomol. 113:988–1000
    [Google Scholar]
  60. 60.
    Hernández-Deheza MG, Rojas-Martínez RI, Rivera-Peña A, Zavaleta-Mejía E, Ochoa-Martínez DL, Carrillo-Salazar JA. 2020. Evaluation of zebra chip using image analysis. Am. J. Potato Res. 97:586–95
    [Google Scholar]
  61. 61.
    Horton DR, Cooper WR, Munyaneza JE, Swisher KD, Echegaray ER et al. 2015. A new problem and old questions: potato psyllid in the Pacific Northwest. Am. Entomol. 61:234–44
    [Google Scholar]
  62. 62.
    Horton DR, Miliczky E, Munyaneza JE, Swisher KD, Jensen AS. 2014. Absence of photoperiod effects on mating and ovarian maturation by three haplotypes of potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). J. Entomol. Soc. B. C. 111:1–12
    [Google Scholar]
  63. 63.
    Hunter WB, Cooper WR, Sandoval-Mojica AF, McCollum G, Aishwarya V, Pelz-Stelinksi KS. 2021. Improving suppression of Hemiptera vectors and bacterial pathogens of citrus and Solanceous plants: advances in antisense oligonucleotides (FANA). Front. Agronomy 3:675247
    [Google Scholar]
  64. 64.
    Kean AM, Nielsen MC, Davidson MM, Butler RC, Vereijssen J. 2019. Host plant influences establishment and performance of Amblydromalus limonicus, a predator for Bactericera cockerelli. Pest Manag. Sci. 75:787–92
    [Google Scholar]
  65. 65.
    Kiani M, Fu Z, Szczepaniec A. 2022. ddRAD sequencing identifies pesticide resistance-related loci and reveals new insights into genetic structure of Bactericera cockerelli as a plant pathogen vector. Insects 13:257
    [Google Scholar]
  66. 66.
    Lévy JG, Scheuring DC, Koym JW, Henne DC, Tamborindeguy C et al. 2015. Investigations on putative zebra chip tolerant potato selections. Am. J. Potato Res. 92:417–25
    [Google Scholar]
  67. 67.
    Lewis OM, Michels GJ, Pierson EA, Heinz KM. 2015. A predictive degree day model for the development of Bactericera cockerelli (Hemiptera: Triozidae) infesting Solanum tuberosum. Environ. Entomol. 44:1201–9
    [Google Scholar]
  68. 68.
    London H, Saville DJ, Davidson MM, Olaniyan O, Wratten SD. 2022. The ecological fitness of the tomato potato psyllid after transferring from non-crop host plants to tomato and potato. PLOS ONE 17:4e0266274
    [Google Scholar]
  69. 69.
    Luna-Cruz A, Rodríguez-Leyva E, Lomeli-Flores JR, Ortega-Arenas LD, Bautista-Martínez N, Pineda S. 2015. Toxicity and residual activity of insecticides against Tamarixia triozae (Hymenoptera: Eulophidae), a parasitoid of Bactericera cockerelli (Hemiptera: Triozidae). J. Econ. Entomol. 108:2289–95
    [Google Scholar]
  70. 70.
    MacDonald FH, Connolly PG, Larsen NJ, Walker GP. 2016. The voracity of five insect predators on Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) (tomato potato psyllid; TPP). N. Z. Entomol. 39:15–22
    [Google Scholar]
  71. 71.
    Mas F, Vereijssen J, Suckling DM. 2014. Influence of the pathogen Candidatus Liberibacter solanacearum on tomato host plant volatiles and psyllid vector settlement. J. Chem. Ecol. 40:1197–202
    [Google Scholar]
  72. 72.
    Mauchline NA, Stannard KA. 2013. Evaluation of selected entomopathogenic fungi and bio-insecticides against Bactericera cockerelli (Hemiptera). N. Z. Plant Prot. 66:324–32
    [Google Scholar]
  73. 73.
    Mauck KE, Sun PL, Meduri VR, Hansen AK. 2019. New Ca. Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. Sci. Rep. 9:9530
    [Google Scholar]
  74. 74.
    Merfa MV, Pérez-López E, Naranjo E, Jain M, Gabriel DW, De la Fuente L. 2019. Progress and obstacles in culturing ‘Candidatus Liberibacter asiaticus’, the bacterium associated with huanglongbing. Phytopathology 109:1092–101
    [Google Scholar]
  75. 75.
    Merfield CN, Winder L, Stilwell SA, Hofmann RW, Bennett JR et al. 2019. Mesh crop covers improve potato yield and inhibit tomato potato psyllid and blight: the roles of mesh pore size and ultraviolet radiation. Ann. Appl. Biol. 174:223–37
    [Google Scholar]
  76. 76.
    Molki B, Call DR, Ha PT, Omsland A, Gang DR et al. 2020. Growth of ‘Candidatus Liberibacter asiaticus’ in a host-free microbial culture is associated with microbial community composition. Enzyme Microb. Technol. 142:109691
    [Google Scholar]
  77. 77.
    Morales SI, Martínez AM, Figueroa JI, Campos-García J, Gómez-Tagle A et al. 2019. Foliar persistence and residual activity of four insecticides of different mode of action on the predator Engytatus varians (Hemiptera: Miridae). Chemosphere 235:76–83
    [Google Scholar]
  78. 78.
    Morales SI, Martínez AM, Viñuela E, Chavarrieta JM, Figueroa JI et al. 2018. Lethal and sublethal effects on Tamarixia triozae (Hymenoptera: Eulophidae), an ectoparasitoid of Bactericera cockerelli (Hemiptera: Triozidae), of three insecticides used on solanaceous crops. J. Econ. Entomol. 111:1048–55
    [Google Scholar]
  79. 79.
    Munyaneza JE. 2012. Zebra chip disease of potato: biology, epidemiology, and management. Am. J. Potato Res. 89:329–50
    [Google Scholar]
  80. 80.
    Murphy AF, Cating RA, Goyer A, Hamm PB, Rondon SI. 2014. First report of natural infection by ‘Candidatus Liberibacter solanacearum’ in bittersweet nightshade (Solanum dulcamara) in the Columbia Basin of Eastern Oregon. Plant Dis. 98:1425–26
    [Google Scholar]
  81. 81.
    Murphy AF, Rondon SI, Jensen AS. 2013. First report of potato psyllids, Bactericera cockerelli, overwintering in the Pacific Northwest. Am. J. Potato Res. 90:294–96
    [Google Scholar]
  82. 82.
    Mustafa T, Alvarez JM, Munyaneza JE. 2015. Effect of cyantraniliprole on probing behavior of the potato psyllid (Hemiptera: Triozidae) as measured by the electrical penetration graph technique. J. Econ. Entomol. 108:2529–35
    [Google Scholar]
  83. 83.
    Mustafa T, Horton DR, Cooper WR, Swisher KD, Zack RS, Munyaneza JE. 2015. Interhaplotype fertility and effects of host plant on reproductive traits of three haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Environ. Entomol. 44:300–8
    [Google Scholar]
  84. 84.
    Mustafa T, Horton DR, Swisher KD, Zack RS, Munyaneza JE. 2015. Effects of host plant on development and body size of three haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Environ. Entomol. 44:593–600
    [Google Scholar]
  85. 85.
    Nachappa P, Levy J, Pierson E, Tamborindeguy C. 2014. Correlation between “Candidatus Liberibacter solanacearum” infection levels and fecundity in its psyllid vector. J. Invertebr. Pathol. 115:55–61
    [Google Scholar]
  86. 86.
    Nelson WR, Munyaneza JE, McCue KF, Bove JM. 2013. The Pangaean origin of “Candidatus Liberibacter” species. J. Plant Pathol. 95:455–61
    [Google Scholar]
  87. 87.
    Nelson WR, Swisher KD, Crosslin JM, Munyaneza JE. 2014. Seasonal dispersal of the potato psyllid, Bactericera cockerelli, into potato crops. Southwest. Entomol. 39:177–86
    [Google Scholar]
  88. 88.
    Ocampo-Hernández JA, Tamayo-Mejía F, Tamez-Guerra P, Gao Y, Guzmán-Franco AW. 2019. Different host plant species modifies the susceptibility of Bactericera cockerelli to the entomopathogenic fungus Beauveria bassiana. J. Appl. Entomol. 143:984–91
    [Google Scholar]
  89. 89.
    O'Connell DM, Wratten SD, Pugh AR, Barnes AM. 2012.. ‘ New species association’ biological control? Two coccinellid species and an invasive psyllid pest in New Zealand. Biol. Control 62:86–92
    [Google Scholar]
  90. 90.
    Paredes-Montero JR, Arif U, Brown JK. 2022. Knockdown of ecdysteroid synthesis genes results in impaired molting and high mortality in Bactericera cockerelli (Hemiptera: Triozidae). Pest Manag. Sci. 78:2204–14
    [Google Scholar]
  91. 91.
    Patel K, Zhang ZQ. 2017. Functional and numerical responses of Amblydromalus limonicus and Neoseiulus cucumeris to eggs and first instar nymph of tomato/potato psyllid (Bactericera cockerelli). Syst. Appl. Acarol 22:1476–88
    [Google Scholar]
  92. 92.
    Pérez-Aguilar DA, Martínez AM, Viñuela E, Figueroa JI, Gómez B et al. 2019. Impact of the zoophytophagous predator Engytatus varians (Hemiptera: Miridae) on Bactericera cockerelli (Hemiptera: Triozidae) control. Biol. Control 132:29–35
    [Google Scholar]
  93. 93.
    Pletsch DJ. 1947. The Potato Psyllid, Paratrioza cockerelli (Sulc): Its Biology and Control Bozeman, MT: Mont. State. Coll. Agric. Exp. Stn.
    [Google Scholar]
  94. 94.
    Prager SM, Cohen A, Cooper WR, Novy R, Rashed A et al. 2022. A comprehensive review of zebra chip disease in potato and its management through breeding for resistance/tolerance to ‘Candidatus Liberibacter solanacearum’ and its insect vector. Pest Manag. Sci. 78:3731–45
    [Google Scholar]
  95. 95.
    Prager SM, Esquivel I, Trumble JT. 2014. Factors influencing host plant choice and larval performance in Bactericera cockerelli. PLOS ONE 9:4e94047
    [Google Scholar]
  96. 96.
    Prager SM, Kund G, Trumble J. 2016. Low-input, low-cost IPM program helps manage potato psyllid. Calif. Agric. 70:89–95
    [Google Scholar]
  97. 97.
    Prager SM, Lewis OM, Michels J, Nansen C. 2014. The influence of maturity and variety of potato plants on oviposition and probing of Bactericera cockerelli (Hemiptera: Triozidae). Environ. Entomol. 43:402–9
    [Google Scholar]
  98. 98.
    Prager SM, Vindiola B, Kund GS, Byrne FJ, Trumble JT. 2013. Considerations for the use of neonicotinoid pesticides in management of Bactericera cockerelli (Sulk) (Hemiptera: Triozidae). Crop Prot. 54:84–91
    [Google Scholar]
  99. 99.
    Pugh AR, O'Connell DM, Wratten SD. 2015. Further evaluation of the southern ladybird (Cleobora mellyi) as a biological control agent of the invasive tomato-potato psyllid (Bactericera cockerelli). Biol. Control 90:157–63
    [Google Scholar]
  100. 100.
    Rashed A, Nash TD, Paetzold L, Workneh F, Rush CM. 2012. Transmission efficiency of ‘Candidatus Liberibacter solanacearum’ and potato zebra chip disease progress in relation to pathogen titer, vector numbers, and feeding sites. Phytopathology 102:1079–85
    [Google Scholar]
  101. 101.
    Rashed A, Workneh F, Paetzold L, Gray J, Rush CM. 2014. Zebra chip disease development in relation to plant age and time of ‘Candidatus Liberibacter solanacearum’ infection. Plant Dis. 98:24–31
    [Google Scholar]
  102. 102.
    Rashed A, Workneh F, Paetzold L, Rush CM. 2015. Emergence of ‘Candidatus Liberibacter solanacearum’-infected seed potato in relation to the time of infection. Plant Dis 99:274–80
    [Google Scholar]
  103. 103.
    Rashidi M, Novy RG, Wallis CM, Rashed A. 2017. Characterization of host plant resistance to zebra chip disease from species-derived potato genotypes and the identification of new sources of zebra chip resistance. PLOS ONE 12:8e0183283
    [Google Scholar]
  104. 104.
    Reyes Corral CA, Cooper WR, Horton D, Miliczky E, Riebe J et al. 2021. Association of Bactericera cockerelli (Hemiptera: Triozidae) with the perennial weed Physalis longifolia (Solanales: Solanaceae) in the potato-growing regions of Western Idaho. Environ. Entomol. 50:1416–24
    [Google Scholar]
  105. 105.
    Reyes Corral CA, Cooper WR, Horton DR, Karasev AV 2020. Susceptibility of Physalis longifolia (Solanales: Solanaceae) to Bactericera cockerelli (Hemiptera: Triozidae) and ‘Candidatus Liberibacter solanacearum. ’. J. Econ. Entomol. 113:2595–603
    [Google Scholar]
  106. 106.
    Reyes-Corral CA, Cooper WR, Karasev AV, Delgado-Luna C, Sanchez-Peña SR. 2021.. ‘ Candidatus Liberibacter solanacearum’ infection of Physalis ixocarpa Brot. (Solanales: Solanaceae) in Saltillo, Mexico. Plant Dis. 105:2560–66
    [Google Scholar]
  107. 107.
    Rios-Velasco C, Pérez-Corral DA, Salas-Marina MA, Berlanga-Reyes DI, Ornelas-Paz JJ et al. 2014. Pathogenicity of the Hypocreales fungi Beauveria bassiana and Metarhizium anisopliae against insect pests of tomato. Southwest. Entomol. 39:739–50
    [Google Scholar]
  108. 108.
    Rojas P, Rodriguez-Leyva E, Lomeli-Flores JR, Liu TX. 2015. Biology and life history of Tamarixia triozae, a parasitoid of the potato psyllid Bactericera cockerelli. Biocontrol 60:27–35
    [Google Scholar]
  109. 109.
    Rubio-Covarrubias OA, Cadena-Hinojosa MA, Prager SM, Wallis CM, Trumble JT. 2017. Characterization of the tolerance against zebra chip disease in tubers of advanced potato lines from Mexico. Am. J. Potato Res. 94:342–56
    [Google Scholar]
  110. 110.
    Ruiz-Padilla A, Redondo C, Asensio A, Garita-Cambronero J, Martínez C et al. 2020. Assessment of Multilocus Sequence Analysis (MLSA) for identification of Candidatus Liberibacter solanacearum from different host plants in Spain. Microorganisms 8:1446
    [Google Scholar]
  111. 111.
    Sengoda VG, Buchman JL, Henne DC, Pappu HR, Munyaneza JE. 2013.. “ Candidatus Liberibacter solanacearum” titer over time in Bactericera cockerelli (Hemiptera: Triozidae) after acquisition from infected potato and tomato plants. J. Econ. Entomol. 106:1964–72
    [Google Scholar]
  112. 112.
    Sengoda VG, Cooper WR, Swisher KD, Henne DC, Munyaneza JE. 2014. Latent period and transmission of “Candidatus Liberibacter solanacearum” by the potato psyllid Bactericera cockerelli (Hemiptera: Triozidae). PLOS ONE 9:3e93475
    [Google Scholar]
  113. 113.
    Šulc K. 1909. Trioza cockerelli n.sp., a novelty from North America, being also of economic importance. Acta Soc. Entomol. Bohem. 6:102–8
    [Google Scholar]
  114. 114.
    Sumner-Kalkun JC, Highet F, Arnsdorf YM, Back E, Carnegie M et al. 2020.. ‘ Candidatus Liberibacter solanacearum’ distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psyllidae: Aphalaridae). Sci. Rep. 10:16567
    [Google Scholar]
  115. 115.
    Swisher KD, Arp AP, Bextine BR, Alvarez EYA, Crosslin JM, Munyaneza JE. 2013. Haplotyping the potato psyllid, Bactericera cockerelli, in Mexico and Central America. Southwest. Entomol. 38:201–8
    [Google Scholar]
  116. 116.
    Swisher KD, Henne DC, Crosslin JM. 2014. Identification of a fourth haplotype of Bactericera cockerelli (Hemiptera: Triozidae) in the United States. J. Insect Sci. 14:7
    [Google Scholar]
  117. 117.
    Swisher KD, Munyaneza JE, Crosslin JM. 2012. High resolution melting analysis of the Cytochrome Oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environ. Entomol. 41:1019–28
    [Google Scholar]
  118. 118.
    Swisher KD, Munyaneza JE, Crosslin JM. 2013. Temporal and spatial analysis of potato psyllid haplotypes in the United States. Environ. Entomol. 42:381–93
    [Google Scholar]
  119. 119.
    Swisher KD, Sengoda VG, Dixon J, Echegaray E, Murphy AF et al. 2013. Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant, Solanum dulcamara, in the Pacific Northwestern United States. Am. J. Potato Res. 90:570–77
    [Google Scholar]
  120. 120.
    Swisher KD, Sengoda VG, Dixon J, Munyaneza JE, Murphy AF et al. 2014. Assessing potato psyllid haplotypes in potato crops in the Pacific Northwestern United States. Am. J. Potato Res. 91:485–91
    [Google Scholar]
  121. 121.
    Swisher Grimm KD, Garczynski SF. 2019. Identification of a new haplotype of ‘Candidatus Liberibacter solanacearum’ in Solanum tuberosum. Plant Dis 103:468–74
    [Google Scholar]
  122. 122.
    Swisher Grimm KD, Mustafa T, Cooper WR, Munyaneza JE. 2018. Role of ‘Candidatus Liberibacter solanacearum’ and Bactericera cockerelli haplotypes in zebra chip incidence and symptom severity. Am. J. Potato Res. 95:709–19
    [Google Scholar]
  123. 123.
    Swisher Grimm KD, Mustafa T, Cooper WR, Munyaneza JE. 2020. Growth and yield performance of Solanum tuberosum grown from seed potatoes infected with ‘Candidatus Liberibacter solanacearum’ haplotypes A and B. Plant Dis 104:688–93
    [Google Scholar]
  124. 124.
    Szczepaniec A, Varela KA, Kiani M, Paetzold L, Rush CM. 2019. Incidence of resistance to neonicotinoid insecticides in Bactericera cockerelli across Southwest U.S. Crop Prot 116:188–95
    [Google Scholar]
  125. 125.
    Tamayo-Mejía F, Tamez-Guerra P, Guzmán-Franco AW, Gomez-Flores R. 2015. Can Beauveria bassiana Bals. (Vuill) (Ascomycetes: Hypocreales) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) be used together for improved biological control of Bactericera cockerelli (Hemiptera: Triozidae)?. Biol. Control 90:42–48
    [Google Scholar]
  126. 126.
    Tamayo-Mejía F, Tamez-Guerra P, Guzmán-Franco AW, Gomez-Flores R, Cruz-Cota LR. 2014. Efficacy of entomopathogenic fungi (Hypocreales) for Bactericera cockerelli (Sulc.) (Hemiptera: Triozidae) control in the laboratory and field. Southwest. Entomol. 39:271–83
    [Google Scholar]
  127. 127.
    Tang XT, Fortuna K, Herrera AM, Tamborindeguy C. 2020. Liberibacter, a preemptive bacterium: apoptotic response repression in the host gut at the early infection to facilitate its acquisition and transmission. Front. Microbiol. 11:589509
    [Google Scholar]
  128. 128.
    Tang XT, Longnecker M, Tamborindeguy C. 2020. Acquisition and transmission of two ‘Candidatus Liberibacter solanacearum’ haplotypes by the tomato psyllid Bactericera cockerelli. Sci. Rep. 10:14000
    [Google Scholar]
  129. 129.
    Thinakaran J, Horton DR, Cooper WR, Jensen AS, Wohleb CH et al. 2017. Association of potato psyllid (Bactericera cockerelli; Hemiptera: Triozidae) with Lycium spp. (Solanaceae) in potato growing regions of Washington, Idaho, and Oregon. Am. J. Potato Res. 94:490–99
    [Google Scholar]
  130. 130.
    Thinakaran J, Pierson E, Kunta M, Munyaneza JE, Rush CM, Henne DC. 2015. Silver leaf nightshade (Solanum elaeagnifolium), a reservoir host for ‘Candidatus Liberibacter solanacearum’, the putative causal agent of zebra chip disease of potato. Plant Dis 99:910–15
    [Google Scholar]
  131. 131.
    Thinakaran J, Yang XB, Munyaneza JE, Rush CM, Henne DC. 2015. Comparative biology and life tables of “Candidatus Liberibacter solanacearum”-infected and -free Bactericera cockerelli (Hemiptera: Triozidae) on potato and silverleaf nightshade. Ann. Entomol. Soc. Am. 108:459–67
    [Google Scholar]
  132. 132.
    Torres GL, Cooper WR, Horton DR, Swisher KD, Garczynski SF et al. 2015. Horizontal transmission of “Candidatus Liberibacter solanacearum” by Bactericera cockerelli (Hemiptera: Triozidae) on Convolvulus and Ipomoea (Solanales: Convolvulaceae). PLOS ONE 10:11e0142734
    [Google Scholar]
  133. 133.
    Tran LT, Worner SP, Hale RJ, Teulon DAJ. 2012. Estimating development rate and thermal requirements of Bactericera cockerelli (Hemiptera: Triozidae) reared on potato and tomato by using linear and nonlinear models. Environ. Entomol. 41:1190–98
    [Google Scholar]
  134. 134.
    Valenzuela I, Sandanayaka M, Powell KS, Norng S, Vereijssen J. 2020. Feeding behaviour of Bactericera cockerelli (Šulc) (Hemiptera: Psylloidea: Triozidae) changes when infected with Candidatus Liberibacter solanacearum. Arthropod Plant Interact 14:653–69
    [Google Scholar]
  135. 135.
    Vereijssen J, Smith GR, Weintraub PG. 2018. Bactericera cockerelli (Hemiptera: Triozidae) and Candidatus Liberibacter solanacearum in potatoes in New Zealand: biology, transmission, and implications for management. J. Integr. Pest Manag. 9:13
    [Google Scholar]
  136. 136.
    Walker GP, MacDonald FH, Larsen NJ, Wright PJ, Wallace AR. 2013. Sub-sampling plants to monitor tomato-potato psyllid (Bactericera cockerelli) and associated insect predators in potato crops. N. Z. Plant Prot. 66:341–48
    [Google Scholar]
  137. 137.
    Walker GP, MacDonald FH, Wright PJ, Puketapu AJ, Gardner-Gee R et al. 2015. Development of action thresholds for management of Bactericera cockerelli and zebra chip disease in potatoes at Pukekohe, New Zealand. Am. J. Potato Res. 92:266–75
    [Google Scholar]
  138. 138.
    Wallis CM, Rashed A, Chen J, Paetzold L, Workneh F, Rush CM. 2015. Effects of potato-psyllid-vectored ‘Candidatus Liberibacter solanacearum’ infection on potato leaf and stem physiology. Phytopathology 105:189–98
    [Google Scholar]
  139. 139.
    Wallis CM, Rashed A, Wallingford AK, Paetzold L, Workneh F, Rush CM. 2014. Similarities and differences in physiological responses to ‘Candidatus Liberibacter solanacearum’ infection among different potato cultivars. Phytopathology 104:126–33
    [Google Scholar]
  140. 140.
    Wallis RL. 1955. Ecological studies on the potato psyllid as a pest of potatoes Tech. Bull. 1107 U. S. Dept. Agric. Washington, DC:
  141. 141.
    Wamonje FO, Zhou NX, Bamrah R, Wist T, Prager SM. 2022. Detection and identification of a ‘Candidatus Liberibacter solanacearum’ species from ash tree infesting psyllids. Phytopathology 112:76–80
    [Google Scholar]
  142. 142.
    Wan J, Wang R, Ren YL, McKirdy S. 2020. Potential distribution and the risks of Bactericera cockerelli and its associated plant pathogen Candidatus Liberibacter solanacearum for global potato production. Insects 11:298
    [Google Scholar]
  143. 143.
    Wenninger EJ, Carroll A, Dahan J, Karasev AV, Thornton M et al. 2017. Phenology of the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), and “Candidatus Liberibacter solanacearum” in commercial potato fields in Idaho. Environ. Entomol. 46:1179–88
    [Google Scholar]
  144. 144.
    Wenninger EJ, Dahan J, Thornton M, Karasev AV. 2019. Associations of the potato psyllid and “Candidatus Liberibacter solanacearum” in Idaho with the noncrop host plants bittersweet nightshade and field bindweed. Environ. Entomol. 48:747–54
    [Google Scholar]
  145. 145.
    Wenninger EJ, Olsen N, Lojewski J, Wharton P, Dahan J et al. 2020. Effects of potato psyllid vector density and time of infection on zebra chip disease development after harvest and during storage. Am. J. Potato Res. 97:278–88
    [Google Scholar]
  146. 146.
    Wenninger EJ, Rashed A 2022. Psyllids. Insect Pests of Potato A Alyohkin, S Rondon, Y Gao 69–101. Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  147. 147.
    Workneh F, Henne DC, Goolsby JA, Crosslin JM, Whipple SD et al. 2013. Characterization of management and environmental factors associated with regional variations in potato zebra chip occurrence. Phytopathology 103:1235–42
    [Google Scholar]
  148. 148.
    Workneh F, Paetzold L, Silva A, Johnson C, Rashed A et al. 2018. Assessments of temporal variations in haplotypes of ‘Candidatus Liberibacter solanacearum’ and its vector, the potato psyllid, in potato fields and native vegetation. Environ. Entomol. 47:1184–93
    [Google Scholar]
  149. 149.
    Workneh F, Trees JL, Paetzold L, Badillo-Vargas IE, Rush CM. 2021. Impact of ‘Candidatus Liberibacter solanacearum’ haplotypes on sprout emergence and growth from infected seed tubers. Crop Prot 147:105462
    [Google Scholar]
  150. 150.
    Wright PJ, Walker GP, MacDonald FH, Gardner-Gee R, Hedderley DI. 2017. Mineral oil foliar applications in combination with insecticides affect tomato potato psyllid (Bactericera cockerelli) and beneficial insects in potato crops. N. Z. J. Crop Hortic. Sci. 45:263–76
    [Google Scholar]
  151. 151.
    Xu Y, Zhang ZQ. 2015. Amblydromalus limonicus: a “new association” predatory mite against an invasive psyllid (Bactericera cockerelli) in New Zealand. Syst. Appl. Acarol. 20:375–82
    [Google Scholar]
  152. 152.
    Yang XB, Zhang YM, Henne DC, Liu TX. 2013. Life tables of Bactericera cockerelli (Hemiptera: Triozidae) on tomato under laboratory and field conditions in Southern Texas. Fla. Entomol. 96:904–13
    [Google Scholar]
  153. 153.
    Yen AL, Madge DG, Berry NA, Yen JDL. 2013. Evaluating the effectiveness of five sampling methods for detection of the tomato potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Aust. J. Entomol. 52:168–74
    [Google Scholar]
  154. 154.
    Zhao ZG, Prager SM, Cruzado RK, Liang X, Cooper WR et al. 2018. Characterizing zebra chip symptom severity and identifying spectral signatures associated with ‘Candidatus Liberibacter solanacearum’-infected potato tubers. Am. J. Potato Res. 95:584–96
    [Google Scholar]
/content/journals/10.1146/annurev-ento-020123-014734
Loading
/content/journals/10.1146/annurev-ento-020123-014734
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error