1932

Abstract

Global trade in fresh fruit and vegetables, intensification of human mobility, and climate change facilitate fruit fly (Diptera: Tephritidae) invasions. Life-history traits, environmental stress response, dispersal stress, and novel genetic admixtures contribute to their establishment and spread. Tephritids are among the most frequently intercepted taxa at ports of entry. In some countries, supported by the rules-based trade framework, a remarkable amount of biosecurity effort is being arrayed against the range expansion of tephritids. Despite this effort, fruit flies continue to arrive in new jurisdictions, sometimes triggering expensive eradication responses. Surprisingly, scant attention has been paid to biosecurity in the recent discourse about new multilateral trade agreements. Much of the available literature on managing tephritid invasions is focused on a limited number of charismatic (historically high-profile) species, and the generality of many patterns remains speculative.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-022723-103200
2024-01-29
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-022723-103200.html?itemId=/content/journals/10.1146/annurev-ento-022723-103200&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adedeji AA, Ekramirad N, Rady A, Hamidisepehr A, Donohue KD et al. 2020. Non-destructive technologies for detecting insect infestation in fruits and vegetables under postharvest conditions: a critical review. Foods 9:927
    [Google Scholar]
  2. 2.
    Awad M, Ben Gharsa H, ElKraly OA, Leclerque A, Elnagdy SM 2023. COI haplotyping and comparative microbiomics of the peach fruit fly, an emerging pest of Egyptian olive orchards. Biology 12:27
    [Google Scholar]
  3. 3.
    Badii KB, Billah MK, Afreh Nuamah K, Obeng Ofori D, Nyarko G 2015. Review of the pest status, economic impact and management of fruit-infesting flies (Diptera: Tephritidae) in Africa. Afr. J. Agric. Res. 10:1488–98
    [Google Scholar]
  4. 4.
    Bertelsmeier C, Keller L. 2018. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33:527–34
    [Google Scholar]
  5. 5.
    Bradshaw CJA, Hoskins AJ, Haubrock PJ, Cuthbert RN, Diagne C et al. 2021. Detailed assessment of the reported economic costs of invasive species in Australia. NeoBiota 67:511–50
    [Google Scholar]
  6. 6.
    Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA et al. 2020. Pest categorisation of non-EU Tephritidae. EFSA J. 18:e05931
    [Google Scholar]
  7. 7.
    Cantrell BK, Cahill A, Chadwick B. 2002. Fruit Fly Fighters: Eradication of the Papaya Fruit Fly Clayton, Aust.: CSIRO Publ.
    [Google Scholar]
  8. 8.
    Carey JR. 2010. The Mediterranean fruit fly (Ceratitis capitata). Am. Entomol. 56:116–21
    [Google Scholar]
  9. 9.
    Carey JR, Papadopoulos NT, Plant R. 2017. The 30-year debate on a multi-billion-dollar threat: tephritid fruit fly establishment in California. Am. Entomol. 63:101–13
    [Google Scholar]
  10. 10.
    Carey JR, Papadopoulos NT, Plant R. 2017. Oriental fruit fly outbreaks in California: 48 consecutive years, 235 cities, 1,500 detections—and counting. Am. Entomol. 63:232–36
    [Google Scholar]
  11. 11.
    Chen M, Chen P, Ye H, Yuan R, Wang X, Xu J. 2015. Flight capacity of Bactrocera dorsalis (Diptera: Tephritidae) adult females based on flight mill studies and flight muscle ultrastructure. J. Insect Sci. 15:141
    [Google Scholar]
  12. 12.
    Clarke AR, Measham PF. 2022. Competition: a missing component of fruit fly (Diptera: Tephritidae) risk assessment and planning. Insects 13:1065
    [Google Scholar]
  13. 13.
    Cugala D, Tostão E, Affognon H, Mutungi C. 2012. Postharvest losses in Africa—analytical review and synthesis: the case of Mozambique. Afr. Insect Sci. Food Health 2015:1–62
    [Google Scholar]
  14. 14.
    De Meyer M, Robertson MP, Mansell MW, Ekesi S, Tsuruta K et al. 2010. Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae). Bull. Entomol. Res. 100:35–48
    [Google Scholar]
  15. 15.
    De Villiers M, Hattingh V, Kriticos DJ. 2012. Combining field phenological observations with distribution data to model the potential range distribution of the fruit fly Ceratitis rosa Karsch (Diptera: Tephritidae). Bull. Entomol. Res. 103:60–73
    [Google Scholar]
  16. 16.
    De Villiers M, Hattingh V, Kriticos DJ, Brunel S, Vayssières J-F et al. 2016. The potential distribution of Bactrocera dorsalis: considering phenology and irrigation patterns. Bull. Entomol. Res. 106:19–33
    [Google Scholar]
  17. 17.
    Diller Y, Shamsian A, Shaked B, Altman Y, Danziger B-C et al. 2023. A real-time remote surveillance system for fruit flies of economic importance: sensitivity and image analysis. J. Pest Sci. 96:611–22
    [Google Scholar]
  18. 18.
    Doitsidis L, Fouskitakis GN, Varikou KN, Rigakis II, Chatzichristofis SA et al. 2017. Remote monitoring of the Bactrocera oleae (Gmelin) (Diptera: Tephritidae) population using an automated McPhail trap. Comput. Electron. Agric. 137:69–78
    [Google Scholar]
  19. 19.
    Dominiak BC. 2012. Review of dispersal, survival, and establishment of Bactrocera tryoni (Diptera: Tephritidae) for quarantine purposes. Ann. Entomol. Soc. Am. 105:434–46
    [Google Scholar]
  20. 20.
    Dominiak BC, Mapson R. 2017. Revised distribution of Bactrocera tryoni in eastern Australia and effect on possible incursions of Mediterranean fruit fly: development of Australia's Eastern Trading Block. J. Econ. Entomol. 110:2459–65
    [Google Scholar]
  21. 21.
    Dominiak BC, Taylor PW, Rempoulakis P. 2023. Marking and identification methodologies for mass releases of sterile Queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae) an overview. Crop Prot. 166:106173
    [Google Scholar]
  22. 22.
    Egartner A, Lethmayer C, Gottsberger RA, Blumel S. 2019. Recent records of the Mediterranean fruit fly, Ceratitis capitata (Tephritidae, Diptera), in Austria. IOBC-WPRS Bull. 146:143–52
    [Google Scholar]
  23. 23.
    Ekesi S, De Meyer M, Mohamed SA, Virgilio M, Borgemeister C. 2016. Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annu. Rev. Entomol. 61:219–38
    [Google Scholar]
  24. 24.
    Ekesi S, Mohamed SA, De Meyer M, eds. 2016. Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture Berlin: Springer
    [Google Scholar]
  25. 25.
    Enkerlin W. 2021. Impact of fruit fly control programmes using the sterile insect technique. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management VA Dyck, J Hendrichs, AS Robinson 979–1006. Boca Raton, FL: CRC Press
    [Google Scholar]
  26. 26.
    Enkerlin WR, Gutiérrez Ruelas JM, Pantaleon R, Soto Litera C, Villaseñor Cortés A et al. 2017. The Moscamed Regional Programme: review of a success story of area-wide sterile insect technique application. Entomol. Exp. Appl. 164:188–203
    [Google Scholar]
  27. 27.
    EPPO. New findings of Bactrocera dorsalis in Italy Rep. EPPO Paris: https://gd.eppo.int/reporting/article-7419
    [Google Scholar]
  28. 28.
    Epsky ND, Kendra PE, Schnell EQ. 2014. History and development of food-based attractants. See Reference 101 75–118
  29. 29.
    Food Agric. Org. U. N., Int. At. Energy Agency. 2022. General guidelines to facilitate the opening of international markets for fruits and vegetables that are fruit fly hosts based on International Standards for Phytosanitary Measures Rep. Food Agric. Org. U. N./Int. At. Energy Agency Rome/Vienna:
    [Google Scholar]
  30. 30.
    Gilioli G, Sperandio G, Colturato M, Pasquali S, Gervasio P et al. 2021. Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biol. Invasions 24:261–79
    [Google Scholar]
  31. 31.
    Goldshtein E, Cohen Y, Hetzroni A, Gazit Y, Timar D et al. 2017. Development of an automatic monitoring trap for Mediterranean fruit fly (Ceratitis capitata) to optimize control applications frequency. Comput. Electron. Agric. 139:115–25
    [Google Scholar]
  32. 32.
    Graham CH, Elith J, Hijmans RJ, Guisan A, Townsend Peterson A et al. 2008. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 45:239–47
    [Google Scholar]
  33. 33.
    Grechi I, Preterre A-L, Lardenois M, Ratnadass A. 2022. Bactrocera dorsalis invasion increased fruit fly incidence on mango production in Reunion Island. Crop Prot. 161:106056
    [Google Scholar]
  34. 34.
    Gutierrez AP, Ponti L, Neteler M, Suckling DM, Cure JR. 2021. Invasive potential of tropical fruit flies in temperate regions under climate change. Commun. Biol. 4:1141
    [Google Scholar]
  35. 35.
    Hassani IM, Delatte H, Ravaomanarivo LHR, Nouhou S, Duyck PF. 2022. Niche partitioning via host plants and altitude among fruit flies following the invasion of Bactrocera dorsalis. Agric. For. Entomol. 24:575–85
    [Google Scholar]
  36. 36.
    Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:10–18
    [Google Scholar]
  37. 37.
    Jamieson LE, Woodberry O, Mascaro S, Meurisse N, Jaksons R et al. 2022. An integrated biosecurity risk assessment model (IBRAM) for evaluating the risk of import pathways for the establishment of invasive species. Risk Anal. 42:1325–45
    [Google Scholar]
  38. 38.
    Jang EB, McQuate GT, McInnis DO, Harris EJ, Vargas RI et al. 2008. Targeted trapping, bait-spray, sanitation, sterile-male, and parasitoid releases in an areawide integrated melon fly (Diptera: Tephritidae) control program in Hawaii. Am. Entomol. 54:240–50
    [Google Scholar]
  39. 39.
    Jarošík V, Kenis M, Honěk A, Skuhrovec J, Pyšek P. 2015. Invasive insects differ from non-invasive in their thermal requirements. PLOS ONE 10:e0131072
    [Google Scholar]
  40. 40.
    José L, Cugala D, Santos L. 2013. Assessment of invasive fruit fly fruit infestation and damage in Cabo Delgado Province, Northern Mozambique. Afr. Crop Sci. J. 21:21–28
    [Google Scholar]
  41. 41.
    Jose PA, Yuval B, Jurkevitch E. 2023. Maternal and host effects mediate the adaptive expansion and contraction of the microbiome during ontogeny in a holometabolous, polyphagous insect. Funct. Ecol. 37:929–46
    [Google Scholar]
  42. 42.
    Karsten M, Addison P, Jansen van Vuuren B, Terblanche JS. 2016. Investigating population differentiation in a major African agricultural pest: Evidence from geometric morphometrics and connectivity suggests high invasion potential. Mol. Ecol. 25:3019–32
    [Google Scholar]
  43. 43.
    Kean JM, Stringer LD. 2019. Optimising the seasonal deployment of surveillance traps for detection of incipient pest invasions. Crop Prot. 123:36–44
    [Google Scholar]
  44. 44.
    König S, Steinmöller S, Baufeld P. 2022. Origin and potential for overwintering of Ceratitis capitata (Wiedemann) captured in an official survey in Germany. J. Plant Dis. Prot. 129:1201–15
    [Google Scholar]
  45. 45.
    Krainacker DA, Carey JR, Vargas RI. 1987. Effect of larval host on life history traits of the Mediterranean fruit fly, Ceratitis capitata. Oecologia 73:583–90
    [Google Scholar]
  46. 46.
    Kriticos DJ. 2007. Risks of Establishment of Fruit Flies in New Zealand under Climate Change Rotorua, N. Z.: Ensis
    [Google Scholar]
  47. 47.
    Kriticos DJ, Maywald GF, Yonow T, Zurcher EJ, Herrmann NI, Sutherst R. 2015. Exploring the Effects of Climate on Plants, Animals and Diseases Canberra: CSIRO
    [Google Scholar]
  48. 48.
    Kriticos DJ, Stephens AEA, Leriche A. 2007. Effect of climate change on Oriental fruit fly in New Zealand and the Pacific. N. Z. Plant Protect. 60:271–78
    [Google Scholar]
  49. 49.
    Kriticos DJ, Zalucki MP, Mills JA, Alcaraz SA 2007. Modelling the Climatic Potential for Bactrocera (Dacus) cucumis to Establish Viable Populations in New Zealand Rotorua, N. Z.: Ensis
    [Google Scholar]
  50. 50.
    Kuo K.-C. 2008. Management of red invasive fire ants and fruit flies: the Taiwan experience Rep., Food Fertil. Technol. Cent. CAB Int. Wallingford, UK:
    [Google Scholar]
  51. 51.
    Larsen CC. 2021. Flying under the radar: using spatial analytical approaches to track non-native tephritid fruit fly populations in California Rep. Univ. Calif. Davis:
    [Google Scholar]
  52. 52.
    Li B, Ma J, Hu X, Liu H, Zhang R. 2009. Potential geographical distributions of the fruit flies Ceratitis capitata, Ceratitis cosyra, and Ceratitis rosa in China. J. Econ. Entomol. 102:1781–90
    [Google Scholar]
  53. 53.
    Li Z, Jiang F, Ma X, Yan F, Qin Y et al. 2013. Review on prevention and control technique of Tephritidae invasion. Plant Quar. 27:1–10
    [Google Scholar]
  54. 54.
    Liebhold AM, Berec L, Brockerhoff EG, Epanchin-Niell RS, Hastings A et al. 2016. Eradication of invading insect populations: from concepts to applications. Annu. Rev. Entomol. 61:335–52
    [Google Scholar]
  55. 55.
    Liebhold AM, Tobin PC. 2008. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53:387–408
    [Google Scholar]
  56. 56.
    Liebhold AM, Work TT, McCullough DG, Cavey JF. 2006. Airline baggage as a pathway for alien insect species invading the United States. Proc. North Cent. Branch Entomol. Soc. Am. 52:48–54
    [Google Scholar]
  57. 57.
    Liu J-H, Xiong X, Pan Y, Xiong Z, Deng Z, Yang L. 2011. Predicting potential distribution of oriental fruit fly, Bactrocera dorsalis in Jiangxi Province, South China based on maximum entropy model. Sci. Res. Essays 6:2888–94
    [Google Scholar]
  58. 58.
    Lu W, Deng Y, Li Z, Lin W, Wan F et al. 2010. A predication of potential geographical distribution of guava fruit fly, Bactrocera (Bactrocera) correcta (Bezzi) in China. Zhiwu Baohu Xuebao 37:529–34
    [Google Scholar]
  59. 59.
    Lux SA. 2017. Individual-based modeling approach to assessment of the impacts of landscape complexity and climate on dispersion, detectability and fate of incipient medfly populations. Front Physiol. 8:1121
    [Google Scholar]
  60. 60.
    Machado Teixeira C, Krüger AP, Nava DE, Mello Garcia FR. 2022. Global potential distribution of Anastrepha grandis (Diptera, Tephritidae) under climate change scenarios. Crop Prot. 151:105836
    [Google Scholar]
  61. 61.
    Makumbe LDM, Moropa TP, Manrakhan A, Weldon CW. 2020. Effect of sex, age and morphological traits on tethered flight of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) at different temperatures. Physiol. Entomol. 45:110–19
    [Google Scholar]
  62. 62.
    Manoukis NC, Carvalho L. 2020. Flight burst duration as an indicator of flight ability and physical fitness in two species of tephritid fruit flies. J. Insect. Sci. 20:11
    [Google Scholar]
  63. 63.
    Manoukis NC, Hoffman K. 2014. An agent-based simulation of extirpation of Ceratitis capitata applied to invasions in California. J. Pest Sci. 87:39–51
    [Google Scholar]
  64. 64.
    Manrakhan A. 2016. Detection and monitoring of fruit flies in Africa. 253–73
    [Google Scholar]
  65. 65.
    Manrakhan A, Daneel JH, Beck R, Love CN, Gilbert MJ et al. 2021. Effects of male lure dispensers and trap types for monitoring of Ceratitis capitata and Bactrocera dorsalis (Diptera: Tephritidae). Pest Manag. Sci. 77:2219–30
    [Google Scholar]
  66. 66.
    Manrakhan A, Hattingh V, Venter JH, Holtzhausen M. 2011. Eradication of Bactrocera invadens (Diptera: Tephritidae) in Limpopo Province, South Africa. J. Entomol. Soc. South. Afr. 19:650–59
    [Google Scholar]
  67. 67.
    Manrakhan A, Venter JH, Hattingh V. 2015. The progressive invasion of Bactrocera dorsalis (Diptera: Tephritidae) in South Africa. Biol. Invasions 17:2803–9
    [Google Scholar]
  68. 68.
    Marchioro CA. 2016. Global potential distribution of Bactrocera carambolae and the risks for fruit production in Brazil. PLOS ONE 11:e0166142
    [Google Scholar]
  69. 69.
    McInnis DO, Hendrichs J, Shelly TE, Barr N, Hoffman K et al. 2017. Can polyphagous invasive tephritid pest populations escape detection for years under favorable climatic and host conditions?. Am. Entomol. 63:89–99
    [Google Scholar]
  70. 70.
    Meats A, Smallridge CJ. 2007. Short- and long-range dispersal of medfly, Ceratitis capitata (Dipt., Tephritidae), and its invasive potential. J. Appl. Entomol. 131:518–23
    [Google Scholar]
  71. 71.
    Meats A, Smallridge CJ, Dominiak BC. 2006. Dispersion theory and the sterile insect technique: application to two species of fruit fly. Entomol. Exp. Appl. 119:247–54
    [Google Scholar]
  72. 72.
    Moquet L, Payet J, Glenac S, Delatte H. 2021. Niche shift of tephritid species after the Oriental fruit fly (Bactrocera dorsalis) invasion in La Réunion. Divers. Distrib. 27:109–29
    [Google Scholar]
  73. 73.
    Moraiti CA, Nakas CT, Papadopoulos NT. 2014. Diapause termination of Rhagoletis cerasi pupae is regulated by local adaptation and phenotypic plasticity: escape in time through bet-hedging strategies. J. Evol. Biol. 27:43–54
    [Google Scholar]
  74. 74.
    Mumford JD 2021. Design and economic evaluation of programmes integrating the sterile insect technique. Area-Wide Integrated Pest Management: Development and Field Application J Hendrichs, R Pereira, MJB Vreysen 731–52. Boca Raton, FL: CRC Press
    [Google Scholar]
  75. 75.
    Mutamiswa R, Nyamukondiwa C, Chikowore G, Chidawanyika F. 2020. Overview of oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Africa: from invasion, bio-ecology to sustainable management. Crop Prot. 141:105492
    [Google Scholar]
  76. 76.
    Navarro-Llopis V, Dominguez-Ruiz J, Zarzo M, Alfaro C, Primo J. 2010. Mediterranean fruit fly suppression using chemosterilants for area-wide integrated pest management. Pest Manag. Sci. 66:511–19
    [Google Scholar]
  77. 77.
    Niassy S, Ekesi S, Migiro L, Otieno W, eds. 2020. Sustainable Management of Invasive Pests in Africa Berlin: Springer
    [Google Scholar]
  78. 78.
    Nugnes F, Russo E, Viggiani G, Bernardo U. 2018. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9:182
    [Google Scholar]
  79. 79.
    Nyamukondiwa C, Weldon CW, Chown SL, le Roux PC, Terblanche JS. 2013. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59:1199–211
    [Google Scholar]
  80. 80.
    Off. U. S. Trade Represent. 2015. Summary of the Trans-Pacific Partnership agreement Press Release Off. U. S. Trade Represent. Washington, DC: https://ustr.gov/about-us/policy-offices/press-office/press-releases/2015/october/summary-trans-pacific-partnership
    [Google Scholar]
  81. 81.
    Ohishi T, Matsuyama T, Himuro C, Ohno S, Sadoyama Y et al. The eradication projects and preventative control of quarantine pests in Okinawa, Japan. Proceedings of the 2018 International Symposium on Proactive Technologies for Enhancement of Integrated Pest Management of Key Crops31–48. Taichung City, Taiwan: Taiwan Agric. Res. Inst.
    [Google Scholar]
  82. 82.
    Oliveira CM, Auad AM, Mendes SM, Frizzas MR. 2013. Economic impact of exotic insect pests in Brazilian agriculture. J. Appl. Entomol. 137:1–15
    [Google Scholar]
  83. 83.
    Otieno W. 2009. EPHIS experience with market access and compliance with official standards. Proceedings of the All Africa Horticultural Congress73–76. Leuven, Belg.: Int. Soc. Hortic. Sci.
    [Google Scholar]
  84. 84.
    Pace R, Ascolese R, Miele F, Russo E, Griffo RV et al. 2022. The bugs in the bags: the risk associated with the introduction of small quantities of fruit and plants by airline passengers. Insects 13:617
    [Google Scholar]
  85. 85.
    Papachristos D, Papadopoulos N, Maglaras E, Michaelakis A, Antonatos S. 2013. Susceptibility of kiwifruit (Actinidia spp.) cultivars to Ceratitis capitata (Diptera: Tephritidae) infestation. J. Appl. Entomol. 138:433–40
    [Google Scholar]
  86. 86.
    Papadopoulos NT. 2014. Fruit fly invasion: historical, biological, economic aspects and management. See Reference 101 219–52
  87. 87.
    Papadopoulos NT, Carey JR, Katsoyannos BI, Kouloussis NA. 1996. Overwintering of the Mediterranean fruit fly (Diptera: Tephritidae) in northern Greece. Ann. Entomol. Soc. Am. 89:526–34
    [Google Scholar]
  88. 88.
    Papadopoulos NT, Katsoyannos BI, Carey JR, Kouloussis NA. 2001. Seasonal and annual occurrence of the Mediterranean fruit fly (Diptera: Tephritidae) in northern Greece. Ann. Entomol. Soc. Am. 94:41–50
    [Google Scholar]
  89. 89.
    Papadopoulos NT, Plant RE, Carey JR. 2013. From trickle to flood: the large-scale, cryptic invasion of California by tropical fruit flies. Proc. R. Soc. B 280:20131466
    [Google Scholar]
  90. 90.
    Papanastasiou SA, Nestel D, Diamantidis AD, Nakas CT, Papadopoulos NT. 2011. Physiological and biological patterns of a highland and a coastal population of the European cherry fruit fly during diapause. J. Insect Physiol. 57:83–93
    [Google Scholar]
  91. 91.
    Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:231–59
    [Google Scholar]
  92. 92.
    Pieterse W, Terblanche JS, Addison P. 2017. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)?. J. Insect Physiol. 98:1–6
    [Google Scholar]
  93. 93.
    Plá I, García de Oteyza J, Tur C, Martinez , Laurín MC et al. 2021. Sterile insect technique programme against Mediterranean fruit fly in the Valencian Community (Spain). Insects 12:415
    [Google Scholar]
  94. 94.
    Plant RE 1986. The sterile insect technique; a theoretical perspective. Pest Control: Operations and Systems Analysis in Fruit Fly Management M Mangel, JR Carey, RE Plant 361–86. Berlin: Springer
    [Google Scholar]
  95. 95.
    Plant RE, Cunningham RT. 1991. Analyses of the dispersal of sterile Mediterranean fruit flies (Diptera: Tephritidae) released from a point source. Environ. Entomol. 20:1491–503
    [Google Scholar]
  96. 96.
    Potamitis I, Rigakis I, Fysarakis K. 2014. The electronic McPhail trap. Sensors 14:22285–99
    [Google Scholar]
  97. 97.
    Qin Y, Ullah F, Fang Y, Singh S, Zhao Z et al. 2021. Prediction of potential economic impact of Bactrocera zonata (Diptera: Tephritidae) in China: peaches as the example hosts. J. Asia Pac. Entomol. 24:1101–6
    [Google Scholar]
  98. 98.
    Qin Y, Wang C, Zhao Z, Pan X, Li Z. 2019. Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Clim. Change 155:145–56
    [Google Scholar]
  99. 99.
    Royer JE, Agovaua S, Bokosou J, Kurika K, Mararuai A et al. 2018. Responses of fruit flies (Diptera: Tephritidae) to new attractants in Papua New Guinea. Austral Entomol. 57:40–49
    [Google Scholar]
  100. 100.
    Sandrini Moraes F, Nava DE, Scheunemann T, Santos da Rosa V. 2019. Development of an optoelectronic sensor for detecting and classifying fruit fly (Diptera: Tephritidae) for use in real-time intelligent traps. Sensors 19:1254
    [Google Scholar]
  101. 101.
    Shelly T, Epsky N, Jang EB, Reyes-Flores J, Vargas R. 2014. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications Berlin: Springer
    [Google Scholar]
  102. 102.
    Shelly TE, Lance DR, Tan KH, Suckling DM, Bloem K et al. 2017. To repeat: Can polyphagous invasive tephritid pest populations remain undetected for years under favorable climatic and host conditions?. Am. Entomol. 63:224–31
    [Google Scholar]
  103. 103.
    Siebert J, Cooper T. 1995. If medfly infestation triggered a trade ban: embargo on California produce would cause revenue, job loss. Calif. Agric. 49:7–12
    [Google Scholar]
  104. 104.
    Sookar P, Patel N, Ramkalawon P. 2021. Bactrocera dorsalis, an invasive fruit fly species in Mauritius. Fruits 76:269–75
    [Google Scholar]
  105. 105.
    Steck GJ, Fox AJ, Casrrillo D, Dean D, Roda A et al. 2019. Oriental fruit fly eradication in Florida 2015–2016: program implementation, unique aspects, and lessons learned. Am. Entomol. 65:108–21
    [Google Scholar]
  106. 106.
    Stephenson B, Gill G, Randall J, Wilson J. 2003. Biosecurity approaches to surveillance and response for new plant pest species. N. Z. Plant Prot. 56:5–9
    [Google Scholar]
  107. 107.
    Steyn VM, Mitchell KA, Nyamukondiwa C, Terblanche JS. 2022. Understanding costs and benefits of thermal plasticity for pest management: insights from the integration of laboratory, semi-field and field assessments of Ceratitis capitata (Diptera: Tephritidae). Bull. Entomol. Res. 112:458–68
    [Google Scholar]
  108. 108.
    Steyn VM, Mitchell KA, Terblanche JS. 2016. Dispersal propensity, but not flight performance, explains variation in dispersal ability. Proc. R. Soc. B 283:20160905
    [Google Scholar]
  109. 109.
    Stockwell D, Peters D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13:143–58
    [Google Scholar]
  110. 110.
    Stonehouse JM, Mumford JD, Mustafa G. 1998. Economic losses to tephritid fruit flies (Diptera: Tephritidae) in Pakistan. Crop Prot. 17:159–64
    [Google Scholar]
  111. 111.
    Stringer LD, Kean JM, Beggs JR, Suckling DM. 2017. Management and eradication options for Queensland fruit fly. Popul. Ecol. 59:259–73
    [Google Scholar]
  112. 112.
    Stringer LD, Soopaya R, Butler RC, Vargas RI, Souder SK et al. 2019. Effect of lure combination on fruit fly surveillance sensitivity. Sci. Rep. 9:2653
    [Google Scholar]
  113. 113.
    Suckling DM, Kean JM, Stringer LD, Caceres-Barrios C, Hendrichs J et al. 2016. Eradication of tephritid fruit fly pest populations: outcomes and prospects. Pest Manag. Sci. 72:456–65
    [Google Scholar]
  114. 114.
    Suckling DM, Stringer LD, Kean JM, Lo PL, Bell V et al. 2015. Spatial analysis of mass trapping: How close is close enough?. Pest Manag. Sci. 71:1452–61
    [Google Scholar]
  115. 115.
    Sutherst RW, Bourne AS. 2009. Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol. Invasions 11:1231–37
    [Google Scholar]
  116. 116.
    Sutherst RW, Collyer BS, Yonow T. 2000. The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus) tryoni, under climate change. Aust. J. Agric. Res. 51:467–80
    [Google Scholar]
  117. 117.
    Sutherst RW, Maywald G. 1985. A computerised system for matching climates in ecology. Agric. Ecosyst. Environ. 13:281–99
    [Google Scholar]
  118. 118.
    Sutherst RW, Maywald GF. 1989. An analysis of CLIMEX predictions of establishment of Dacus spp in New Zealand. Consult. Rep. 12 CSIRO Canberra, Aust.:
    [Google Scholar]
  119. 119.
    Szyniszewska AM, Leppla NC, Manoukis NC, Collier TC, Hastings JM et al. 2020. CLIMEX and MED-FOES models for predicting the variability in growth potential and persistence of Mediterranean fruit fly (Diptera: Tephritidae) populations. Ann. Entomol. Soc. Am. 113:114–24
    [Google Scholar]
  120. 120.
    Szyniszewska AM, Tatem AJ. 2014. Global assessment of seasonal potential distribution of Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). PLOS ONE 9:e111582
    [Google Scholar]
  121. 121.
    Tan KH, Nishida R, Jang EB, Shelly TE. 2014. Pheromones, male lures, and trapping of tephritid fruit flies. See Reference 101 15–74
  122. 122.
    Tanga CM, Khamis FM, Tonnang HEZ, Rwomushana I, Mosomtai G et al. 2018. Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. nov. using life-cycle simulation models: implications for phytosanitary measures and management. PLOS ONE 13:e0189138
    [Google Scholar]
  123. 123.
    Troy S, de Majnik J, Coates M. 2017. Plant quarantine pest and official control national policy Rep. Dept. Agric. Water Res. Canberra, Aust.:
    [Google Scholar]
  124. 124.
    van Klinken RD, Fiedler K, Kingham L, Collins K, Barbour D. 2020. A risk framework for using systems approaches to manage horticultural biosecurity risks for market access. Crop Prot. 129:104994
    [Google Scholar]
  125. 125.
    Vargas RI, Piñero JC, Mau RFL, Jang EB, Klungness LM et al. 2010. Area-wide suppression of the Mediterranean fruit fly, Ceratitis capitata, and the Oriental fruit fly, Bactrocera dorsalis, in Kamuela, Hawaii. J. Insect Sci. 10:145
    [Google Scholar]
  126. 126.
    Vargas RI, Walsh WA, Kanehisa D, Stark JD, Nishida T. 2000. Comparative demography of three Hawaiian fruit flies (Diptera: Tephritidae) at alternating temperatures. Ann. Entomol. Soc. Am. 93:75–81
    [Google Scholar]
  127. 127.
    Vera MT, Rodriguez R, Segura DF, Cladera JL, Sutherst RW. 2002. Potential geographical distribution of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), with emphasis on Argentina and Australia. Environ. Entomol. 31:1009–22
    [Google Scholar]
  128. 128.
    Verheggen F, Verhaeghe A, Giordanengo P, Tassus X, Escobar-Gutiérrez A. 2016. Walnut husk fly, Rhagoletis completa (Diptera: Tephritidae), invades Europe: invasion potential and control strategies. Appl. Entomol. Zool. 52:1–7
    [Google Scholar]
  129. 129.
    Wakie TT, Yee WL, Neven LG. 2018. Assessing the risk of establishment of Rhagoletis cerasi (Diptera: Tephritidae) in the United States and globally. J. Econ. Entomol. 111:1275–84
    [Google Scholar]
  130. 130.
    Wang M, Cribb B, Clarke AR, Hanan J. 2016. A generic individual-based spatially explicit model as a novel tool for investigating insect-plant interactions: a case study of the behavioural ecology of frugivorous Tephritidae. PLOS ONE 11:e0151777
    [Google Scholar]
  131. 131.
    Weaving H, Terblanche JS, Pottier P, English S. 2022. Meta-analysis reveals weak but pervasive plasticity in insect thermal limits. Nat. Commun. 13:5292
    [Google Scholar]
  132. 132.
    Weldon CW, Schutze MK, Karsten M. 2014. Trapping to monitor Tephritid movement: results, best practice, and assessment of alternatives. See Reference 101 175–217
  133. 133.
    White IM, Elson-Harris MM. 1992. Fruit Flies of Economic Significance: Their Identification and Bionomics Wallingford, UK: CAB Int.
    [Google Scholar]
  134. 134.
    Yonow T, Sutherst RW. 1998. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust. J. Agric. Res. 49:935–53
    [Google Scholar]
  135. 135.
    Zhang Y, Hughes AC, Zhao Z, Li Z, Qin Y. 2022. Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Glob. Ecol. Conserv. 34:e02021
    [Google Scholar]
  136. 136.
    Zhang Y, Liu S, De Meyer M, Liao Z, Zhao Y et al. 2023. Genomes of the cosmopolitan fruit pest Bactrocera dorsalis (Diptera: Tephritidae) reveal its global invasion history and thermal adaptation. J. Adv. Res. In press
    [Google Scholar]
  137. 137.
    Zhao Z, Carey JR, Li Z. 2024. The global epidemic of Bactrocera pests: mixed-species invasions and risk assessment. Annu. Rev. Entomol. 69:219–37
    [Google Scholar]
  138. 138.
    Zhao Z, Hui C, Plant RE, Su M, Carpenter T et al. 2019. Life table invasion models: spatial progression and species-specific partitioning. Ecology 5:e02682
    [Google Scholar]
  139. 139.
    Zingore KM, Sithole G, Abdel-Rahman EM, Mohamed SA, Ekesi S et al. 2020. Global risk of invasion by Bactrocera zonata: implications on horticultural crop production under changing climatic conditions. PLOS ONE 15:e0243047
    [Google Scholar]
/content/journals/10.1146/annurev-ento-022723-103200
Loading
/content/journals/10.1146/annurev-ento-022723-103200
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error