1932

Abstract

The evolution of sexual communication is critically important in the diversity of arthropods, which are declining at a fast pace worldwide. Their environments are rapidly changing, with increasing chemical, acoustic, and light pollution. To predict how arthropod species will respond to changing climates, habitats, and communities, we need to understand how sexual communication systems can evolve. In the past decades, intraspecific variation in sexual signals and responses across different modalities has been identified, but never in a comparative way. In this review, we identify and compare the level and extent of intraspecific variation in sexual signals and responses across three different modalities, chemical, acoustic, and visual, focusing mostly on insects. By comparing causes and possible consequences of intraspecific variation in sexual communication among these modalities, we identify shared and unique patterns, as well as knowledge needed to predict the evolution of sexual communication systems in arthropods in a changing world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-030223-111608
2024-01-25
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-030223-111608.html?itemId=/content/journals/10.1146/annurev-ento-030223-111608&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adamo SA. 1998. The specificity of behavioral fever in the cricket Acheta domesticus. J. Parasitol. 84:3529–33
    [Google Scholar]
  2. 2.
    Alem S, Streiff R, Courtois B, Zenboudji S, Limousin D, Greenfield MD. 2013. Genetic architecture of sensory exploitation: QTL mapping of female and male receiver traits in an acoustic moth. J. Evol. Biol. 26:122581–96
    [Google Scholar]
  3. 3.
    Anderson P, Sadek MM, Larsson M, Hansson BS, Thöming G. 2013. Larval host plant experience modulates both mate finding and oviposition choice in a moth. Anim. Behav. 85:61169–75
    [Google Scholar]
  4. 4.
    Andersson J, Borg-Karlson A-K, Vongvanich N, Wiklund C. 2007. Male sex pheromone release and female mate choice in a butterfly. J. Exp. Biol. 210:6964–70
    [Google Scholar]
  5. 5.
    Ando T, Inomata S, Yamamoto M. 2004. Lepidopteran sex pheromones. The Chemistry of Pheromones and Other Semiochemicals, Vol. I S Schulz 51–96. Top. Curr. Chem. 239 Berlin: Springer
    [Google Scholar]
  6. 6.
    Anton S, Rössler W. 2021. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res. 383:1149–64
    [Google Scholar]
  7. 7.
    Arbuthnott D. 2009. The genetic architecture of insect courtship behavior and premating isolation. Heredity 103:115–22
    [Google Scholar]
  8. 8.
    Bailey NW, Gray B, Zuk M. 2010. Acoustic experience shapes alternative mating tactics and reproductive investment in male field crickets. Curr. Biol. 20:9845–49
    [Google Scholar]
  9. 9.
    Bailey NW, Zuk M. 2008. Acoustic experience shapes female mate choice in field crickets. Proc. R. Soc. B 275:16512645–50
    [Google Scholar]
  10. 10.
    Bailey NW, Zuk M. 2009. Field crickets change mating preferences using remembered social information. Biol. Lett. 5:4449–51
    [Google Scholar]
  11. 11.
    Bastin-Héline L, de Fouchier A, Cao S, Koutroumpa F, Caballero-Vidal G et al. 2019. A novel lineage of candidate pheromone receptors for sex communication in moths. eLife 8:e49826
    [Google Scholar]
  12. 12.
    Beckers OM, Wagner WE. 2011. Male field crickets infested by parasitoid flies express phenotypes that may benefit the parasitoids. Anim. Behav. 82:51151–57
    [Google Scholar]
  13. 13.
    Bennet-Clark HC. 1999. Resonators in insect sound production: how insects produce loud pure-tone songs. J. Exp. Biol. 202:233347–57
    [Google Scholar]
  14. 14.
    Berlocher SH, Feder JL. 2002. Sympatric speciation in phytophagous insects: moving beyond controversy?. Annu. Rev. Entomol. 47:773–815
    [Google Scholar]
  15. 15.
    Billeter J-C, Wolfner MF. 2018. Chemical cues that guide female reproduction in Drosophila melanogaster. J. Chem. Ecol. 44:9750–69
    [Google Scholar]
  16. 16.
    Birch MC, Poppy GM, Baker TC. 1990. Scents and eversible scent structures of male moths. Annu. Rev. Entomol. 35:25–54
    [Google Scholar]
  17. 17.
    Bird S, Parker J. 2014. Low levels of light pollution may block the ability of male glow-worms (Lampyris noctiluca L.) to locate females. J. Insect Conserv. 18:737–43
    [Google Scholar]
  18. 18.
    Blankers T, Berdan EL, Hennig RM, Mayer F. 2019. Physical linkage and mate preference generate linkage disequilibrium for behavioral isolation in two parapatric crickets. Evolution 73:4777–91
    [Google Scholar]
  19. 19.
    Blankers T, Hennig RM, Gray DA. 2015. Conservation of multivariate female preference functions and preference mechanisms in three species of trilling field crickets. J. Evol. Biol. 28:3630–41
    [Google Scholar]
  20. 20.
    Blankers T, Lievers R, Plata C, van Wijk M, van Veldhuizen D, Groot AT. 2021. Sex pheromone signal and stability covary with fitness. R. Soc. Open Sci. 8:6210180
    [Google Scholar]
  21. 21.
    Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A et al. 2010. Pheromone production in bark beetles. Insect Biochem. Mol. Biol. 40:10699–712
    [Google Scholar]
  22. 22.
    Bontonou G, Denis B, Wicker-Thomas C. 2013. Interaction between temperature and male pheromone in sexual isolation in Drosophila melanogaster. J. Evol. Biol. 26:92008–20
    [Google Scholar]
  23. 23.
    Bradbury JW, Vehrencamp VH. 2011. Principles of Animal Communication Berlin: Springer
    [Google Scholar]
  24. 24.
    Brandt LSE, Greenfield MD. 2004. Condition-dependent traits and the capture of genetic variance in male advertisement song. J. Evol. Biol. 17:4821–28
    [Google Scholar]
  25. 25.
    Cade W. 1975. Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science 190:42211312–13
    [Google Scholar]
  26. 26.
    Candolin U, Wong BBM. 2019. Mate choice in a polluted world: consequences for individuals, populations and communities. Philos. Trans. R. Soc. B 374:178120180055
    [Google Scholar]
  27. 27.
    Caro T, Allen WL. 2017. Interspecific visual signalling in animals and plants: a functional classification. Philos. Trans. R. Soc. B 372:172420160344
    [Google Scholar]
  28. 28.
    Chemnitz J, Jentschke PC, Ayasse M, Steiger S. 2015. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B 282:181220150832
    [Google Scholar]
  29. 29.
    Choi M-Y, Ahn S-J, Park K-C, Meer RV, Cardé RT, Jurenka R. 2016. Tarsi of male heliothine moths contain aldehydes and butyrate esters as potential pheromone components. J. Chem. Ecol. 42:5425–32
    [Google Scholar]
  30. 30.
    Chown SL, Gaston KJ. 2010. Body size variation in insects: a macroecological perspective. Biol. Rev. 85:1139–69
    [Google Scholar]
  31. 31.
    Christensen TA, Geoffrion SC, Hildebrand JG. 1990. Physiology of interspecific chemical communication in Heliothis moths. Physiol. Entomol. 15:3275–83
    [Google Scholar]
  32. 32.
    Chung H, Carroll SB. 2015. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37:7822–30
    [Google Scholar]
  33. 33.
    Classen-Rodríguez L, Tinghitella R, Fowler-Finn K. 2021. Anthropogenic noise affects insect and arachnid behavior, thus changing interactions within and between species. Curr. Opin. Insect Sci. 47:14253
    [Google Scholar]
  34. 34.
    Conrad T, Stöcker C, Ayasse M. 2017. The effect of temperature on male mating signals and female choice in the red mason bee, Osmia bicornis (L.). Ecol. Evol. 7:218966–75
    [Google Scholar]
  35. 35.
    Cotton S, Small J, Pomiankowski A. 2006. Sexual selection and condition-dependent mate preferences. Curr. Biol. 16:17R755–65
    [Google Scholar]
  36. 36.
    Coyne JA, Orr HA. 2004. Speciation Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  37. 37.
    Danchin E, Nöbel S, Pocheville A, Dagaeff A-C, Demay L et al. 2018. Cultural flies: Conformist social learning in fruitflies predicts long-lasting mate-choice traditions. Science 362:64181025–30
    [Google Scholar]
  38. 38.
    David P, Bjorksten T, Fowler K, Pomiankowski A. 2000. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406:6792186–88
    [Google Scholar]
  39. 39.
    Davis AK, de Roode JC. 2018. Effects of the parasite, Ophryocystis elektroscirrha, on wing characteristics important for migration in the monarch butterfly. Anim. Migr. 5:184–93
    [Google Scholar]
  40. 40.
    De Pasqual C, Groot AT, Mappes J, Burdfield-Steel E. 2021. Evolutionary importance of intraspecific variation in sex pheromones. Trends Ecol. Evol. 36:9848–59
    [Google Scholar]
  41. 41.
    Dell'Aglio DD, Akkaynak D, McMillan WO, Jiggins CD. 2017. Estimating the age of Heliconius butterflies from calibrated photographs. PeerJ 5:e3821
    [Google Scholar]
  42. 42.
    Dembeck LM, Böröczky K, Huang W, Schal C, Anholt RRH, Mackay TFC. 2015. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. eLife 4:e09861
    [Google Scholar]
  43. 43.
    Ding Y, Berrocal A, Morita T, Longden KD, Stern DL. 2016. Natural courtship song variation caused by an intronic retroelement in an ion channel gene. Nature 536:7616329–32
    [Google Scholar]
  44. 44.
    Dion E, Monteiro A, Nieberding CM. 2019. The role of learning on insect and spider sexual behaviors, sexual trait evolution, and speciation. Front. Ecol. Evol. 6:225
    [Google Scholar]
  45. 45.
    Dopman EB, Bogdanowicz SM, Harrison RG. 2004. Genetic mapping of sexual isolation between E and Z pheromone strains of the European corn borer (Ostrinia nubilalis). Genetics 167:1301–9
    [Google Scholar]
  46. 46.
    Endler JA, Mappes J. 2017. The current and future state of animal coloration research. Philos. Trans. R. Soc. B 372:172420160352
    [Google Scholar]
  47. 47.
    Engl T, Michalkova V, Weiss BL, Uzel GD, Takac P et al. 2018. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossinam. morsitans). BMC Microbiol. 18:S1145
    [Google Scholar]
  48. 48.
    Espeset AE, Forister ML. 2022. In search of an honest butterfly: sexually selected wing coloration and reproductive traits from wild populations of the cabbage white butterfly. Ann. Entomol. Soc. Am. 115:2156–62
    [Google Scholar]
  49. 49.
    Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M. 2008. Foraging behavior of egg parasitoids exploiting chemical information. Behav. Ecol. 19:3677–89
    [Google Scholar]
  50. 50.
    Fernández Y, Dowdy NJ, Conner WE. 2020. Extreme duty cycles in the acoustic signals of tiger moths: sexual and natural selection operating in parallel. Integr. Org. Biol. 2:1obaa046
    [Google Scholar]
  51. 51.
    Finkbeiner SD, Briscoe AD, Reed RD. 2014. Warning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution 68:123410–20
    [Google Scholar]
  52. 52.
    Fonseca P, Revez MA. 2002. Temperature dependence of cicada songs (Homoptera, Cicadoidea). J. Comp. Physiol. A 187:12971–76
    [Google Scholar]
  53. 53.
    Frérot B, Delle-Vedove R, Beaudoin-Ollivier L, Zagatti P, Ducrot PH et al. 2013. Fragrant legs in Paysandisia archon males (Lepidoptera, Castniidae). Chemoecology 23:3137–42
    [Google Scholar]
  54. 54.
    Fujii T, Kodama S, Ishikawa Y, Yamamoto M, Sakurai T, Fónagy A. 2022. Lipid droplets in the pheromone glands of bombycids: effects of larval diet on their size and pheromone titer. J. Insect Physiol. 142:104440
    [Google Scholar]
  55. 55.
    Gao K, van Wijk M, Dang QTD, Heckel DG, Zalucki MP, Groot AT. 2021. How healthy is your mate? Sex-specific consequences of parasite infections in the moth Helicoverpa armigera. Anim. Behav. 178:105–13
    [Google Scholar]
  56. 56.
    Gerhardt HC, Huber F. 2002. Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions Chicago: Univ. Chicago Press
    [Google Scholar]
  57. 57.
    Gibert J-M, Peronnet F, Schlötterer C. 2007. Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLOS Genet. 3:2e30
    [Google Scholar]
  58. 58.
    Göpfert MC, Hennig RM. 2016. Hearing in insects. Annu. Rev. Entomol. 61:257–76
    [Google Scholar]
  59. 59.
    Grace JL, Shaw KL. 2004. Effects of developmental environment on signal-preference coupling in a Hawaiian cricket. Evolution 58:71627–33
    [Google Scholar]
  60. 60.
    Gray DA. 2022. Sexual selection and “species recognition” revisited: serial processing and order-of-operations in mate choice. Proc. R. Soc. B 289:197120212687
    [Google Scholar]
  61. 61.
    Groot AT. 2014. Circadian rhythms of sexual activities in moths: a review. Front. Ecol. Evol. 2:43
    [Google Scholar]
  62. 62.
    Groot AT, Dekker T, Heckel DG. 2016. The genetic basis of pheromone evolution in moths. Annu. Rev. Entomol. 61:99–117
    [Google Scholar]
  63. 63.
    Groot AT, Horovitz JL, Hamilton J, Santangelo RG, Schal C, Gould F. 2006. Experimental evidence for interspecific directional selection on moth pheromone communication. PNAS 103:155858–63
    [Google Scholar]
  64. 64.
    Groot AT, van Wijk M, Villacis-Perez E, Kuperus P, Schöfl G et al. 2019. Within-population variability in a moth sex pheromone blend, part 2: selection towards fixation. R. Soc. Open Sci. 6:3182050
    [Google Scholar]
  65. 65.
    Groot AT, Vedenina V, Burdfield-Steel E. 2021. Multimodal mating signals: evolution, genetics and physiological background. Front. Ecol. Evol. 8:630957
    [Google Scholar]
  66. 66.
    Han CS, Jablonski PG. 2010. Male water striders attract predators to intimidate females into copulation. Nat. Commun. 1:52
    [Google Scholar]
  67. 67.
    Harari AR, Zahavi T, Thiéry D. 2011. Fitness cost of pheromone production in signaling female moths: cost of pheromone production in moths. Evolution 65:61572–82
    [Google Scholar]
  68. 68.
    Hausmann AE, Kuo C-Y, Freire M, Rueda-M N, Linares M et al. 2021. Light environment influences mating behaviours during the early stages of divergence in tropical butterflies. Proc. R. Soc. B 288:194720210157
    [Google Scholar]
  69. 69.
    Haynes KF, Gemeno C, Yeargan KV, Millar JG, Johnson KM. 2002. Aggressive chemical mimicry of moth pheromones by a bolas spider: How does this specialist predator attract more than one species of prey?. Chemoecology 12:299–105
    [Google Scholar]
  70. 70.
    Hoffmann A, Bourgeois T, Munoz A, Anton S, Gevar J et al. 2020. A plant volatile alters the perception of sex pheromone blend ratios in a moth. J. Comp. Physiol. A 206:4553–70
    [Google Scholar]
  71. 71.
    Howard RW, Blomquist GJ. 1982. Chemical ecology and biochemistry of insect hydrocarbons. Annu. Rev. Entomol. 27:149–72
    [Google Scholar]
  72. 72.
    Howard RW, Blomquist GJ. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–93
    [Google Scholar]
  73. 73.
    Huang S-C, Reinhard J 2012. Color change from male-mimic to gynomorphic: a new aspect of signaling sexual status in damselflies (Odonata, Zygoptera). Behav. Ecol. 23:61269–75
    [Google Scholar]
  74. 74.
    Hunt RE, Rodriguez RL, Cocroft RB. 2019. Host shifts, the evolution of communication, and speciation in the Enchenopa binotata species complex of treehoppers. Specialization, Speciation, and Radiation K Tilmon 88–100. Berkeley, CA: Univ. Calif. Press
    [Google Scholar]
  75. 75.
    Jennions M, Blackwell PRY. 1998. Variation in courtship rate in the fiddler crab Uca annulipes: Is it related to male attractiveness?. Behav. Ecol. 9:6605–11
    [Google Scholar]
  76. 76.
    Jennions MD, Petrie M. 1997. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev. Camb. Philos. Soc. 72:2283–327
    [Google Scholar]
  77. 77.
    Johnson TL, Symonds MRE, Elgar MA. 2017. Anticipatory flexibility: Larval population density in moths determines male investment in antennae, wings and testes. Proc. R. Soc. B 284:186620172087
    [Google Scholar]
  78. 78.
    Kelber A, Somanathan H. 2019. Spatial vision and visually guided behavior in Apidae. Insects 10:12418
    [Google Scholar]
  79. 79.
    Kemp D. 2006. Heightened phenotypic variation and age-based fading of ultraviolet butterfly wing coloration. Evol. Ecol. Res. 8:3515–27
    [Google Scholar]
  80. 80.
    Kemp DJ. 2007. Female butterflies prefer males bearing bright iridescent ornamentation. Proc. R. Soc. B 274:16131043–47
    [Google Scholar]
  81. 81.
    Khallaf MA, Cui R, Weißflog J, Erdogmus M, Svatoš A et al. 2021. Large-scale characterization of sex pheromone communication systems in Drosophila. Nat. Commun. 12:4165
    [Google Scholar]
  82. 82.
    Klun JA, Chapman OL, Mattes KC, Wojtkowski PW, Beroza M, Sonnet PE. 1973. Insect sex pheromones: minor amount of opposite geometrical isomer critical to attraction. Science 181:4100661–63
    [Google Scholar]
  83. 83.
    Koutroumpa FA, Groot AT, Dekker T, Heckel DG. 2016. Genetic mapping of male pheromone response in the European corn borer identifies candidate genes regulating neurogenesis. PNAS 113:42E6401–8
    [Google Scholar]
  84. 84.
    Kronforst MR, Young LG, Kapan DD, McNeely C, O'Neill RJ, Gilbert LE 2006. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. PNAS 103:176575–80
    [Google Scholar]
  85. 85.
    Lampe U, Schmoll T, Franzke A, Reinhold K. 2012. Staying tuned: Grasshoppers from noisy roadside habitats produce courtship signals with elevated frequency components. Funct. Ecol. 26:61348–54
    [Google Scholar]
  86. 86.
    Land MF. 1997. Visual acuity in insects. Annu. Rev. Entomol. 42:147–77
    [Google Scholar]
  87. 87.
    Lassance J-M, Groot AT, Liénard MA, Antony B, Borgwardt C et al. 2010. Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 466:7305486–89
    [Google Scholar]
  88. 88.
    Lazzari CR, Fischbein D, Insausti TC. 2011. Differential control of light-dark adaptation in the ocelli and compound eyes of Triatoma infestans. J. Insect Physiol. 57:111545–52
    [Google Scholar]
  89. 89.
    Lewis JJ, Van Belleghem SM, Papa R, Danko CG, Reed RD. 2020. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. Sci. Adv. 6:39eabb8617
    [Google Scholar]
  90. 90.
    Lloyd JE. 1975. Aggressive mimicry in Photuris fireflies: signal repertoires by femmes fatales. Science 187:4175452–53
    [Google Scholar]
  91. 91.
    Magnus D. 1958. Experimentelle Untersuchungen zur Bionomie und Ethologie des Kaisermantels Argynnis paphia L. (Lep. Nymph.). I. Über optische Auslöser von Anfliegereaktionen und ihre Bedeutung für das Sichfinden der Geschlechter. Z. Für Tierpsychol. 15:397–426
    [Google Scholar]
  92. 92.
    Maisonneuve L, Elias M, Smadi C, Llaurens V. 2023. The limits of evolutionary convergence in sympatry: reproductive interference and historical constraints leading to local diversity in warning traits. Am. Nat. 201:E110–26
    [Google Scholar]
  93. 93.
    Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA et al. 2012. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. PNAS 109:3112632–37
    [Google Scholar]
  94. 94.
    Mazo-Vargas A, Langmüller AM, Wilder A, van der Burg KRL, Lewis JJ et al. 2022. Deep cis-regulatory homology of the butterfly wing pattern ground plan. Science 378:6617304–8
    [Google Scholar]
  95. 95.
    McNiven VTK, Moehring AJ. 2013. Identification of genetically linked female preference and male trait: genetic linkage of genes isolating species. Evolution 67:82155–65
    [Google Scholar]
  96. 96.
    Mérot C, Frérot B, Leppik E, Joron M. 2015. Beyond magic traits: multimodal mating cues in Heliconius butterflies. Evolution 69:112891–904
    [Google Scholar]
  97. 97.
    Merrill RM, Van Schooten B, Scott JA, Jiggins CD. 2011. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B 278:1705511–18
    [Google Scholar]
  98. 98.
    Mery F, Varela SA, Danchin É, Blanchet S, Parejo D et al. 2009. Public versus personal information for mate copying in an invertebrate. Curr. Biol. 19:9730–34
    [Google Scholar]
  99. 99.
    Mhatre N, Pollack G, Mason A. 2016. Stay tuned: Active amplification tunes tree cricket ears to track temperature-dependent song frequency. Biol. Lett. 12:420160016
    [Google Scholar]
  100. 100.
    Missbach C, Dweck HK, Vogel H, Vilcinskas A, Stensmyr MC et al. 2014. Evolution of insect olfactory receptors. eLife 3:e02115
    [Google Scholar]
  101. 101.
    Moehring AJ, Mackay TFC. 2004. The quantitative genetic basis of male mating behavior in Drosophila melanogaster. Genetics 167:31249–63
    [Google Scholar]
  102. 102.
    Moiseff A, Copeland J. 2010. Firefly synchrony: a behavioral strategy to minimize visual clutter. Science 329:5988181
    [Google Scholar]
  103. 103.
    Montgomery SH, Rossi M, McMillan WO, Merrill RM. 2021. Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies. PNAS 118:6e2015102118
    [Google Scholar]
  104. 104.
    Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV et al. 2016. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534:7605106–10
    [Google Scholar]
  105. 105.
    Neelon DP, Rodríguez RL, Höbel G. 2019. On the architecture of mate choice decisions: Preference functions and choosiness are distinct traits. Proc. R. Soc. B 286:189720182830
    [Google Scholar]
  106. 106.
    Nériec N, Desplan C. 2016. From the eye to the brain: development of the Drosophila visual system. Curr. Top. Dev. Biol. 116:247–71
    [Google Scholar]
  107. 107.
    Nieberding CM, Fischer K, Saastamoinen M, Allen CE, Wallin EA et al. 2012. Cracking the olfactory code of a butterfly: the scent of ageing. Ecol. Lett. 15:5415–24
    [Google Scholar]
  108. 108.
    Oh KP, Shaw KL. 2022. Axes of multivariate sexual signal divergence among incipient species: concordance with selection, genetic variation and phenotypic plasticity. J. Evol. Biol. 35:1109–23
    [Google Scholar]
  109. 109.
    Ohtsuki H, Yokoyama J, Ohba N, Ohmiya Y, Kawata M. 2014. Expression of the nos gene and firefly flashing: a test of the nitric-oxide-mediated flash control model. J. Insect Sci. 14:56
    [Google Scholar]
  110. 110.
    Owens ACS, Meyer-Rochow VB, Yang E-C 2018. Short-and mid-wavelength artificial light influences the flash signals of Aquatica ficta fireflies (Coleoptera: Lampyridae). PLOS ONE 13:2e0191576
    [Google Scholar]
  111. 111.
    Perry M, Kinoshita M, Saldi G, Huo L, Arikawa K, Desplan C. 2016. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature 535:7611280–84
    [Google Scholar]
  112. 112.
    Pires A, Hoy RR. 1992. Temperature coupling in cricket acoustic communication: II. Localization of temperature effects on song production and recognition networks in Gryllus firmus. J. Comp. Physiol. A 171:179–92
    [Google Scholar]
  113. 113.
    Polin S, Le Gallic J-F, Simon J-C, Tsuchida T, Outreman Y. 2015. Conditional reduction of predation risk associated with a facultative symbiont in an insect. PLOS ONE 10:11e0143728
    [Google Scholar]
  114. 114.
    Rabha MM, Sharma U, Barua AG. 2021. Light from a firefly at temperatures considerably higher and lower than normal. Sci. Rep. 11:12498
    [Google Scholar]
  115. 115.
    Rebar D, Barbosa F, Greenfield MD. 2016. Acoustic experience influences male and female pre- and postcopulatory behaviors in a bushcricket. Behav. Ecol. 27:2434–43
    [Google Scholar]
  116. 116.
    Ritchie MG, Saarikettu M, Livingstone S, Hoikkala A. 2001. Characterization of female preference functions for Drosophila montana courtship song and a test of the temperature coupling hypothesis. Evolution 55:4721–27
    [Google Scholar]
  117. 117.
    Roelofs W, Glover T, Tang X-H, Sreng I, Robbins P et al. 1987. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. PNAS 84:217585–89
    [Google Scholar]
  118. 118.
    Rosenthal MF, Elias DO. 2019. Nonlinear changes in selection on a mating display across a continuous thermal gradient. Proc. R. Soc. B 286:190720191450
    [Google Scholar]
  119. 119.
    Rosenthal MF, Wilkins MR, Shizuka D, Hebets EA. 2018. Dynamic changes in display architecture and function across environments revealed by a systems approach to animal communication. Evolution 72:51134–45
    [Google Scholar]
  120. 120.
    Rossi M, Hausmann AE, Thurman TJ, Montgomery SH, Papa R et al. 2020. Visual mate preference evolution during butterfly speciation is linked to neural processing genes. Nat. Commun. 11:4763
    [Google Scholar]
  121. 121.
    Rutowski RL, McCoy L, Demlong MJ. 2001. Visual mate detection in a territorial male butterfly (Asterocampa leilia): effects of distance and perch location. Behaviour 138:131–43
    [Google Scholar]
  122. 122.
    Sarfati R, Hayes JC, Peleg O. 2021. Self-organization in natural swarms of Photinus carolinus synchronous fireflies. Sci. Adv. 7:28eabg9259
    [Google Scholar]
  123. 123.
    Sattman DA, Cocroft RB. 2003. Phenotypic plasticity and repeatability in the mating signals of Enchenopa treehoppers, with implications for reduced gene flow among host-shifted populations. Ethology 109:12981–94
    [Google Scholar]
  124. 124.
    Scheuber H, Jacot A, Brinkhof MWG. 2003. Condition dependence of a multicomponent sexual signal in the field cricket Gryllus campestris. Anim. Behav. 65:4721–27
    [Google Scholar]
  125. 125.
    Schmidt AKD, Balakrishnan R. 2015. Ecology of acoustic signalling and the problem of masking interference in insects. J. Comp. Physiol. A 201:1133–42
    [Google Scholar]
  126. 126.
    Schneider D. 1992. 100 years of pheromone research: an essay on Lepidoptera. Naturwissenschaften 79:6241–50
    [Google Scholar]
  127. 127.
    Schöneich S, Kostarakos K, Hedwig B. 2015. An auditory feature detection circuit for sound pattern recognition. Sci. Adv. 1:8e1500325
    [Google Scholar]
  128. 128.
    Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E. 2011. Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes 2:3190–92
    [Google Scholar]
  129. 129.
    Sims C, Birkett MA, Withall DM. 2022. Enantiomeric discrimination in insects: the role of OBPs and ORs. Insects 13:4368
    [Google Scholar]
  130. 130.
    Song B-M, Lee C-H. 2018. Toward a mechanistic understanding of color vision in insects. Front. Neural Circuits 12:16
    [Google Scholar]
  131. 131.
    Stange N, Ronacher B. 2012. Grasshopper calling songs convey information about condition and health of males. J. Comp. Physiol. A 198:4309–18
    [Google Scholar]
  132. 132.
    Staudacher H, Menken SBJ, Groot AT. 2015. Effects of immune challenge on the oviposition strategy of a noctuid moth. J. Evol. Biol. 28:81568–77
    [Google Scholar]
  133. 133.
    Steiger S, Capodeanu-Nägler A, Gershman SN, Weddle CB, Rapkin J et al. 2015. Female choice for male cuticular hydrocarbon profile in decorated crickets is not based on similarity to their own profile. J. Evol. Biol. 28:122175–86
    [Google Scholar]
  134. 134.
    Steiger S, Haberer W, Müller JK. 2011. Social environment determines degree of chemical signalling. Biol. Lett. 7:6822–24
    [Google Scholar]
  135. 135.
    Steiger S, Stökl J. 2014. The role of sexual selection in the evolution of chemical signals in insects. Insects 5:2423–38
    [Google Scholar]
  136. 136.
    Symonds MRE, Johnson TL, Elgar MA. 2012. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths: evolution of moth antennae. Ecol. Evol. 2:1227–46
    [Google Scholar]
  137. 137.
    Tanner JC, Garbe LM, Zuk M. 2019. When virginity matters: Age and mating status affect female responsiveness in crickets. Anim. Behav. 147:83–90
    [Google Scholar]
  138. 138.
    Umbers KDL, Symonds MRE, Kokko H. 2015. The mothematics of female pheromone signaling: strategies for aging virgins. Am. Nat. 185:3417–32
    [Google Scholar]
  139. 139.
    Unbehend M, Kozak GM, Koutroumpa F, Coates BS, Dekker T et al. 2021. bric-a-brac controls sex pheromone choice by male European corn borer moths. Nat. Commun. 12:2818
    [Google Scholar]
  140. 140.
    van der Kooi CJ, Stavenga DG, Arikawa K, Belušič G, Kelber A. 2021. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66:435–61
    [Google Scholar]
  141. 141.
    Van Geffen KG, Groot AT, Van Grunsven RHA, Donners M, Berendse F, Veenendaal EM. 2015. Artificial night lighting disrupts sex pheromone in a noctuid moth: moth sex pheromone in illuminated nights. Ecol. Entomol. 40:4401–8
    [Google Scholar]
  142. 142.
    van Houte S, Ros VID, van Oers MM. 2013. Walking with insects: molecular mechanisms behind parasitic manipulation of host behaviour. Mol. Ecol. 22:133458–75
    [Google Scholar]
  143. 143.
    Verburgt L, Ferreira M, Ferguson JWH. 2011. Male field cricket song reflects age, allowing females to prefer young males. Anim. Behav. 81:119–29
    [Google Scholar]
  144. 144.
    von Schilcher F. 1977. A mutation which changes courtship song in Drosophila melanogaster. Behav. Genet. 7:3251–59
    [Google Scholar]
  145. 145.
    Walker TJ. 1962. Factors responsible for intraspecific variation in the calling songs of crickets. Evolution 16:4407–28
    [Google Scholar]
  146. 146.
    Weddle CB, Mitchell C, Bay SK, Sakaluk SK, Hunt J. 2012. Sex-specific genotype-by-environment interactions for cuticular hydrocarbon expression in decorated crickets, Gryllodes sigillatus: implications for the evolution of signal reliability. J. Evol. Biol. 25:102112–25
    [Google Scholar]
  147. 147.
    White TE, Latty T. 2020. Flies improve the salience of iridescent sexual signals by orienting toward the sun. Behav. Ecol. 31:61401–9
    [Google Scholar]
  148. 148.
    White TE, Zeil J, Kemp DJ. 2015. Signal design and courtship presentation coincide for highly biased delivery of an iridescent butterfly mating signal. Evolution 69:114–25
    [Google Scholar]
  149. 149.
    Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N et al. 2015. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J. Lipid Res. 56:112094–101
    [Google Scholar]
  150. 150.
    Widmayer P, Heifetz Y, Breer H. 2009. Expression of a pheromone receptor in ovipositor sensilla of the female moth (Heliothis virescens). Insect Mol. Biol. 18:4541–47
    [Google Scholar]
  151. 151.
    Wiley RH, Richards DG. 1978. Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav. Ecol. Sociobiol. 3:169–94
    [Google Scholar]
  152. 152.
    Worden BD, Parker PG, Pappas PW. 2000. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59:3543–50
    [Google Scholar]
  153. 153.
    Xu J, Huigens ME, Orr D, Groot AT. 2014. Differential response of Trichogramma wasps to extreme sex pheromone types of the noctuid moth Heliothis virescens: response of Trichogramma wasps to moth odours. Ecol. Entomol. 39:5627–36
    [Google Scholar]
  154. 154.
    Xu M, Shaw KL. 2021. Extensive linkage and genetic coupling of song and preference loci underlying rapid speciation in Laupala crickets. J. Hered. 112:2204–13
    [Google Scholar]
  155. 155.
    Yan Q, Liu X-L, Wang Y-L, Tang X-Q, Shen Z-J et al. 2019. Two sympatric spodoptera species could mutually recognize sex pheromone components for behavioral isolation. Front. Physiol. 10:1256
    [Google Scholar]
  156. 156.
    Yew JY, Chung H. 2015. Insect pheromones: an overview of function, form, and discovery. Prog. Lipid Res. 59:88–105
    [Google Scholar]
  157. 157.
    Yong E. 2022. An Immense World: How Animal Senses Reveal the Hidden Realms Around Us New York: Random House. , 1st ed..
    [Google Scholar]
  158. 158.
    Zakir A, Khallaf MA, Hansson BS, Witzgall P, Anderson P. 2017. Herbivore-induced changes in cotton modulates reproductive behavior in the moth Spodoptera littoralis. Front. Ecol. Evol. 5:49
    [Google Scholar]
  159. 159.
    Zambre AM, Burns L, Suresh J, Hegeman AD, Snell-Rood EC. 2022. Developmental plasticity in multimodal signals: Light environment produces novel signalling phenotypes in a butterfly. Biol. Lett. 18:820220099
    [Google Scholar]
  160. 160.
    Zweerus NL, Caton L, De Jeu L, Groot AT. 2023. More to legs than meets the eye: presence and function of pheromone compounds on heliothine moth legs. J. Evol. Biol. 36:5780–94
    [Google Scholar]
  161. 161.
    Zweerus NL, van Wijk M, Schal C, Groot AT. 2021. Experimental evidence for female mate choice in a noctuid moth. Anim. Behav. 179:1–13
    [Google Scholar]
/content/journals/10.1146/annurev-ento-030223-111608
Loading
/content/journals/10.1146/annurev-ento-030223-111608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error