1932

Abstract

Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts’ performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host–microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-020723-102548
2024-01-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-020723-102548.html?itemId=/content/journals/10.1146/annurev-ento-020723-102548&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acevedo FE, Peiffer M, Tan C-W, Stanley B, Stanley A et al. 2017. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol. Plant-Microbe Interact. 30:127–37Highlighted the importance of Lepidoptera-associated microbes in mediating insect–plant interactions and the different ways in which microbes contribute to these interactions.
    [Google Scholar]
  2. 2.
    Ahmed MZ, Araujo-Jnr EV, Welch JJ, Kawahara AY. 2015. Wolbachia in butterflies and moths: geographic structure in infection frequency. Front. Zool. 12:16
    [Google Scholar]
  3. 3.
    Ahmed MZ, Breinholt JW, Kawahara AY. 2016. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol. Biol. 16:118
    [Google Scholar]
  4. 4.
    Allonsius CN, Van Beeck W, De Boeck I, Wittouck S, Lebeer S. 2019. The microbiome of the invertebrate model host Galleria mellonella is dominated by Enterococcus. Anim. Microbiome 1:7
    [Google Scholar]
  5. 5.
    Anand AA, Vennison SJ, Sankar SG, Prabhu DI, Vasan PT et al. 2010. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J. Insect Sci. 10:107
    [Google Scholar]
  6. 6.
    Arai H, Hirano T, Akizuki N, Abe A, Nakai M et al. 2019. Multiple infection and reproductive manipulations of Wolbachia in Homona magnanima (Lepidoptera: Tortricidae). Microb. Ecol. 77:257–66
    [Google Scholar]
  7. 7.
    Araujo FS, Barcelos RM, Mendes TAO, Mafra C. 2021. Molecular evidence of Rickettsia felis in Phereoeca sp. Rev. Bras. Parasitol. Vet. 30:e015620
    [Google Scholar]
  8. 8.
    Arthurs S, Dara SK. 2019. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 165:13–21
    [Google Scholar]
  9. 9.
    Banerjee S, Maiti TK, Roy RN. 2022. Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Crit. Rev. Biotechnol. 42:384–402
    [Google Scholar]
  10. 10.
    Berman TS, Laviad-Shitrit S, Lalzar M, Halpern M, Inbar M. 2018. Cascading effects on bacterial communities: Cattle grazing causes a shift in the microbiome of a herbivorous caterpillar. ISME J. 12:1952–63
    [Google Scholar]
  11. 11.
    Bolanos LM, Servin-Garciduenas LE, Martinez-Romero E. 2015. Arthropod-Spiroplasma relationship in the genomic era. FEMS Microbiol. Ecol. 91:1–8
    [Google Scholar]
  12. 12.
    Brinkmann N, Martens R, Tebbe CC. 2008. Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl. Environ. Microbiol. 74:7189–96
    [Google Scholar]
  13. 13.
    Broderick NA, Raffa KF, Goodman RM, Handelsman J. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70:293–300
    [Google Scholar]
  14. 14.
    Bulla LA. 1975. Bacteria as insect pathogens. Annu. Rev. Microbiol. 29:163–90
    [Google Scholar]
  15. 15.
    Chen B, Du K, Sun C, Vimalanathan A, Liang X et al. 2018. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12:2252–62
    [Google Scholar]
  16. 16.
    Chen B, Mason CJ, Peiffer M, Zhang D, Shao Y, Felton GW. 2022. Enterococcal symbionts of caterpillars facilitate the utilization of a suboptimal diet. J. Insect Physiol. 138:104369
    [Google Scholar]
  17. 17.
    Chen B, Sun C, Liang X, Lu X, Gao Q et al. 2016. Draft genome sequence of Enterococcus mundtii SL 16, an indigenous gut bacterium of the polyphagous pest Spodoptera littoralis. Front. Microbiol. 7:1676
    [Google Scholar]
  18. 18.
    Chen B, Teh BS, Sun C, Hu S, Lu X et al. 2016. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6:29505First systematic survey of metabolically active gut microbes across the full moth life cycle.
    [Google Scholar]
  19. 19.
    Chen B, Zhang N, Xie S, Zhang X, He J et al. 2020. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 143:105886Established a germ-free rearing protocol to avoid the influence of natural gut microbiota and antibiotics.
    [Google Scholar]
  20. 20.
    de Oliveira N, Consoli FL. 2020. Beyond host regulation: Changes in gut microbiome of permissive and non-permissive hosts following parasitization by the wasp Cotesia flavipes. FEMS Microbiol. Ecol. 96:fiz206
    [Google Scholar]
  21. 21.
    Deguenon JM, Dhammi A, Ponnusamy L, Travanty NV, Cave G et al. 2021. Bacterial microbiota of field-collected Helicoverpa zea (Lepidoptera: Noctuidae) from transgenic Bt and non-Bt cotton. Microorganisms 9:878
    [Google Scholar]
  22. 22.
    Dicke M, Cusumano A, Poelman EH. 2020. Microbial symbionts of parasitoids. Annu. Rev. Entomol. 65:171–90
    [Google Scholar]
  23. 23.
    Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S et al. 2017. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3:e1700585
    [Google Scholar]
  24. 24.
    Dillon RJ, Dillon VM. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49:71–92
    [Google Scholar]
  25. 25.
    Douglas AE. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60:17–34
    [Google Scholar]
  26. 26.
    Duplouy A, Brattstrom O. 2018. Wolbachia in the genus Bicyclus: a forgotten player. Microb. Ecol. 75:255–63
    [Google Scholar]
  27. 27.
    Duplouy A, Hornett EA. 2018. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ 6:e4629
    [Google Scholar]
  28. 28.
    Ellegaard KM, Suenami S, Miyazaki R, Engel P. 2020. Vast differences in strain-level diversity in the gut microbiota of two closely related honey bee species. Curr. Biol. 30:2520–31.e7
    [Google Scholar]
  29. 29.
    Engel P, Moran NA. 2013. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37:699–735
    [Google Scholar]
  30. 30.
    Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A. 2014. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5:547–54
    [Google Scholar]
  31. 31.
    Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF. 2006. Wolbachia infection suppresses both host defence and parasitoid counter-defence. Proc. R. Soc. B 273:791–96
    [Google Scholar]
  32. 32.
    Gandotra S, Kumar A, Naga K, Bhuyan PM, Gogoi DK et al. 2018. Bacterial community structure and diversity in the gut of the muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae), from India. Insect Mol. Biol. 27:603–19
    [Google Scholar]
  33. 33.
    Ghanavi HR, Twort VG, Duplouy A. 2021. Exploring bycatch diversity of organisms in whole genome sequencing of Erebidae moths (Lepidoptera). Sci. Rep. 11:24499
    [Google Scholar]
  34. 34.
    Gharsallah H, Ksentini I, Abdelhedi N, Naayma S, Hadj Taieb K et al. 2019. Screening of bacterial isolates related to olive orchard pests in Tunisia using 16S ribosomal RNA and evaluation of their biotechnological potential. J. Appl. Microbiol. 126:489–502
    [Google Scholar]
  35. 35.
    Gohl P, LeMoine CMR, Cassone BJ. 2022. Diet and ontogeny drastically alter the larval microbiome of the invertebrate model Galleria mellonella. Can. J. Microbiol. 68:594–604
    [Google Scholar]
  36. 36.
    Gomes AFF, Omoto C, Consoli FL. 2020. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J. Pest Sci. 93:833–51
    [Google Scholar]
  37. 37.
    Gomes SIF, Kielak AM, Hannula SE, Heinen R, Jongen R et al. 2020. Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim. Microbiome 2:37
    [Google Scholar]
  38. 38.
    Gomes T, Wallau GL, Loreto ELS. 2022. Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods. Sci. Rep. 12:8131
    [Google Scholar]
  39. 39.
    Gonzalez-Serrano F, Perez-Cobas AE, Rosas T, Baixeras J, Latorre A, Moya A. 2020. The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microb. Ecol. 79:960–70
    [Google Scholar]
  40. 40.
    Hammer TJ, Bowers MD. 2015. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14
    [Google Scholar]
  41. 41.
    Hammer TJ, Dickerson JC, McMillan WO, Fierer N. 2020. Heliconius butterflies host characteristic and phylogenetically structured adult-stage microbiomes. Appl. Environ. Microbiol. 86:e02007-20
    [Google Scholar]
  42. 42.
    Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. 2017. Caterpillars lack a resident gut microbiome. PNAS 114:9641–46Demonstrated that Manduca sexta is symbiont independent; but see also Reference 117.
    [Google Scholar]
  43. 43.
    Hannula SE, Zhu F, Heinen R, Bezemer TM. 2019. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10:1254Demonstrated that Lepidoptera microbiomes are enriched in particular beneficial microbes to an extent disproportionate to their relative presence in soils.
    [Google Scholar]
  44. 44.
    Harrison JG, Urruty DM, Forister ML. 2016. An exploration of the fungal assemblage in each life history stage of the butterfly, Lycaeides melissa (Lycaenidae), as well as its host plant Astragalus canadensis (Fabaceae). Fungal Ecol. 22:10–16
    [Google Scholar]
  45. 45.
    Hauffe HC, Barelli C. 2019. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20:19–27
    [Google Scholar]
  46. 46.
    Hernandez-Martinez P, Naseri B, Navarro-Cerrillo G, Escriche B, Ferre J, Herrero S. 2010. Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ. Microbiol. 12:2730–37
    [Google Scholar]
  47. 47.
    Higuita Palacio MF, Montoya OI, Saldamando CI, Garcia-Bonilla E, Junca H et al. 2021. Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key Enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from northwestern Colombia. J. Insect Sci. 21:10
    [Google Scholar]
  48. 48.
    Hu L, Sun Z, Xu C, Wang J, Mallik AU et al. 2022. High nitrogen in maize enriches gut microbiota conferring insecticide tolerance in lepidopteran pest Spodoptera litura. iScience 25:103726
    [Google Scholar]
  49. 49.
    Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim G et al. 2007. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J. Appl. Microbiol. 103:2664–75
    [Google Scholar]
  50. 50.
    Indiragandhi P, Anandham R, Madhaiyan M, Sa T. 2008. Characterization of plant growth–promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56:327–33
    [Google Scholar]
  51. 51.
    Jensen BAH, Holm JB, Larsen IS, von Burg N, Derer S et al. 2021. Lysates of Methylococcus capsulatus Bath induce a lean-like microbiota, intestinal FoxP3+RORγ+IL-17+ Tregs and improve metabolism. Nat. Commun. 12:1093
    [Google Scholar]
  52. 52.
    Johnston PR, Rolff J. 2015. Host and symbiont jointly control gut microbiota during complete metamorphosis. PLOS Pathog. 11:e1005246Demonstrated that symbiotic gut microbes pass through Lepidoptera metamorphosis and benefit the resulting adult host.
    [Google Scholar]
  53. 53.
    Juottonen H, Moghadam NN, Murphy L, Mappes J, Galarza JA. 2022. Host's genetic background determines the outcome of reciprocal faecal transplantation on life-history traits and microbiome composition. Anim. Microbiome 4:67
    [Google Scholar]
  54. 54.
    Kaiser W, Huguet E, Casas J, Commin C, Giron D. 2010. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. Biol. Sci. 277:2311–19Demonstrated that Lepidoptera leaf-miners rely on Wolbachia to cope with nutritional constraints in senescent leaves.
    [Google Scholar]
  55. 55.
    Kamala Jayanthi PD, Vyas M 2022. Exploring the transient microbe population on citrus butterfly wings. Microbiol. Spectr. 10:e0205521
    [Google Scholar]
  56. 56.
    Kikuchi Y, Hosokawa T, Fukatsu T. 2007. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73:4308–16
    [Google Scholar]
  57. 57.
    Kingsley VV. 1972. Persistence of intestinal bacteria in the developmental stages of the Monarch butterfly (Danaus plexippus). J. Invertebr. Pathol. 20:51–58
    [Google Scholar]
  58. 58.
    Koga R, Moriyama M, Onodera-Tanifuji N, Ishii Y, Takai H et al. 2022. Single mutation makes Escherichia coli an insect mutualist. Nat. Microbiol. 7:1141–50
    [Google Scholar]
  59. 59.
    Kowallik V, Mikheyev AS. 2021. Honey bee larval and adult microbiome life stages are effectively decoupled with vertical transmission overcoming early life perturbations. mBio 12:e0296621
    [Google Scholar]
  60. 60.
    Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M et al. 2018. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16:540–50
    [Google Scholar]
  61. 61.
    Lei S, Zhang F, Yun YL, Zhou WH, Peng Y. 2020. Wolbachia bacteria affect rice striped stem borer (Chilo suppressalis) susceptibility to two insecticides. Bull. Insectol. 73:39–44
    [Google Scholar]
  62. 62.
    Li G, Cai M, Zheng X, Xie X, Zhu Y, Long Y. 2022. Impact of disinfectants on the intestinal bacterial symbionts and immunity of silkworm (Bombyx mori L.). Environ. Sci. Pollut. Res. Int. 29:79545–54
    [Google Scholar]
  63. 63.
    Li Y, Liu Z, Liu C, Shi Z, Pang L et al. 2022. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 185:2975–87.e10Demonstrated that Lepidopterans acquired, on average, the highest number of horizontal gene transfer–acquired genes in insects, mostly from bacteria.
    [Google Scholar]
  64. 64.
    Liang X, Sun C, Chen B, Du K, Yu T et al. 2018. Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl. Microbiol. Biotechnol. 102:4951–62
    [Google Scholar]
  65. 65.
    Liang Y, Hong Y, Mai Z, Zhu Q, Guo L. 2019. Internal and external microbial community of the Thitarodes moth, the host of Ophiocordyceps sinensis. Microorganisms 7:517
    [Google Scholar]
  66. 66.
    Longdon B, Day JP, Schulz N, Leftwich PT, de Jong MA et al. 2017. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. Proc. Biol. Sci. 284:20162381
    [Google Scholar]
  67. 67.
    Longdon B, Jiggins FM. 2012. Vertically transmitted viral endosymbionts of insects: Do sigma viruses walk alone?. Proc. Biol. Sci. 279:3889–98
    [Google Scholar]
  68. 68.
    Lukasiewicz K, Sanak M, Wegrzyn G. 2016. A lack of Wolbachia-specific DNA in samples from Apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings. J. Appl. Genet. 57:271–74
    [Google Scholar]
  69. 69.
    Ma D, Leulier F. 2018. The importance of being persistent: the first true resident gut symbiont in Drosophila. PLOS Biol. 16:e2006945
    [Google Scholar]
  70. 70.
    Ma Q, Cui Y, Chu X, Li G, Yang M et al. 2021. Gut bacterial communities of Lymantria xylina and their associations with host development and diet. Microorganisms 9:1860
    [Google Scholar]
  71. 71.
    Marin-Miret J, Gonzalez-Serrano F, Rosas T, Baixeras J, Latorre A et al. 2022. Temporal variations shape the gut microbiome ecology of the moth Brithys crini. Environ. Microbiol. 24:3939–53
    [Google Scholar]
  72. 72.
    Martinson VG, Carpinteyro-Ponce J, Moran NA, Markow TA. 2017. A distinctive and host-restricted gut microbiota in populations of a cactophilic Drosophila species. Appl. Environ. Microbiol. 83:e01551-17
    [Google Scholar]
  73. 73.
    Mason CJ, Clair AS, Peiffer M, Gomez E, Jones AG et al. 2020. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLOS ONE 15:e0229848
    [Google Scholar]
  74. 74.
    Mason CJ, Couture JJ, Raffa KF. 2014. Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–10
    [Google Scholar]
  75. 75.
    Mason CJ, Lowe-Power TM, Rubert-Nason KF, Lindroth RL, Raffa KF. 2016. Interactions between bacteria and aspen defense chemicals at the phyllosphere–herbivore interface. J. Chem. Ecol. 42:193–201
    [Google Scholar]
  76. 76.
    Mason CJ, Peiffer M, Chen B, Hoover K, Felton GW. 2022. Opposing growth responses of lepidopteran larvae to the establishment of gut microbiota. Microbiol. Spectr. 10:e0194122
    [Google Scholar]
  77. 77.
    Mason CJ, Peiffer M, Felton GW, Hoover K. 2022. Host-specific larval lepidopteran mortality to pathogenic Serratia mediated by poor diet. J. Invertebr. Pathol. 194:107818
    [Google Scholar]
  78. 78.
    Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG et al. 2019. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. PNAS 116:15991–96
    [Google Scholar]
  79. 79.
    Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH et al. 2011. From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio 2:e00065-11
    [Google Scholar]
  80. 80.
    Mazumdar T, Teh BS, Murali A, Schmidt-Heck W, Schlenker Y et al. 2021. Transcriptomics reveal the survival strategies of Enterococcus mundtii in the gut of Spodoptera littoralis. J. Chem. Ecol. 47:227–41
    [Google Scholar]
  81. 81.
    McMillan LE, Adamo SA. 2020. Friend or foe? Effects of host immune activation on the gut microbiome in the caterpillar Manduca sexta. J. Exp. Biol. 223:jeb226662
    [Google Scholar]
  82. 82.
    Mereghetti V, Chouaia B, Limonta L, Locatelli DP, Montagna M. 2019. Evidence for a conserved microbiota across the different developmental stages of Plodia interpunctella. Insect Sci. 26:466–78
    [Google Scholar]
  83. 83.
    Minard G, Kahilainen A, Biere A, Pakkanen H, Mappes J, Saastamoinen M. 2022. Complex plant quality-microbiota-population interactions modulate the response of a specialist herbivore to the defence of its host plant. Funct. Ecol. 36:2873–88
    [Google Scholar]
  84. 84.
    Mitter C, Davis DR, Cummings MP. 2017. Phylogeny and evolution of Lepidoptera. Annu. Rev. Entomol. 62:265–83
    [Google Scholar]
  85. 85.
    Montagna M, Mereghetti V, Gargari G, Guglielmetti S, Faoro F et al. 2016. Evidence of a bacterial core in the stored products pest Plodia interpunctella: the influence of different diets. Environ. Microbiol. 18:4961–73
    [Google Scholar]
  86. 86.
    Myers JH, Cory JS. 2016. Ecology and evolution of pathogens in natural populations of Lepidoptera. Evol. Appl. 9:231–47
    [Google Scholar]
  87. 87.
    Nakanishi K, Hoshino M, Nakai M, Kunimi Y. 2008. Novel RNA sequences associated with late male killing in Homona magnanima. Proc. Biol. Sci. 275:1249–54
    [Google Scholar]
  88. 88.
    Noel G, Serteyn L, Sare AR, Massart S, Delvigne F, Francis F. 2022. Co-diet supplementation of low density polyethylene and honeybee wax did not influence the core gut bacteria and associated enzymes of Galleria mellonella larvae (Lepidoptera: Pyralidae). Int. Microbiol. 26:397–409
    [Google Scholar]
  89. 89.
    Oliveira NC, Rodrigues PA, Cônsoli FL. 2023. Host-adapted strains of Spodoptera frugiperda hold and share a core microbial community across the Western Hemisphere. Microbial. Ecol 85:1552–63
    [Google Scholar]
  90. 90.
    Oliver KM, Higashi CHV. 2019. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr. Opin. Insect Sci. 32:1–7
    [Google Scholar]
  91. 91.
    Pan Q, Shikano I, Hoover K, Liu T-X, Felton GW. 2019. Enterobacter ludwigii, isolated from the gut microbiota of Helicoverpa zea, promotes tomato plant growth and yield without compromising anti-herbivore defenses. Arthropod-Plant Interact. 13:271–78
    [Google Scholar]
  92. 92.
    Pilon FM, da Rocha Silva C, Visôtto LE, de Almeida Barros R, Rodrigues da Silva Júnior N et al. 2017. Purification and characterization of trypsin produced by gut bacteria from Anticarsia gemmatalis. Arch. Insect Biochem. Physiol. 96:e21407
    [Google Scholar]
  93. 93.
    Pinto-Tomas AA, Sittenfeld A, Uribe-Lorio L, Chavarria F, Mora M et al. 2011. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 40:1111–22
    [Google Scholar]
  94. 94.
    Ravenscraft A, Berry M, Hammer T, Peay K, Boggs C. 2019. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89:e01346Suggested that nondietary aspects of host biology play a large role in structuring butterfly gut communities.
    [Google Scholar]
  95. 95.
    Reese AT, Dunn RR. 2018. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9:e01294-18
    [Google Scholar]
  96. 96.
    Risely A. 2020. Applying the core microbiome to understand host-microbe systems. J. Anim. Ecol. 89:1549–58
    [Google Scholar]
  97. 97.
    Rizvi SZ, Raman A. 2015. Epiphyas postvittana (Lepidoptera: Tortricidae)-Botrytis cinerea (Helotiales: Sclerotiniaceae)-Vitis vinifera (Vitales: Vitaceae) interaction: the role of B. cinerea on the development of E. postvittana in synthetic nutritional media. J. Econ. Entomol. 108:1646–54
    [Google Scholar]
  98. 98.
    Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J. 2010. Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microb. Ecol. 59:199–211
    [Google Scholar]
  99. 99.
    Rosa E, Minard G, Lindholm J, Saastamoinen M. 2019. Moderate plant water stress improves larval development, and impacts immunity and gut microbiota of a specialist herbivore. PLOS ONE 14:e0204292
    [Google Scholar]
  100. 100.
    Salem H, Kaltenpoth M. 2022. Beetle-bacterial symbioses: endless forms most functional. Annu. Rev. Entomol. 67:201–19
    [Google Scholar]
  101. 101.
    Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W. 2017. Symbiont-derived antimicrobials contribute to the control of the Lepidopteran gut microbiota. Cell Chem. Biol. 24:66–75
    [Google Scholar]
  102. 102.
    Shin YH, Beom JY, Chung B, Shin Y, Byun WS et al. 2019. Bombyxamycins A and B, cytotoxic macrocyclic lactams from an intestinal bacterium of the silkworm Bombyxmori. Org. Lett. 21:1804–8
    [Google Scholar]
  103. 103.
    Sigut M, Pyszko P, Sigutova H, Visnovska D, Kostovcik M et al. 2022. Fungi are more transient than bacteria in caterpillar gut microbiomes. Sci. Rep. 12:15552
    [Google Scholar]
  104. 104.
    Sigutova H, Sigut M, Pyszko P, Kostovcik M, Kolarik M, Drozd P. 2023. Seasonal shifts in bacterial and fungal microbiomes of leaves and associated leaf-mining larvae reveal persistence of core taxa regardless of diet. Microbiol. Spectr. 11:e0316022
    [Google Scholar]
  105. 105.
    Suh SO, Noda H, Blackwell M. 2001. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol. Biol. Evol. 18:995–1000
    [Google Scholar]
  106. 106.
    Takatsuka J, Kunimi Y. 2000. Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima diakonoff (Lepidoptera: tortricidae). J. Invertebr. Pathol. 76:222–26
    [Google Scholar]
  107. 107.
    Tang R, Liu F, Lan Y, Wang J, Wang L et al. 2022. Transcriptomics and metagenomics of common cutworm (Spodoptera litura) and fall armyworm (Spodoptera frugiperda) demonstrate differences in detoxification and development. BMC Genom. 23:388
    [Google Scholar]
  108. 108.
    Tang X, Freitak D, Vogel H, Ping L, Shao Y et al. 2012. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLOS ONE 7:e36978
    [Google Scholar]
  109. 109.
    Teh BS, Apel J, Shao Y, Boland W. 2016. Colonization of the intestinal tract of the polyphagous pest Spodoptera littoralis with the GFP-tagged indigenous gut bacterium Enterococcus mundtii. Front. Microbiol. 7:928
    [Google Scholar]
  110. 110.
    van der Hoeven R, Betrabet G, Forst S. 2008. Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction. FEMS Microbiol. Lett. 286:249–56
    [Google Scholar]
  111. 111.
    Van Moll L, De Smet J, Cos P, Van Campenhout L. 2021. Microbial symbionts of insects as a source of new antimicrobials: a review. Crit. Rev. Microbiol. 47:562–79
    [Google Scholar]
  112. 112.
    Vilanova C, Baixeras J, Latorre A, Porcar M. 2016. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7:1005
    [Google Scholar]
  113. 113.
    Wang J, Mason CJ, Ju X, Xue R, Tong L et al. 2021. Parasitoid causes cascading effects on plant-induced defenses mediated through the gut bacteria of host caterpillars. Front. Microbiol. 12:708990
    [Google Scholar]
  114. 114.
    Wang Y, Zhu J, Fang J, Shen L, Ma S et al. 2020. Diversity, composition and functional inference of gut microbiota in Indian cabbage white Pieris canidia (Lepidoptera: Pieridae). Life 10:254
    [Google Scholar]
  115. 115.
    Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA. 2007. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLOS Biol. 5:e114
    [Google Scholar]
  116. 116.
    Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. 2015. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. Biol. Sci. 282:20150249
    [Google Scholar]
  117. 117.
    Windfelder AG, Muller FHH, Mc Larney B, Hentschel M, Bohringer AC et al. 2022. High-throughput screening of caterpillars as a platform to study host-microbe interactions and enteric immunity. Nat. Commun. 13:7216Revealed a previously unknown protective function of the Manduca sexta resident gut microbiome.
    [Google Scholar]
  118. 118.
    Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S et al. 2012.. “ This is not an apple”—yeast mutualism in codling moth. J. Chem. Ecol. 38:949–57
    [Google Scholar]
  119. 119.
    Wong AC, Chaston JM, Douglas AE. 2013. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7:1922–32
    [Google Scholar]
  120. 120.
    Wu G, Zhao Z, Liu C, Qiu L. 2014. Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. J. Econ. Entomol. 107:559–69
    [Google Scholar]
  121. 121.
    Xia X, Gurr GM, Vasseur L, Zheng D, Zhong H et al. 2017. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front. Microbiol. 8:663
    [Google Scholar]
  122. 122.
    Xie J, Vilchez I, Mateos M. 2010. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLOS ONE 5:e12149
    [Google Scholar]
  123. 123.
    Xu P, Liu Y, Graham RI, Wilson K, Wu K. 2014. Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLOS Pathog. 10:e1004490
    [Google Scholar]
  124. 124.
    Yamasaki Y, Sumioka H, Takiguchi M, Uemura T, Kihara Y et al. 2021. Phytohormone-dependent plant defense signaling orchestrated by oral bacteria of the herbivore Spodoptera litura. New Phytol. 231:2029–38
    [Google Scholar]
  125. 125.
    Yang J, Yang Y, Wu WM, Zhao J, Jiang L. 2014. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 48:13776–84
    [Google Scholar]
  126. 126.
    Yoon SA, Harrison JG, Philbin CS, Dodson CD, Jones DM et al. 2019. Host plant-dependent effects of microbes and phytochemistry on the insect immune response. Oecologia 191:141–52
    [Google Scholar]
  127. 127.
    Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS et al. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80:5254–64
    [Google Scholar]
  128. 128.
    Zeng JY, Vuong TM, Guo JX, Shi JH, Shi ZB et al. 2020. Diel pattern in the structure and function of the gut microbial community in Lymantria dispar asiatica (Lepidoptera: Lymantriidae) larvae. Arch. Insect Biochem. Physiol. 104:e21691
    [Google Scholar]
  129. 129.
    Zhang J, Gao D, Li Q, Zhao Y, Li L et al. 2020. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci. Total Environ. 704:135931
    [Google Scholar]
  130. 130.
    Zhang S, Huang J, Wang Q, You M, Xia X. 2022. Changes in the host gut microbiota during parasitization by parasitic wasp Cotesia vestalis. Insects 13:760
    [Google Scholar]
  131. 131.
    Zhang Y, Liu S, Jiang R, Zhang C, Gao T et al. 2021. Wolbachia strain wGri from the tea geometrid moth Ectropis grisescens contributes to its host's fecundity. Front. Microbiol. 12:694466
    [Google Scholar]
  132. 132.
    Zhang Z, Peng H, Yang D, Zhang G, Zhang J, Ju F. 2022. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat. Commun. 13:5360
    [Google Scholar]
/content/journals/10.1146/annurev-ento-020723-102548
Loading
/content/journals/10.1146/annurev-ento-020723-102548
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error