1932

Abstract

Throughout the past century, the global spread of pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of . We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of pests and to share experience and knowledge to combat it.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-012723-102658
2024-01-25
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-012723-102658.html?itemId=/content/journals/10.1146/annurev-ento-012723-102658&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akami M, Ren XM, Qi X, Mansour A, Gao B et al. 2019. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae). BMC Microbiol. 19:229
    [Google Scholar]
  2. 2.
    Aketarawong N, Bonizzoni M, Thanaphum S, Gomulski LM, Gasperi G et al. 2007. Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Mendel). Mol. Ecol. 16:3522–32
    [Google Scholar]
  3. 3.
    Alon DM, Partosh T, Burstein D, Pines G. 2023. Rapid and sensitive on-site genetic diagnostics of pest fruit flies using CRISPR-Cas12a. Pest Manag. Sci. 79:68–75
    [Google Scholar]
  4. 4.
    Aluja M, Norrbom A. 1999. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior Boca Raton, FL: CRC Press
  5. 5.
    Alvarez S, Evans EA, Hodges AW. 2016. Estimated costs and regional economic impacts of the oriental fruit fly (Bactrocera dorsalis) outbreak in Miami-Dade county, Florida Rep. EDIS FE988 Univ. Fla./Inst. Food Agric. Sci. Ext. Gainesville, FL:
    [Google Scholar]
  6. 6.
    Aryal S, Nielsen UN, Sumaya NH, Wilson C, Riegler M. 2022. Effect of temperature on survival of Australian entomopathogenic nematodes and their virulence against the Queensland fruit fly, Bactrocera tryoni. BioControl 67:617–28
    [Google Scholar]
  7. 7.
    Asokan R, Rebijith KB, Singh SK, Sidhu AS, Siddharthan S et al. 2011. Molecular identification and phylogeny of Bactrocera species (Diptera: Tephritidae). Fla. Entomol. 94:1026–35
    [Google Scholar]
  8. 8.
    Barr NB, Hauser M, Belcher J, Salinas D, Schuenzel E et al. 2021. Use of ITS-1 to identify Bactrocera dorsalis and Bactrocera occipitalis (Diptera: Tephritidae): a case study using flies trapped in California from 2008 to 2018. Fla. Entomol. 104:96–106
    [Google Scholar]
  9. 9.
    Barr NB, Ledezma LA, Leblanc L, San Jose M, Rubinoff D et al. 2014. Genetic diversity of Bactrocera dorsalis (Diptera: Tephritidae) on the Hawaiian Islands: implications for an introduction pathway into California. J. Econ. Entomol. 107:1946–58
    [Google Scholar]
  10. 10.
    Bertelsmeier C, Keller L. 2018. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33:527–34
    [Google Scholar]
  11. 11.
    Blackburn TM, Pysek P, Bacher S, Carlton JT, Duncan RP et al. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:333–39
    [Google Scholar]
  12. 12.
    Blaser S, Diem H, von Felten A, Gueuning M, Andreou M et al. 2018. From laboratory to point of entry: development and implementation of a loop-mediated isothermal amplification (LAMP)-based genetic identification system to prevent introduction of quarantine insect species. Pest Manag. Sci. 74:1504–12
    [Google Scholar]
  13. 13.
    Blumenfeld AJ, Vargo EL. 2020. Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol. Invasions 22:3269–82
    [Google Scholar]
  14. 14.
    Cantrell B, Cahill A, Chadwick B. 2002. Fruit Fly Fighters: Eradication of the Papaya Fruit Fly Melbourne, Aust: CSIRO Publ.
  15. 15.
    Carey JR. 1989. Demographic analysis of fruit flies. World Crop Pests: Fruit Flies, Natural Enemies and Control AS Robinson, G Hooper 252–65. Amsterdam: Elsevier
    [Google Scholar]
  16. 16.
    Carey JR. 1991. Establishment of the Mediterranean fruit fly in California. Science 253:1369–73
    [Google Scholar]
  17. 17.
    Carey JR, Papadopoulos N, Plant R. 2017. The 30-year debate on a multi-billion-dollar threat: tephritid fruit fly establishment in California. Am. Entomol. 63:100–13
    [Google Scholar]
  18. 18.
    Carey JR, Papadopoulos N, Plant R. 2017. Oriental fruit fly outbreaks in California: 48 consecutive years, 235 cities, 1500 detections—and counting. Am. Entomol. 63:232–36
    [Google Scholar]
  19. 19.
    Carey JR, Yang PJ, Foote D. 1988. Demographic analysis of insect reproductive levels, patterns and heterogeneity: case study of laboratory strains of three Hawaiian tephritids. Entomol. Exp. Appl. 46:85–91
    [Google Scholar]
  20. 20.
    Chailleux A, Thiao DS, Diop S, Bouvery F, Ahmad S et al. 2021. Understanding Bactrocera dorsalis trapping to calibrate area-wide management. J. Appl. Entomol. 145:831–40
    [Google Scholar]
  21. 21.
    Clarke AR. 2019. Biology and Management of Bactrocera and Related Fruit Flies Wallingford, UK: CABI
    [Google Scholar]
  22. 22.
    Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S et al. 2005. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu. Rev. Entomol. 50:293–319
    [Google Scholar]
  23. 23.
    Clarke AR, Powell KS, Weldon CW, Taylor PW. 2011. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158:26–54
    [Google Scholar]
  24. 24.
    Clausen CP, Clancy DW, Chock QC. 1965. Biological control of the oriental fruit fly (Dacus dorsalis Hendel) and other fruit flies in Hawaii Tech. Bull. 1322 US Dept. Agric. Washington, DC:
    [Google Scholar]
  25. 25.
    Crooks JA. 2005. Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–29
    [Google Scholar]
  26. 26.
    Crooks JA, Soule ME 1999. Lag times in population explosions of invasive species: causes and implications. Invasive Species and Biodiversity Management OT Sandlend, PJ Schei, Å Viken 103–25. Berlin: Springer
    [Google Scholar]
  27. 27.
    Cui H, Zeng Y, Reddy GVP, Gao F, Li Z et al. 2021. UV radiation increases mortality and decreases the antioxidant activity in a tephritid fly. Food Energy Secur. 10:e297
    [Google Scholar]
  28. 28.
    De Meyer M, Robertson MP, Mansell MW, Ekesi S, Tsuruta K et al. 2010. Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae). Bull. Entomol. Res. 100:35–48
    [Google Scholar]
  29. 29.
    De Villiers M, Hattingh V, Kriticos DJ, Brunel S, Vayssieres JF et al. 2016. The potential distribution of Bactrocera dorsalis: considering phenology and irrigation patterns. Bull. Entomol. Res. 106:19–33
    [Google Scholar]
  30. 30.
    Debach P. 1966. The competitive displacement and coexistence principles. Annu. Rev. Entomol. 11:183–212
    [Google Scholar]
  31. 31.
    Deschepper P, Vanbergen S, Zhang Y, Li Z, Hassani IM et al. 2023. Bactrocera dorsalis in the Indian Ocean: a tale of two invasions. Evol. Appl. 16:48–61
    [Google Scholar]
  32. 32.
    Dhillon MK, Singh R, Naresh JS, Sharma HC. 2005. The melon fruit fly, Bactrocera cucurbitae: a review of its biology and management. J. Insect Sci. 5:40
    [Google Scholar]
  33. 33.
    Diller Y, Shamsian A, Shaked B, Altman Y, Danziger BC et al. 2022. A real-time remote surveillance system for fruit flies of economic importance: sensitivity and image analysis. J. Pest Sci. 96:611–22
    [Google Scholar]
  34. 34.
    Dong Z, He Y, Ren Y, Wang G, Chu D. 2022. Seasonal and year-round distributions of Bactrocera dorsalis (Hendel) and its risk to temperate fruits under climate change. Insects 13:550
    [Google Scholar]
  35. 35.
    Doorenweerd C, Leblanc L, Norrbom AL, San Jose M, Rubinoff D 2018. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae). Zookeys 730:19–56
    [Google Scholar]
  36. 36.
    Doorenweerd C, San Jose M, Geib S, Dupuis J, Leblanc L et al. 2023. A phylogenomic approach to species delimitation in the mango fruit fly (Bactrocera frauenfeldi) complex: a new synonym of an important pest species with variable morphotypes (Diptera: Tephritidae). Syst. Entomol. 48:10–22
    [Google Scholar]
  37. 37.
    Drew RAI. 1989. The tropical fruit flies (Diptera: Tephritidae: Dacinae) of the Australasian and Oceanian regions. Mem. Qld. Mus. 26:1–521
    [Google Scholar]
  38. 38.
    Drew RAI, Hancock DL. 1994. The Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bull. Entomol. Res. Suppl. Ser. 2:1–68
    [Google Scholar]
  39. 39.
    Drew RAI, Hancock DL. 2022. Biogeography, speciation and taxonomy within the genus Bactrocera Macquart with application to the Bactrocera dorsalis (Hendel) complex of fruit flies (Diptera: Tephritidae: Dacinae). Zootaxa 5190:333–60
    [Google Scholar]
  40. 40.
    Drew RAI, Ma J, Smith S, Hughes JM. 2011. The taxonomy and phylogenetic relationships of species in the Bactrocera musae complex of fruit flies (Diptera: Tephritidae: Dacinae) in Papua New Guinea. Raffles Bull. Zool. 59:145–62
    [Google Scholar]
  41. 41.
    Duyck PF, David P, Quilici S. 2004. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol. Entomol. 29:511–20
    [Google Scholar]
  42. 42.
    Duyck PF, Jourdan H, Mille C. 2022. Sequential invasions by fruit flies (Diptera: Tephritidae) in Pacific and Indian Ocean islands: a systematic review. Ecol. Evol. 12:e8880
    [Google Scholar]
  43. 43.
    Ekesi S, Mohamed SA, De Meyer M. 2016. Fruit Fly Research and Development in Africa: Towards a Sustainable Management Strategy to Improve Horticulture Berlin: Springer
  44. 44.
    Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE et al. 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17:43–57
    [Google Scholar]
  45. 45.
    Esler KJ, Prozesky H, Sharma GP, McGeoch M. 2010. How wide is the “knowing-doing” gap in invasion biology?. Biol. Invasions 12:4065–75
    [Google Scholar]
  46. 46.
    Essl F, Dullinger S, Genovesi P, Hulme PE, Jeschke JM et al. 2019. A conceptual framework for range-expanding species that track human-induced environmental change. Bioscience 69:908–19
    [Google Scholar]
  47. 47.
    Foote D, Carey JR. 1987. Comparative demography of a laboratory and a wild strain of the oriental fruit fly, Dacus dorsalis. Entomol. Exp. Appl. 44:263–68
    [Google Scholar]
  48. 48.
    Goulielmos GN, Cosmidis N, Theodorakopoulou ME, Loukas M, Zouros E. 2003. Tracing the history of an enzyme polymorphism: the case of alcohol dehydrogenase-2 (Adh-2) of the olive fruit fly Bactrocera oleae. Mol. Biol. Evol. 20:293–306
    [Google Scholar]
  49. 49.
    Gu X, Zhao Y, Su Y, Wu J, Wang Z et al. 2019. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Bactrocera dorsalis and Bactrocera correcta. Evol. Appl. 12:1147–63
    [Google Scholar]
  50. 50.
    Gu Y, Chen K, Liu HJ, Hu X. 2006. The intercepted pests and management strategy for imported fruits from Thailand. Plant Quar. 27:81–85 ( In Chinese )
    [Google Scholar]
  51. 51.
    Guo S, Guo X, Zheng L, Zhao Z, Liu L et al. 2021. A potential genetic control by suppression of the wing developmental gene wingless in a global invasive pest Bactrocera dorsalis. J. Pest Sci. 94:517–29
    [Google Scholar]
  52. 52.
    Gutierrez AP, Ponti L, Cossu QA. 2009. Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim. Change 95:195–217
    [Google Scholar]
  53. 53.
    Hadwen W, Small A, Kitching R, Drew RAI. 1998. Potential suitability of North Queensland rainforest sites as habitat for the Asian papaya fruity, Bactrocera papaya Drew and Hancock (Diptera: Tephritidae). Aust. J. Entomol. 37:219–27
    [Google Scholar]
  54. 54.
    Hafsi A, Delatte H. 2022. Enterobactereaceae symbiont as facilitators of biological invasion: review of Tephritidae fruit flies. Biol. Invasions 25:991–1006
    [Google Scholar]
  55. 55.
    Han P, Wang X, Niu C, Dong Y, Zhu J et al. 2011. Population dynamics, phenology, and overwintering of Bactrocera dorsalis (Diptera: Tephritidae) in Hubei Province, China. J. Pest Sci. 84:289–95
    [Google Scholar]
  56. 56.
    Hardy DE. 1955. A reclassification of the Dacini (Tephritidae: Diptera). Ann. Entomol. Soc. Am. 48:425–37
    [Google Scholar]
  57. 57.
    Hardy DE. 1976. Resurrection of Bactrocera Macquart and clarification of the type-species, longicornis Macquart (Diptera: Tephritidae). Proc. Hawaii Entomol. Soc. 22:245–49
    [Google Scholar]
  58. 58.
    Hassani IM, Delatte H, Ravaomanarivo LHR, Nouhou S, Duyck PF. 2022. Niche partitioning via host plants and altitude among fruit flies following the invasion of Bactrocera dorsalis. Agric. For. Entomol. 24:575–85
    [Google Scholar]
  59. 59.
    Hebert PDN, Gregory TR. 2005. The promise of DNA barcoding for taxonomy. Syst. Biol. 54:852–59
    [Google Scholar]
  60. 60.
    Heve WK, Adjadeh TA, Billah MK. 2021. Overview and future research needs for development of effective biocontrol strategies for management of Bactrocera dorsalis Hendel (Diptera: Tephritidae) in sub-Saharan Africa. Pest Manag. Sci. 77:4224–37
    [Google Scholar]
  61. 61.
    Hill MP, Terblanche JS. 2014. Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: implications for global management of the Bactrocera dorsalis complex. PLOS ONE 9:e90121
    [Google Scholar]
  62. 62.
    Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:10–18
    [Google Scholar]
  63. 63.
    Jaleel W, Lu L, He Y. 2018. Biology, taxonomy, and IPM strategies of Bactrocera tau Walker and complex species (Diptera: Tephritidae) in Asia: a comprehensive review. Environ. Sci. Pollut. Res. 25:19346–61
    [Google Scholar]
  64. 64.
    Jaric I, Jacimovic M, Cvijanovic G, Knezevic-Jaric J, Lenhardt M. 2015. Demographic flexibility influences colonization success: profiling invasive fish species in the Danube River by the use of population models. Biol. Invasions 17:219–29
    [Google Scholar]
  65. 65.
    Jiang F, Fu W, Clarke AR, Schutze MK, Susanto A et al. 2016. A high-throughput detection method for invasive fruit fly (Diptera: Tephritidae) species based on microfluidic dynamic array. Mol. Ecol. Resour. 16:1378–88
    [Google Scholar]
  66. 66.
    Jiang F, Liang L, Wang J, Zhu S. 2022. Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms. Commun. Biol. 5:25
    [Google Scholar]
  67. 67.
    Jose MS, Doorenweerd C, Leblanc L, Barr N, Geib S et al. 2018. Tracking the origins of fly invasions: using mitochondrial haplotype diversity to identify potential source populations in two genetically intertwined fruit fly species (Bactrocera carambolae and Bactrocera dorsalis Diptera: Tephritidae). J. Econ. Entomol. 111:2914–26
    [Google Scholar]
  68. 68.
    Kang DL. 2020. Risk management of import fruits sampling in China based on pests intercepted data MA thesis Chin. Agric. Univ. Beijing: In Chinese )
  69. 69.
    Kapoor V. 2005. Taxonomy and biology of economically important fruit flies of India. Isr. J. Entomol. 35:459–75
    [Google Scholar]
  70. 70.
    Kim H, Kim S, Kim S, Lee Y, Lee H-S et al. 2021. Population genetics for inferring introduction sources of the oriental fruit fly, Bactrocera dorsalis: a test for quarantine use in Korea. Insects 12:851
    [Google Scholar]
  71. 71.
    Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I et al. 2012. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3:53–64
    [Google Scholar]
  72. 72.
    Krosch MN, Strutt F, Blacket MJ, Batovska J, Starkie M et al. 2020. Development of internal COI primers to improve and extend barcoding of fruit flies (Diptera: Tephritidae: Dacini). Insect Sci. 27:143–58
    [Google Scholar]
  73. 73.
    Larsen CC. 2021. Flying under the radar: Using spatial analytical approaches to track non-native tephritid fruit fly populations in California PhD thesis Univ. Calif. Davis:
  74. 74.
    Li D, McCarthy B, Gunawardana DN, Waite DW, Anderson D et al. 2020. Molecular identification of Bactrocera passiflorae (Diptera: Tephritidae): challenge and solution for DNA barcoding. J. Appl. Entomol. 144:877–84
    [Google Scholar]
  75. 75.
    Li D, Waite DW, Gunawardana DN, McCarthy B, Anderson D et al. 2019. DNA barcoding and real-time PCR detection of Bactrocera xanthodes (Tephritidae: Diptera) complex. Bull. Entomol. Res. 109:102–10
    [Google Scholar]
  76. 76.
    Li H, Li Z, Zhao Z. 2023. Egg-associated germs induce salicylate defenses but not render plant against a global invasive fruit fly effectively. J. Agric. Food Chem. 71:6023–31
    [Google Scholar]
  77. 77.
    Li H, Ren L, Xie M, Gao Y, He M et al. 2020. Egg-surface bacteria are indirectly associated with oviposition aversion in Bactrocera dorsalis. Curr. Biol. 30:4432–40
    [Google Scholar]
  78. 78.
    Li Z. 2015. Prevention and Control of Biological Invasions: Potential Geographical Distribution of Economically Important Fruit Flies Beijing: CAU Press In Chinese )
  79. 79.
    Li Z. 2022. Prevention and Control of Biological Invasions: Potential Loss of Economically Important Fruit Flies Beijing: CAU Press In Chinese )
  80. 80.
    Liebhold AM, Work TT, McCullough DG, Cavey JF. 2006. Airline baggage as a pathway for alien insect species invading the United States. Am. Entomol. 52:48–54
    [Google Scholar]
  81. 81.
    Liquido NJ, McQuate GT, Suiter KA, Norrbom AL, Yee WL et al. 2020. Area-Wide Management of Fruit Fly Pests Boca Raton, FL: CRC Press
  82. 82.
    Liu H, Gong B, Ma J, Xiao F. 2018. Oviposition preference of Bactrocera dorsalis Hendel and Bactrocera correcta Bezzi (Diptera: Tephritidae) to the hosts containing eggs. J. Environ. Entomol. 40:1157–63 ( In Chinese )
    [Google Scholar]
  83. 83.
    Liu H, Zhang D, Xu Y, Wang L, Cheng D et al. 2019. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China. J. Integr. Agric. 18:771–87
    [Google Scholar]
  84. 84.
    Liu X, Jin Y, Ye H. 2013. Recent spread and climatic ecological niche of the invasive guava fruit fly, Bactrocera correcta, in mainland China. J. Pest Sci. 86:449–58
    [Google Scholar]
  85. 85.
    Lux SA, Copeland RS, White IM, Manrakhan A, Billah MK. 2011. A new invasive fruit fly species from the Bactrocera dorsalis (Hendel) group detected in east Africa. Int. J. Trop. Insect Sci. 23:355–61
    [Google Scholar]
  86. 86.
    Manrakhan A, Venter JH, Hattingh V. 2015. The progressive invasion of Bactrocera dorsalis (Diptera: Tephritidae) in South Africa. Biol. Invasions 17:2803–9
    [Google Scholar]
  87. 87.
    Marchioro CA. 2016. Global potential distribution of Bactrocera carambolae and the risks for fruit production in Brazil. PLOS ONE 11:e0166142
    [Google Scholar]
  88. 88.
    Meats A, Clift AD. 2005. Zero catch criteria for declaring eradication of tephritid fruit flies: the probabilities. Aust. J. Exp. Agric. 45:1335–40
    [Google Scholar]
  89. 89.
    Midgarden D, Van Sauers-Muller A, Godoy MJS, Vayssières JF. 2016. Overview of the programme to eradicate Bactrocera carambolae in South America. Fruit Fly Research and Development in Africa: Towards a Sustainable Management Strategy to Improve Horticulture S Ekesi, SA Mohamed, M De Meyer 705–36. Berlin: Springer
    [Google Scholar]
  90. 90.
    Moquet L, Payet J, Glenac S, Delatte H. 2021. Niche shift of tephritid species after the Oriental fruit fly (Bactrocera dorsalis) invasion in La Reunion. Diver. Distrib. 27:109–29
    [Google Scholar]
  91. 91.
    Mutamiswa R, Nyamukondiwa C, Chikowore G, Chidawanyika F. 2021. Overview of oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Africa: from invasion, bio-ecology to sustainable management. Crop Prot. 141:105402
    [Google Scholar]
  92. 92.
    Mwatawala M, De Meyer M, White IM, Maerere A, Makundi RH. 2007. Detection of the solanum fruit fly, Bactrocera latifrons (Hendel) in Tanzania (Dipt., Tephritidae). J. Appl. Entomol. 131:501–3
    [Google Scholar]
  93. 93.
    Myers JH, Simberloff D, Kuris AM, Carey JR. 2000. Eradication revisited: dealing with exotic species. Trends Ecol. Evol. 15:316–20
    [Google Scholar]
  94. 94.
    Nnzeru LR, Tshikhudo PP, Mudereri BT, Moshobane MC. 2021. Pest interceptions on imported fresh fruits into South Africa. Int. J. Trop. Insect Sci. 41:3075–86
    [Google Scholar]
  95. 95.
    Nugnes F, Russo E, Viggiani G, Bernardo U. 2018. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9:182
    [Google Scholar]
  96. 96.
    Osborne R, Meats A, Frommer M, Sevd J, Drew RAI et al. 1997. Australian distribution of 17 species of fruit flies (Diptera: Tephritidae) caught in cue lure traps in February 1994. Aust. J. Entomol. 36:45–50
    [Google Scholar]
  97. 97.
    Pace R, Ascolese R, Miele F, Russo E, Griffo RV et al. 2022. The bugs in the bags: the risk associated with the introduction of small quantities of fruit and plants by airline passengers. Insects 13:617
    [Google Scholar]
  98. 98.
    Papadopoulos N, De Meyer M, Terblanche J, Kriticos D. 2024. Fruit flies: challenges and opportunities to stem the tide of global invasions. Annu. Rev. Entomol. 69:355–73
    [Google Scholar]
  99. 99.
    Papadopoulos NT, Plant RE, Carey JR. 2013. From trickle to flood: the large-scale, cryptic invasion of California by tropical fruit flies. Proc. R. Soc. B 280:20131466
    [Google Scholar]
  100. 100.
    Phillips SJ, Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–75
    [Google Scholar]
  101. 101.
    Pieterse W, Terblanche JS, Addison P. 2017. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)?. J. Insect Physiol. 98:1–6
    [Google Scholar]
  102. 102.
    Pike N, Wang WY, Meats A. 2003. The likely fate of hybrids of Bactrocera tryoni and Bactrocera neohumeralis. Heredity 90:365–70
    [Google Scholar]
  103. 103.
    Qin Y, Krosch MN, Schutze MK, Zhang Y, Wang X et al. 2018. Population structure of a global agricultural invasive pest, Bactrocera dorsalis (Diptera: Tephritidae). Evol. Appl. 11:1990–2003
    [Google Scholar]
  104. 104.
    Qin Y, Ullah F, Fang Y, Singh S, Zhao Z et al. 2021. Prediction of potential economic impact of Bactrocera zonata (Diptera: Tephritidae) in China: peaches as the example hosts. J. Asia-Pac. Entomol. 24:1101–6
    [Google Scholar]
  105. 105.
    Qin Y, Wang C, Zhao Z, Pan X, Li Z. 2019. Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Clim. Change 155:145–56
    [Google Scholar]
  106. 106.
    Ramezani S, Blibech I, Trindade Rei F, Van Asch B, Teixeira Da Costa L. 2015. Bactrocera oleae (Diptera: Tephritidae) in Iran: an invasion from the Middle West. Eur. J. Entomol. 112:713–21
    [Google Scholar]
  107. 107.
    Ratnasingham S, Hebert PDN. 2007. BOLD: the barcode of life data system. Mol. Ecol. Notes 7:355–64
    [Google Scholar]
  108. 108.
    Raza MF, Wang Y, Cai Z, Bai S, Yao Z et al. 2020. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLOS Pathog. 16:e1008441
    [Google Scholar]
  109. 109.
    Ren X, Cao S, Akami M, Mansour A, Yang Y et al. 2022. Gut symbiotic bacteria are involved in nitrogen recycling in the tephritid fruit fly Bactrocera dorsalis. BMC Biol. 20:201
    [Google Scholar]
  110. 110.
    Ren X, Yang Y, Guo R, Wang H, Qi X et al. 2023. Yeast mediates the interspecific interaction between introduced Bactrocera dorsalis and indigenous Bactrocera minax. Pest Manag. Sci. 79:428–36
    [Google Scholar]
  111. 111.
    Roderick GK. 1996. Geographic structure of insect populations: gene flow, phylogeography and their uses. Annu. Rev. Entomol. 41:325–52
    [Google Scholar]
  112. 112.
    Rwomushana I, Ekesi S, Gordon I, Ogol CKPO. 2008. Host plants and host plant preference studies for Bactrocera invadens (Diptera: Tephritidae) in Kenya, a new invasive fruit fly species in Africa. Ann. Entomol. Soc. Am. 101:331–40
    [Google Scholar]
  113. 113.
    Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305–32
    [Google Scholar]
  114. 114.
    Schutze MK, Aketarawong N, Amornsak W, Armstrong KF, Augustinos AA et al. 2015. Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Syst. Entomol. 40:456–71
    [Google Scholar]
  115. 115.
    Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE et al. 2017. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8:14435
    [Google Scholar]
  116. 116.
    Seewooruthun SI, Permalloo S, Gungah B, Soonnoo RA, Tan MA et al. 2000. Eradication of an Exotic Fruit Fly from Mauritius Georgetown, Malays: Penerbit Univ. Sains Malays.
  117. 117.
    Shelly T, Epsky N, Jang EB, Reyes-Flores J, Vargas R. 2014. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies Berlin: Springer
  118. 118.
    Shelly T, Lance DR, Tan K, Suckling D, Bloem K et al. 2017. To repeat: Can polyphagous invasive tephritid pest populations remain undetected for years under favorable climatic and host conditions?. Am. Entomol. 63:224–31
    [Google Scholar]
  119. 119.
    Shimizu Y, Kohama T, Uesato T, Matsuyama T, Yamagishi M. 2007. Invasion of solanum fruit fly Bactrocera latifrons (Diptera: Tephritidae) to Yonaguni Island, Okinawa Prefecture, Japan. Appl. Entomol. Zool. 42:269–75
    [Google Scholar]
  120. 120.
    Simpson M, Dominiak BC, McGowen IJ, Crean JJ, Sides TJ. 2020. Bioclimatic niche modelling projects a potential shift in distribution and abundance of Queensland fruit fly ‘Bactrocera tryoni’ versus Australia. Gen. Appl. Entomol. 48:61–74
    [Google Scholar]
  121. 121.
    Sridhar V, Verghese A, Vinesh LS, Jayashankar M, Jayanthi PDK. 2014. CLIMEX simulated predictions of Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) geographical distribution under climate change situations in India. Curr. Sci. 106:1702–10
    [Google Scholar]
  122. 122.
    Starkie ML, Cameron SL, Krosch MN, Phillips MJ, Royer JE et al. 2022. A comprehensive phylogeny helps clarify the evolutionary history of host breadth and lure response in the Australian Dacini fruit flies (Diptera: Tephritidae). Mol. Phylogenet. Evol. 172:107481
    [Google Scholar]
  123. 123.
    Steck GJ, Fox AJ, Carrillo D, Dean D, Roda A et al. 2019. Oriental fruit fly eradication in Florida 2015–2016 program implementation, unique aspects, and lessons learned. Am. Entomol. 65:108–21
    [Google Scholar]
  124. 124.
    Stepan NL. 2011. Eradication: Ridding the World of Diseases for Ever? Ithaca, NY: Cornell Univ. Press
  125. 125.
    Stephens AEA, Kriticos DJ, Leriche A. 2007. The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull. Entomol. Res. 97:369–78
    [Google Scholar]
  126. 126.
    Suckling DM, Kean JM, Stringer LD, Caceres-Barrios C, Hendrichs J et al. 2016. Eradication of tephritid fruit fly pest populations: outcomes and prospects. Pest Manag. Sci. 72:456–65
    [Google Scholar]
  127. 127.
    Sutherst RW, Collyer BS, Yonow T. 2000. The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera tryoni, under climate change. Aust. J. Agric. Res. 51:467–80
    [Google Scholar]
  128. 128.
    Tasnin MS, Bode M, Merkel K, Clarke AR. 2021. A polyphagous, tropical insect herbivore shows strong seasonality in age-structure and longevity independent of temperature and host availability. Sci. Rep. 11:11410
    [Google Scholar]
  129. 129.
    Tasnin MS, Kay BJ, Peek T, Merkel K, Clarke AR. 2021. Age-related changes in the reproductive potential of the Queensland fruit fly. J. Insect Physiol. 131:104245
    [Google Scholar]
  130. 130.
    Tasnin MS, Merkel K, Clarke AR. 2020. Effects of advanced age on olfactory response of male and female Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). J. Insect Physiol. 122:104024
    [Google Scholar]
  131. 131.
    Trombik J, Ward SF, Norrbom AL, Liebhold AM. 2023. Global drivers of historical true fruit fly (Diptera: Tephritidae) invasions. J. Pest Sci. 96:345–57
    [Google Scholar]
  132. 132.
    Turner R, Brockerhoff EG, Bertelsmeier C, Blake R. 2021. Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol. Appl. 31:e02412
    [Google Scholar]
  133. 133.
    Ullah F, ul Haq I, Gul H, Hafeez M, Gūncan A et al. 2022. Impact of temperature stress on demographic traits and population projection of Bactrocera dorsalis. Entomol. Gen. 42:949–57
    [Google Scholar]
  134. 134.
    VanGuilder HD, Vrana KE, Freeman WM. 2008. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–26
    [Google Scholar]
  135. 135.
    Vargas RI, Leblanc L, Putoa R, Eitam A. 2007. Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia. J. Econ. Entomol. 100:670–79
    [Google Scholar]
  136. 136.
    Vargas RI, Pinero JC, Leblanc L. 2015. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6:297–318
    [Google Scholar]
  137. 137.
    Wan X, Liu Y, Zhang B. 2012. Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: two main invasion routes. PLOS ONE 7:e36176
    [Google Scholar]
  138. 138.
    Wan X, Nardi F, Zhang B, Liu Y. 2011. The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLOS ONE 6:e25238
    [Google Scholar]
  139. 139.
    Wang Y, Zhang Y, Zhao Z. 2020. Forecasted distribution and natural overwintering north boundary of six alien invasive insects in China. Acta Phytophylacica Sin. 47:1155–56 ( In Chinese )
    [Google Scholar]
  140. 140.
    Weems HV, Heppner JB, Nation J, Fasulo TR. 2012. Oriental fruit fly, Bactrocera dorsalis (Hendel) (Insecta: Diptera: Tephritidae) Rep. Univ. Fla./Inst. Food Agric. Syst. Ext. Gainesville, FL:
    [Google Scholar]
  141. 141.
    White IM, Elson-Harris MM. 1992. Fruit Flies of Economic Significance: Their Identification and Bionomics Wallingford, UK: CABI
  142. 142.
    Xu L, Jiang HB, Yu JL, Pan D, Tao Y et al. 2023. Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly. Commun. Biol. 6:176
    [Google Scholar]
  143. 143.
    Zeng Y, Reddy GVP, Li Z, Qin Y, Wang Y et al. 2019. Global distribution and invasion pattern of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). J. Appl. Entomol. 143:165–76
    [Google Scholar]
  144. 144.
    Zhang Q, Dou W, Taning CNT, Yu SS, Yuan GR et al. 2022. miR-309a is a regulator of ovarian development in the oriental fruit fly Bactrocera dorsalis. PLOS Genet. 18:e1010411
    [Google Scholar]
  145. 145.
    Zhang Y, Liu S, De Meyer M, Liao Z, Zhao Y et al. 2023. Genomes of the cosmopolitan fruit pest Bactrocera dorsalis (Diptera: Tephritidae) reveal its global invasion history and thermal adaptation. J. Adv. Res. 43: In press
    [Google Scholar]
  146. 146.
    Zhao Z, Hui C, Plant RE, Su M, Carpenter T et al. 2019. Life table invasion models: spatial progression and species-specific partitioning. Ecology 100:e02682
    [Google Scholar]
  147. 147.
    Zhao Z, Hui C, Plant RE, Su M, Papadopoulos NT et al. 2019. The failure of success: cyclic recurrences of a globally invasive pest. Ecol. Appl. 29:e01991
    [Google Scholar]
  148. 148.
    Zhao Z, Lu Z, Reddy GVP, Zhao S, Lin G et al. 2018. Using hydrogen stable isotope ratios to trace the geographic origin of the population of Bactrocera dorsalis (Diptera: Tephritidae) trapped in northern China. Fla. Entomol. 101:244–48
    [Google Scholar]
  149. 149.
    Zheng W, Peng W, Zhu C, Zhang Q, Saccone G et al. 2013. Identification and expression profile analysis of odorant binding proteins in the oriental fruit fly Bactrocera dorsalis. Int. J. Mol. Sci. 14:14936–49
    [Google Scholar]
  150. 150.
    Zingore KM, Sithole G, Abdel-Rahman EM, Mohamed SA, Ekesi S et al. 2020. Global risk of invasion by Bactrocerazonata: implications on horticultural crop production under changing climatic conditions. PLOS ONE 15:e0243047
    [Google Scholar]
/content/journals/10.1146/annurev-ento-012723-102658
Loading
/content/journals/10.1146/annurev-ento-012723-102658
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error