1932

Abstract

Aquatic environments are an unusual habitat for most arthropods. Nevertheless, many arthropod species that were once terrestrial dwelling have transitioned back to marine and freshwater environments, either as semiaquatic or, more rarely, as fully aquatic inhabitants. Transition to water from land is exceptional, and without respiratory modifications to allow for extended submergence and the associated hypoxic conditions, survival is limited. In this article, we review marine-associated species that have made this rare transition in a generally terrestrial group, spiders. We include several freshwater spider species for comparative purposes. Marine-associated spiders comprise less than 0.3% of spider species worldwide but are found in over 14% of all spider families. As we discuss, these spiders live in environments that, with tidal action, hydraulic forces, and saltwater, are more extreme than freshwater habitats, often requiring physiological and behavioral adaptations to survive. Spiders employ many methods to survive inundation from encroaching tides, such as air bubble respiration, airtight nests, hypoxic comas, and fleeing incoming tides. While airway protection is the primary survival strategy, further survival adaptations include saltwater-induced osmotic regulation, dietary composition, predator avoidance, reproduction, locomotory responses, and adaptation to extreme temperatures and hydrostatic pressures that challenge existence in marine environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-062923-102457
2024-01-29
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-062923-102457.html?itemId=/content/journals/10.1146/annurev-ento-062923-102457&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abraham H. 1925. A marine spider of the family Attidae. Proc. Zool. Soc. Lond. 95:1357–63
    [Google Scholar]
  2. 2.
    Adis J. 1997. Terrestrial invertebrates: survival strategies, group spectrum, dominance and activity patterns. The Central Amazon Floodplain WJ Junk 299–317. Berlin: Springer
    [Google Scholar]
  3. 3.
    Andersen NM, Cheng L. 2005. The marine insect Halobates (Heteroptera: Gerridae): biology, adaptations, distribution, and phylogeny. Oceanogr. Mar. Biol. 42:119–79
    [Google Scholar]
  4. 4.
    Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T et al. 2012. The magnitude of global marine species diversity. Curr. Biol. 22:2189–202
    [Google Scholar]
  5. 5.
    Baehr BC, Raven R, Harms D. 2017.. “ High tide or low tide”: Desis bobmarleyi sp. n., a new spider from coral reefs in Australia's Sunshine State and its relative from Sāmoa (Araneae, Desidae, Desis). Evol. Syst. 1:111–20
    [Google Scholar]
  6. 6.
    Barber AD. 2009. Littoral myriapods: a review. J. Soil Org. 81:735–60
    [Google Scholar]
  7. 7.
    Bartos M. 2002. The sub-sand nests of Yllenus arenarius (Araneae, Salticidae): structure, function and construction behavior. J. Arachnol. 30:275–80
    [Google Scholar]
  8. 8.
    Baumgartner MF, Tarrant AM 2017. The physiology and ecology of diapause in marine copepods. Annu. Rev. Mar. Sci. 9:387–411
    [Google Scholar]
  9. 9.
    Beukema J, Flach E. 1995. Factors controlling the upper and lower limits of the intertidal distribution of two Corophium species in the Wadden Sea. Mar. Ecol. Prog. Ser. 125:117–26
    [Google Scholar]
  10. 10.
    Bliss D. 1968. Transition from water to land in decapod crustaceans. Am. Zool. 8:355–92
    [Google Scholar]
  11. 11.
    Bristowe W. 1923. A British semi-marine spider. Ann. Mag. Nat. Hist. 12:154–56
    [Google Scholar]
  12. 12.
    Bulla M, Oudman T, Bijleveld AI, Piersma T, Kyriacou CP. 2017. Marine biorhythms: bridging chronobiology and ecology. Philos. Trans. R. Soc. Lond. B 372:20160253
    [Google Scholar]
  13. 13.
    Charmantier G. 1998. Ontogeny of osmoregulation in crustaceans: a review. Invertebr. Reprod. Dev. 33:177–90
    [Google Scholar]
  14. 14.
    Cheng L. 1976. Insects in marine environments. See Reference 15 1–4
  15. 15.
    Cheng L 1976. Marine Insects Amsterdam: North Holl. Publ. Co.
    [Google Scholar]
  16. 16.
    Chim CK, Wong HPS, Tan KS. 2016. Tetraclita (Cirripedia, Thoracica) tests as an important habitat for intertidal isopods and other marine and semi-terrestrial fauna on tropical rocky shores. Crustaceana 89:985–1040
    [Google Scholar]
  17. 17.
    Cloudsley-Thompson JL. 2012. Evolution and Adaptation of Terrestrial Arthropods Berlin: Springer
    [Google Scholar]
  18. 18.
    Coddington JA, Levi HW. 1991. Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22:565–92
    [Google Scholar]
  19. 19.
    Correa-Garhwal SM, Clarke TH III, Janssen M, Crevecoeur L, McQuillan BN et al. 2019. Spidroins and silk fibers of aquatic spiders. Sci. Rep. 9:13656
    [Google Scholar]
  20. 20.
    Cover MR, Bogan MT 2015. Minor insect orders. Thorp and Covich's Freshwater Invertebrates: Ecology and General Biology JA Thorpe, DC Rogers 1059–72. Cambridge, MA: Academic. , 4th ed..
    [Google Scholar]
  21. 21.
    Crane AL, Chivers DP, Ferrari MCO. 2018. Embryonic background risk promotes the survival of tadpoles facing surface predators. PLOS ONE 13:e0193939
    [Google Scholar]
  22. 22.
    Crews SC, Garcia EL, Spagna JC, Van Dam MH, Esposito LA. 2020. The life aquatic with spiders (Araneae): repeated evolution of aquatic habitat association in Dictynidae and allied taxa. Zool. J. Linn. Soc. 189:862–920
    [Google Scholar]
  23. 23.
    Crisp D, Thorpe W. 1948. The water-protecting properties of insect hairs. Discuss. Faraday Soc. 3:210–20
    [Google Scholar]
  24. 24.
    Denny M. 1993. Air and Water: The Biology and Physics of Life's Media Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  25. 25.
    Draganits E, Braddy SJ, Briggs DE. 2001. A Gondwanan coastal arthropod ichnofauna from the Muth Formation (Lower Devonian, Northern India): paleoenvironment and tracemaker behavior. Palaios 16:126–47
    [Google Scholar]
  26. 26.
    Dunlop JA. 1997. The origins of tetrapulmonate book lungs and their significance for chelicerate phylogeny. Proceedings of the 17th European Colloquium of Arachnology, Edinburgh9–16. N.p.: Br. Arachnol. Soc.
    [Google Scholar]
  27. 27.
    Dunlop JA. 2010. Geological history and phylogeny of Chelicerata. Arthropod Struct. Dev. 39:124–42
    [Google Scholar]
  28. 28.
    Dunlop JA, Penney D, Tetlie OE, Anderson LI. 2008. How many species of fossil arachnids are there?. J. Arachnol. 36:267–72
    [Google Scholar]
  29. 29.
    Dunlop JA, Scholtz G, Selden PA 2013. Water-to-land transitions. Arthropod Biology and Evolution A Minelli, G Boxshall, G Fusco 417–39. Berlin: Springer
    [Google Scholar]
  30. 30.
    Dunlop JA, Selden P. 1998. The early history and phylogeny of the chelicerates. Arthropod Relationships RA Fortey, RH Thomas 221–35. Syst. Assoc. Spec. Vol. Ser. 55 Berlin: Springer
    [Google Scholar]
  31. 31.
    Edney E. 1968. Transition from water to land in isopod crustaceans. Am. Zool. 8:309–26
    [Google Scholar]
  32. 32.
    Evans P, Ruscoe C, Treherne J. 1971. Observations on the biology and submergence behaviour of some littoral beetles. J. Mar. Biol. Assoc. U. K. 51:375–86
    [Google Scholar]
  33. 33.
    Fincke T, Paul R. 1989. Book lung function in arachnids. J. Comp. Physiol. B 159:433–41
    [Google Scholar]
  34. 34.
    Flynn MR, Bush JW. 2008. Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608:275–96
    [Google Scholar]
  35. 35.
    Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold C. 2016. Spider phylogenomics: untangling the Spider Tree of Life. PeerJ 4:e1719
    [Google Scholar]
  36. 36.
    Garwood RJ, Dunlop JA, Selden PA, Spencer AR, Atwood RC et al. 2016. Almost a spider: a 305-million-year-old fossil arachnid and spider origins. Proc. R. Soc. Lond. B 283:20160125
    [Google Scholar]
  37. 37.
    Gullan PJ, Cranston PS. 2005. The Insects: An Outline of Entomology Oxford, UK: Blackwell. , 3rd ed..
    [Google Scholar]
  38. 38.
    Hebets EA, Chapman RF. 2000. Surviving the flood: plastron respiration in the non-tracheate arthropod Phrynus marginemaculatus (Amblypygi: Arachnida). J. Insect Physiol. 46:13–19
    [Google Scholar]
  39. 39.
    Heckman CW. 1983. Comparative morphology of arthropod exterior surfaces with the capability of binding a film of air underwater. Int. Rev. Gesamten Hydrobiol. Hydrogr. 68:715–36
    [Google Scholar]
  40. 40.
    Hinton HE. 1976. Respiratory adaptations of marine insects. See Reference 15 43–74
    [Google Scholar]
  41. 41.
    Hoback WW, Stanley DW, Higley LG, Barnhart MC. 1998. Survival of immersion and anoxia by larval tiger beetles, Cicindela togata. Am. Midl. Nat. 140:27–33
    [Google Scholar]
  42. 42.
    Horton T, Kroh A, Bailly N, Boyko CB, Brandão SN et al. 2021. WoRMS: World Register of Marine Species Database, WoRMS Ed Board https://doi.org/10.14284/170
    [Google Scholar]
  43. 43.
    Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. 2013. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Comp. Physiol. 3:849–915
    [Google Scholar]
  44. 44.
    Ikawa T, Nozoe Y, Yamashita N, Nishimura N, Ohnoki S et al. 2018. A study of the distributions of two endangered sea skaters Halobates matsumurai Esaki and Asclepios shiranui (Esaki) (Hemiptera: Gerridae: Halobatinae) with special reference to their strategies to cope with tidal currents. Psyche 2018:3464829
    [Google Scholar]
  45. 45.
    Ikawa T, Okabe H, Cheng L. 2012. Skaters of the seas—comparative ecology of nearshore and pelagic Halobates species (Hemiptera: Gerridae), with special reference to Japanese species. Mar. Biol. Res. 8:915–36
    [Google Scholar]
  46. 46.
    Keiser CN, Pruitt JN. 2014. Submersion tolerance in a lakeshore population of Pardosa lapidicina (Araneae: Lycosidae). J. Arachnol. 42:192–94
    [Google Scholar]
  47. 47.
    Kingsford MJ. 2018. Marine ecosystem. Britannica https://www.britannica.com/science/marine-ecosystem
    [Google Scholar]
  48. 48.
    Kraus JM, Morse DH. 2005. Seasonal habitat shift in an intertidal wolf spider: proximal cues associated with migration and substrate preference. J. Arachnol. 33:110–23
    [Google Scholar]
  49. 49.
    Kulkarni S, Wood HM, Hormiga G. 2023. Phylogenomics illuminates the evolution of orb webs, respiratory systems and the biogeographic history of the world's smallest orb-weaving spiders (Araneae, Araneoidea, Symphytognathoids). Mol. Phylogenet. Evol. 186:107855
    [Google Scholar]
  50. 50.
    Kulkarni SS, Lewis TR. 2015. Description of male Tylorida sataraensis Kulkarni, 2014 (Araneae, Tetragnathidae) with notes on habits and conservation status. Biodivers. Data J. 3:e4451
    [Google Scholar]
  51. 51.
    Lacasella F, Gratton C, De Felici S, Isaia M, Zapparoli M et al. 2015. Asymmetrical responses of forest and “beyond edge” arthropod communities across a forest-grassland ecotone. Biodivers. Conserv. 24:447–65
    [Google Scholar]
  52. 52.
    Lamoral B. 1968. On the ecology and habitat adaptations of two intertidal spiders, Desis formidabilis (OP Cambridge) and Amaurobioides africanus Hewitt, at “The Island” (Kommetjie, Cape Peninsula), with notes on the occurrence of two other spiders. Ann. Natal Mus. 20:151–93
    [Google Scholar]
  53. 53.
    Lamoral BH. 1968. On the species of the genus Desis Walckenaer, 1837 (Araneae: Amaurobiidae) found on the rocky shores of South Africa and South West Africa. Ann. Natal Mus. 20:139–50
    [Google Scholar]
  54. 54.
    Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M et al. 2011. Osmoregulation and excretion. Comp. Physiol. 4:405–573
    [Google Scholar]
  55. 55.
    Levi HW. 1967. Adaptations of respiratory systems of spiders. Evolution 21:571–83
    [Google Scholar]
  56. 56.
    Li F, Bian C, Li D, Shi Q. 2021. Spider silks: an overview of their component proteins for hydrophobicity and biomedical applications. Protein Pept. Lett. 28:255–69
    [Google Scholar]
  57. 57.
    Li F, Lv Y, Wen Z, Bian C, Zhang X et al. 2021. The complete mitochondrial genome of the intertidal spider (Desis jiaxiangi) provides novel insights into the adaptive evolution of the mitogenome and the evolution of spiders. BMC Ecol. Evol. 21:72
    [Google Scholar]
  58. 58.
    Lindquist EE. 1975. Associations between mites and other arthropods in forest floor habitats. Can. Entomol. 107:425–37
    [Google Scholar]
  59. 59.
    Luquet CM, Pellerano G, De Carlo J. 1995. Gill morphology and terrestrial adaptation in the estuarine crab Uca uruguayensis nobili, 1901 (Decapoda, brachyura). Crustaceana 68:882–92
    [Google Scholar]
  60. 60.
    McLay CL, Hayward TL. 1987. Population structure and use of Durvillaea antárctica holdfasts by the intertidal spider Desis marina (Araneae: Desidae). N. Z. J. Zool. 14:29–42
    [Google Scholar]
  61. 61.
    McLay CL, Hayward TL. 1987. Reproductive biology of the intertidal spider Desis marina (Araneae: Desidae) on a New Zealand rocky shore. J. Zool. 211:357–72
    [Google Scholar]
  62. 62.
    McQueen DJ, McLay CL. 1983. How does the intertidal spider Desis marina (Hector) remain under water for such a long time?. N. Z. J. Zool. 10:383–91
    [Google Scholar]
  63. 63.
    McQueen DJ, Pannell LK, McLay CL. 1983. Respiration rates for the intertidal spider Desis marina (Hector). N. Z. J. Zool. 10:393–99
    [Google Scholar]
  64. 64.
    Mahadik GA, Hernandez-Sanchez JF, Arunachalam S, Gallo A Jr., Cheng L et al. 2020. Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Sci. Rep. 10:7785
    [Google Scholar]
  65. 65.
    Martinez A-S, Charmantier G, Compère P, Charmantier-Daures M. 2005. Branchial chamber tissues in two caridean shrimps: the epibenthic Palaemon adspersus and the deep-sea hydrothermal Rimicaris exoculata. Tissue Cell 37:153–65
    [Google Scholar]
  66. 66.
    Marx MT, Guhmann P, Decker P. 2012. Adaptations and predispositions of different Middle European arthropod taxa (Collembola, Araneae, Chilopoda, Diplopoda) to flooding and drought conditions. Animals 2:564–90
    [Google Scholar]
  67. 67.
    Marx MT, Messner B. 2012. A general definition of the term “plastron” in terrestrial and aquatic arthropods. Org. Divers. Evol. 12:403–8
    [Google Scholar]
  68. 68.
    Menge BA. 1976. Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol. Monogr. 46:355–93
    [Google Scholar]
  69. 69.
    Menge BA, Olson AM. 1990. Role of scale and environmental factors in regulation of community structure. Trends Ecol. Evol. 5:52–57
    [Google Scholar]
  70. 70.
    Milano F, Cardoso P, Mammola S, Smith H, Isaia M. 2022. Trends in habitat suitability and conservation status of aquatic spiders in Europe. Biol. Conserv. 275:109767
    [Google Scholar]
  71. 71.
    Moloney CL, Nicolson SW. 1984. Water relations and haemolymph composition of two intertidal spiders (order Araneae). J. Exp. Mar. Biol. Ecol. 83:275–84
    [Google Scholar]
  72. 72.
    Morse DH. 1997. Distribution, movement, and activity patterns of an intertidal wolf spider Pardosa lapidicina population (Araneae, Lycosidae). J. Arachnol. 25:1–10
    [Google Scholar]
  73. 73.
    Morse DH. 2002. Orientation and movement of wolf spiders Pardosa lapidicina (Araneae, Lycosidae) in the intertidal zone. J. Arachnol. 30:601–9
    [Google Scholar]
  74. 74.
    Nat. Hist. Mus. Bern. 2023. World Spider Catalog, Version 24.0 Database, Nat. Hist. Mus. Bern. https://wsc.nmbe.ch/
    [Google Scholar]
  75. 75.
    Neumann D. 2014. Timing in tidal, semilunar, and lunar rhythms. Annual, Lunar, and Tidal Clocks: Patterns and Mechanisms of Nature's Enigmatic Rhythms H Numata, B Helm 3–24. Berlin: Springer
    [Google Scholar]
  76. 76.
    Nyffeler M, Pusey BJ. 2014. Fish predation by semi-aquatic spiders: a global pattern. PLOS ONE 9:e99459
    [Google Scholar]
  77. 77.
    O'Mahoney PM, Full RJ. 1984. Respiration of crabs in air and water. J. Comp. Biochem. Physiol. 79:275–82
    [Google Scholar]
  78. 78.
    Opell BD. 1990. The relationship of book lung and tracheal systems in the spider family Uloboridae. J. Morphol. 206:211–16
    [Google Scholar]
  79. 79.
    Opell BD. 1998. The respiratory complementarity of spider book lung and tracheal systems. J. Morphol. 236:57–64
    [Google Scholar]
  80. 80.
    Opell BD, Konur DC. 1992. Influence of web-monitoring tactics on the density of mitochondria in leg muscles of the spider family Uloboridae. J. Morphol. 213:341–47
    [Google Scholar]
  81. 81.
    Ortega-Escobar J. 2002. Circadian rhythms of locomotor activity in Lycosa tarentula (Araneae, Lycosidae) and the pathways of ocular entrainment. Biol. Rhythm Res. 33:561–76
    [Google Scholar]
  82. 82.
    Owen CA, van Noort S, Compton SG, Coetzee JA. 2019. Nest site choice by the intertidal spider Desis formidabilis (Araneae: Desidae) and nest utilisation by its hymenopteran egg parasitoid. Ecol. Entomol. 44:62–70
    [Google Scholar]
  83. 83.
    Pedersen O, Colmer TD. 2012. Physical gills prevent drowning of many wetland insects, spiders and plants. J. Exp. Biol. 215:705–9
    [Google Scholar]
  84. 84.
    Penney D, Selden P. 2011. Fossil Spiders: The Evolutionary History of a Mega-Diverse Order Manchester, UK: Siri Sci. Press
    [Google Scholar]
  85. 85.
    Pétillon J, Lambeets K, Montaigne W, Maelfait JP, Bonte D. 2010. Habitat structure modified by an invasive grass enhances inundation withstanding in a salt-marsh wolf spider. Biol. Invasions 12:3219–26
    [Google Scholar]
  86. 86.
    Pétillon J, Montaigne W, Renault D. 2009. Hypoxic coma as a strategy to survive inundation in a salt-marsh inhabiting spider. Biol. Lett. 5:442–45
    [Google Scholar]
  87. 87.
    Pfingstl T, Wagner M, Hiruta SF, Koblmüller S, Hagino W, Shimano S. 2019. Phylogeographic patterns of intertidal arthropods (Acari, Oribatida) from southern Japanese islands reflect paleoclimatic events. Sci. Rep. 9:19042
    [Google Scholar]
  88. 88.
    Pryke J, Samways M. 2010. Significant variables for the conservation of mountain invertebrates. J. Insect Conserv. 14:247–56
    [Google Scholar]
  89. 89.
    Punzo F. 1999. Desert Arthropods: Life History Variations Berlin: Springer
    [Google Scholar]
  90. 90.
    Renault D, Puzin C, Foucreau N, Bouchereau A, Pétillon J. 2016. Chronic exposure to soil salinity in terrestrial species: Does plasticity and underlying physiology differ among specialized ground-dwelling spiders?. J. Insect Physiol. 90:49–58
    [Google Scholar]
  91. 91.
    Romano N, Zeng C. 2012. Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334:12–23
    [Google Scholar]
  92. 92.
    Roth W, Brown V. 1976. Other intertidal air-breathing arthropods. See Reference 15 119–50
  93. 93.
    Rovner JS. 1986. Nests of terrestrial spiders maintain a physical gill: flooding and the evolution of silk constructions. J. Arachnol. 14:327–37
    [Google Scholar]
  94. 94.
    Saigusa M, Oishi K. 2000. Emergence rhythms of subtidal small invertebrates in the subtropical sea: nocturnal patterns and variety in the synchrony with tidal and lunar cycles. Zool. Sci. 17:241–51
    [Google Scholar]
  95. 95.
    Sanford E. 2002. Water temperature, predation, and the neglected role of physiological rate effects in rocky intertidal communities. Integr. Comp. Biol. 42:881–91
    [Google Scholar]
  96. 96.
    Santos EA, Baldisseroto B, Blanchini A, Colares EP, Nery LE, Manzoni GC. 1987. Respiratory mechanisms and metabolic adaptations of an intertidal crab, Chasmagnathus granulata (Dana, 1851). Comp. Biochem. Physiol. A 88:21–25
    [Google Scholar]
  97. 97.
    Schmitz A. 2016. Respiration in spiders (Araneae). Comp. Biochem. Physiol. B 186:403–15
    [Google Scholar]
  98. 98.
    Schmitz A, Perry SFJ. 2001. Bimodal breathing in jumping spiders: morphometric partitioning of the lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J. Exp. Biol. 204:4321–34
    [Google Scholar]
  99. 99.
    Schuster R. 1979. Soil mites in the marine environment. Recent Advances in Acarology, Vol. 2 JG Rodrigues 593–602. Cambridge, MA: Academic
    [Google Scholar]
  100. 100.
    Selden PA. 1990. Fossil history of the arachnids. Newsl. Br. Arachnol. Soc. 58:4–6
    [Google Scholar]
  101. 101.
    Selden PA. 2002. Missing links between Argyroneta and Cybaeidae revealed by fossil spiders. J. Arachnol. 30:189–200
    [Google Scholar]
  102. 102.
    Selden PA, Anderson HM, Anderson JM. 2009. A review of the fossil record of spiders (Araneae) with special reference to Africa, and description of a new specimen from the Triassic Molteno Formation of South Africa. Afr. Invertebr. 50:105–16
    [Google Scholar]
  103. 103.
    Selden PA, Dunlop JA, Edgecombe G. 1998. Fossil taxa and relationships of chelicerates. Arthropod Fossils and Phylogeny GD Edgecombe 303–31. New York: Columbia Univ. Press
    [Google Scholar]
  104. 104.
    Selden PA, Jeram AJ. 1989. Palaeophysiology of terestrialisation in the Chelicerata. Earth Environ. Sci. Trans. R. Soc. Edinb. 80:303–10
    [Google Scholar]
  105. 105.
    Selden PA, Shcherbakov DE, Dunlop JA, Eskov KY. 2014. Arachnids from the Carboniferous of Russia and Ukraine, and the Permian of Kazakhstan. Paläontol. Z. 88:297–307
    [Google Scholar]
  106. 106.
    Seyfarth EA. 1980. Daily patterns of locomotor activity in a wandering spider. Physiol. Entomol. 5:199–206
    [Google Scholar]
  107. 107.
    Seymour RS, Hetz SK. 2011. The diving bell and the spider: the physical gill of Argyroneta aquatica. J. Exp. Biol. 214:2175–81
    [Google Scholar]
  108. 108.
    Seymour RS, Matthews PGD. 2013. Physical gills in diving insects and spiders: theory and experiment. J. Exp. Biol. 216:164–70
    [Google Scholar]
  109. 109.
    Shannon H, Wilson D, Barbarich T, Persons M. 2015. Submersion tolerance among riparian and non-riparian spiders Paper presented at 10th Susquehanna River Symposium Lewisburg, PA: Nov. 13–14
    [Google Scholar]
  110. 110.
    Sokolova I. 2018. Mitochondrial adaptations to variable environments and their role in animals’ stress tolerance. Integr. Comp. Biol. 58:519–31
    [Google Scholar]
  111. 111.
    Spagna JC, Crews SC, Gillespie RG. 2010. Patterns of habitat affinity and Austral/Holarctic parallelism in dictynoid spiders (Araneae: Entelegynae). Invertebr. Syst. 24:238–57
    [Google Scholar]
  112. 112.
    Stillman J, Somero GJ. 1996. Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. J. Exp. Biol. 199:1845–55
    [Google Scholar]
  113. 113.
    Stratton GE, Suter RB. 2009. Water repellent properties of spiders: topographical variations and functional correlates. Functional Surfaces in Biology77–95. Berlin: Springer
    [Google Scholar]
  114. 114.
    Stratton GE, Suter RB, Miller PR. 2004. Evolution of water surface locomotion by spiders: a comparative approach. Biol. J. Linn. Soc. 81:63–78
    [Google Scholar]
  115. 115.
    Strickland M, Tudorica V, Řezáč M, Thomas NR, Goodacre SL. 2018. Conservation of a pH-sensitive structure in the C-terminal region of spider silk extends across the entire silk gene family. Heredity 120:574–80
    [Google Scholar]
  116. 116.
    Suter RB. 2013. Spider locomotion on the water surface: biomechanics and diversity. J. Arachnol. 41:93–101
    [Google Scholar]
  117. 117.
    Thorpe W. 1950. Plastron respiration in aquatic insects. Biol. Rev. 25:344–90
    [Google Scholar]
  118. 118.
    Tork P. 2018. Pathways of ocular entrainment in Marpissa marina (Araneae, Salticidae). N. Z. J. Zool. 46:321–33
    [Google Scholar]
  119. 119.
    Van Noort S, Masner L, Popovici O, Valerio AA, Taekul C et al. 2014. Systematics and biology of the aberrant intertidal parasitoid wasp Echthrodesis lamorali Masner (Hymenoptera: Platygastridae s.l.): a parasitoid of spider eggs. Invertebr. Syst. 28:1–16
    [Google Scholar]
  120. 120.
    Vermeij GJ. 2020. The ecology of marine colonization by terrestrial arthropods. Arthropod Struct. Dev. 56:100930
    [Google Scholar]
  121. 121.
    Vermeij GJ, Dudley R. 2000. Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems?. Biol. J. Linn. Soc. 70:541–54
    [Google Scholar]
  122. 122.
    Vink CJ, McQuillan BN, Simpson A, Correa-Garhwal SM. 2017. The marine spider, Desis marina (Araneae: Desidae): new observations and localities. Wētā 51:71–79
    [Google Scholar]
  123. 123.
    Vollrath F, Selden P. 2007. The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38:819–46
    [Google Scholar]
  124. 124.
    Wessels R, Sundermann A. 2022. Habitat requirements of riparian arthropods on gravel bars: implications for conservation and management of braided river floodplains. PLOS ONE 17:e0274977
    [Google Scholar]
  125. 125.
    Williams DS. 1979. The feeding behaviour of New Zealand Dolomedes species (Araneae: Pisauridae). N. Z. J. Zool. 6:95–105
    [Google Scholar]
/content/journals/10.1146/annurev-ento-062923-102457
Loading
/content/journals/10.1146/annurev-ento-062923-102457
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error