1932

Abstract

The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly–plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense–signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120120-093940
2024-01-25
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-120120-093940.html?itemId=/content/journals/10.1146/annurev-ento-120120-093940&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahn SJ, Vogel H, Heckel DG. 2012. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 42:133–47
    [Google Scholar]
  2. 2.
    Aidlin Harari O, Dekel A, Wintraube D, Vainer Y, Mozes-Koch R et al. 2023. A sucrose-specific receptor in Bemisia tabaci and its putative role in phloem-feeding. iScience 26:106752
    [Google Scholar]
  3. 3.
    Aidlin Harari O, Santos-Garcia D, Musseri M, Moshitzky P, Patel M et al. 2020. Molecular evolution of the glutathione S-transferase family in the Bemisia tabaci species complex. Genome Biol. Evol. 12:3857–72
    [Google Scholar]
  4. 4.
    Ashford DA, Smith WA, Douglas AE. 2000. Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum. J. Insect Physiol. 46:335–41
    [Google Scholar]
  5. 5.
    Ateyyat MA, Shatnawi M, Al-mazra'awi MS 2010. Isolation and identification of culturable forms of bacteria from the sweet potato whitefly Bemisia tabaci Genn. (Homoptera: Aleyrodidae) in Jordan. Turk. J. Agric. For. 34:225–34
    [Google Scholar]
  6. 6.
    Bidari F, Fathipour Y, Asgari S, Mehrabadi M. 2022. Targeting the microRNA pathway core genes, Dicer 1 and Argonaute 1, negatively affects the survival and fecundity of Bemisia tabaci. Pest Manag. Sci. 78:4234–39
    [Google Scholar]
  7. 7.
    Birkenbihl RP, Kracher B, Roccaro M, Somssich IE. 2017. Induced genome-wide binding of three Arabidopsis WRKY transcription factors during early MAMP-triggered immunity. Plant Cell 29:20–38
    [Google Scholar]
  8. 8.
    Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M et al. 2009. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151:925–35
    [Google Scholar]
  9. 9.
    Bleeker PM, Diergaarde PJ, Ament K, Schutz S, Johne B et al. 2011. Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry 72:68–73
    [Google Scholar]
  10. 10.
    Broehan G, Kroeger T, Lorenzen M, Merzendorfer H. 2013. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genom. 14:6
    [Google Scholar]
  11. 11.
    Broekgaarden C, Pelgrom KTB, Bucher J, van Dam NM, Grosser K et al. 2018. Combining QTL mapping with transcriptome and metabolome profiling reveals a possible role for ABA signaling in resistance against the cabbage whitefly in cabbage. PLOS ONE 13:e0206103
    [Google Scholar]
  12. 12.
    Byrne DN, Bellows TS. 1991. Whitefly biology. Annu. Rev. Entomol. 36:431–57
    [Google Scholar]
  13. 13.
    Byrne DN, Hendrix DL, Williams LH. 2003. Presence of trehalulose and other oligosaccharides in hemipteran honeydew, particularly Aleyrodidae. Physiol. Entomol. 28:144–49
    [Google Scholar]
  14. 14.
    Byrne DN, Miller WB. 1990. Carbohydrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. J. Insect Physiol. 36:433–39
    [Google Scholar]
  15. 15.
    Cai Q, He BY, Kogel KH, Jin HL. 2018. Cross-kingdom RNA trafficking and environmental RNAi—nature's blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 46:58–64
    [Google Scholar]
  16. 16.
    Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE et al. 2023. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genom. 24:408
    [Google Scholar]
  17. 17.
    Chen WB, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV et al. 2016. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 14:110
    [Google Scholar]
  18. 18.
    Chen Y, Singh A, Kaithakottil GG, Mathers TC, Gravino M et al. 2020. An aphid RNA transcript migrates systemically within plants and is a virulence factor. PNAS 117:12763–71
    [Google Scholar]
  19. 19.
    Christiaens O, Whyard S, Velez AM, Smagghe G. 2020. Double-stranded RNA technology to control insect pests: current status and challenges. Front. Plant Sci. 11:451
    [Google Scholar]
  20. 20.
    Cohen E. 2013. Water homeostasis and osmoregulation as targets in the control of insect pests. Adv. Insect Physiol. 44:1–61
    [Google Scholar]
  21. 21.
    Cui N, Lu H, Wang TZ, Zhang WH, Kang L, Cui F. 2019. Armet, an aphid effector protein, induces pathogen resistance in plants by promoting the accumulation of salicylic acid. Philos. Trans. R. Soc. B 374:20180314
    [Google Scholar]
  22. 22.
    Dean M, Hamon Y, Chimini G. 2001. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42:1007–17
    [Google Scholar]
  23. 23.
    Douglas AE. 2006. Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57:747–54
    [Google Scholar]
  24. 24.
    Du H, Xu HX, Wang F, Qian LX, Liu SS, Wang XW. 2022. Armet from whitefly saliva acts as an effector to suppress plant defences by targeting tobacco cystatin. New Phytol 234:1848–62
    [Google Scholar]
  25. 25.
    Du W, Han X, Wang Y, Qin Y. 2016. A primary screening and applying of plant volatiles as repellents to control whitefly Bemisia tabaci (Gennadius) on tomato. Sci. Rep. 6:22140
    [Google Scholar]
  26. 26.
    Eakteiman G, Moses-Koch R, Moshitzky P, Mestre-Rincon N, Vassao DG et al. 2018. Targeting detoxification genes by phloem-mediated RNAi: a new approach for controlling phloem-feeding insect pests. Insect Biochem. Mol. Biol. 100:10–21
    [Google Scholar]
  27. 27.
    Easson M, Malka O, Paetz C, Hojna A, Reichelt M et al. 2021. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Sci. Rep. 11:13244
    [Google Scholar]
  28. 28.
    Engel P, Moran NA. 2013. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37:699–735
    [Google Scholar]
  29. 29.
    Erb M, Meldau S, Howe GA. 2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–59
    [Google Scholar]
  30. 30.
    Faber NR, Meiborg AB, Mcfarlane GR, Gorjanc G, Harpur BA. 2021. A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor. Apidologie 52:1112–27
    [Google Scholar]
  31. 31.
    Fiallo-Olive E, Pan LL, Liu SS, Navas-Castillo J. 2020. Transmission of begomoviruses and other whitefly-borne viruses: dependence on the vector species. Phytopathology 110:10–17
    [Google Scholar]
  32. 32.
    Gao LL, Kamphuis LG, Kakar K, Edwards OR, Udvardi MK, Singh KB. 2010. Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling. New Phytol 186:980–94
    [Google Scholar]
  33. 33.
    Gao XL, Li JM, Xu HX, Yan GH, Jiu M et al. 2015. Cloning of a putative extracellular Cu/Zn superoxide dismutase and functional differences of superoxide dismutases in invasive and indigenous whiteflies. Insect Sci 22:52–64
    [Google Scholar]
  34. 34.
    Garceau DC, Irigoyen ML, Perez-Fons L, Bohorquez-Chaux A, Hur M et al. 2023. Integrative transcriptomics reveals association of abscisic acid and lignin pathways with cassava whitefly resistance. BMC Plant Biol In press
    [Google Scholar]
  35. 35.
    Ghanim M, Rosell RC, Campbell LR, Czosnek H, Brown JK, Ullman DE. 2001. Digestive, salivary, and reproductive organs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) B type. J. Morphol. 248:22–40
    [Google Scholar]
  36. 36.
    Gilbert C, Maumus F. 2022. Multiple horizontal acquisitions of plant genes in the whitefly Bemisia tabaci. Genome Biol. Evol. 14:evac141
    [Google Scholar]
  37. 37.
    Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F et al. 2008. Inherited intracellular ecosystem: Symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 22:2591–99
    [Google Scholar]
  38. 38.
    Grimaldi D, Engel M. 2005. Evolution of the Insects Cambridge, UK: Cambridge Univ. Press
  39. 39.
    Grover S, Jindal V, Banta G, Taning CNT, Smagghe G, Christiaens O. 2019. Potential of RNA interference in the study and management of the whitefly, Bemisia tabaci. Arch. Insect Biochem. Physiol. 100:e21522
    [Google Scholar]
  40. 40.
    Guo HJ, Zhang YJ, Tong JH, Ge PP, Wang QY et al. 2020. An aphid-secreted salivary protease activates plant defense in phloem. Curr. Biol. 30:4826–36
    [Google Scholar]
  41. 41.
    Guo LT, Xie W, Yang ZZ, Xu JP, Zhang YJ. 2020. Genome-wide identification and expression analysis of UDP-glucuronosyltransferases in the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Int. J. Mol. Sci. 21:8492
    [Google Scholar]
  42. 42.
    Guo SK, Cao LJ, Song W, Shi P, Gao YF et al. 2020. Chromosome-level assembly of the melon thrips genome yields insights into evolution of a sap-sucking lifestyle and pesticide resistance. Mol. Ecol. Resour. 20:1110–25
    [Google Scholar]
  43. 43.
    Han WH, Wang JX, Zhang FB, Liu YX, Wu H, Wang XW. 2022. Small RNA and degradome sequencing reveal important microRNA function in Nicotiana tabacum response to Bemisia tabaci. Genes 13:361
    [Google Scholar]
  44. 44.
    Haritatos E, Keller F, Turgeon R. 1996. Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L. leaves: implications for phloem loading. Planta 198:614–22
    [Google Scholar]
  45. 45.
    Hattori M, Konishi H, Tamura Y, Konno K, Sogawa K. 2005. Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps. J. Insect Physiol. 51:1359–65
    [Google Scholar]
  46. 46.
    Hendrix DL, Wei YA. 1994. Bemisiose: an unusual trisaccharide in Bemisia honeydew. Carbohydr. Res. 253:329–34
    [Google Scholar]
  47. 47.
    Hendrix DL, Wei YA, Leggett JE. 1992. Homopteran honeydew sugar composition is determined by both the insect and plant species. Comp. Biochem. Physiol. B 101:23–27
    [Google Scholar]
  48. 48.
    Heu CC, McCullough FM, Luan JB, Rasgon JL. 2020. CRISPR-Cas9-based genome editing in the silverleaf whitefly (Bemisia tabaci). CRISPR J 3:89–96
    [Google Scholar]
  49. 49.
    Horowitz AR, Ghanim M, Roditakis E, Nauen R, Ishaaya I. 2020. Insecticide resistance and its management in Bemisia tabaci species. J. Pest Sci. 93:893–910
    [Google Scholar]
  50. 50.
    Huang HJ, Ye ZX, Lu G, Zhang CX, Chen JP, Li JM. 2020. Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC-MS/MS analyses. Insect Sci 28:1369–81
    [Google Scholar]
  51. 51.
    Indiragandhi P, Yoon C, Yang JO, Cho S, Sa TM, Kim GH. 2010. Microbial communities in the developmental stages of B and Q biotypes of sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). J. Kor. Soc. Appl. Biol. Chem. 53:605–17
    [Google Scholar]
  52. 52.
    Irigoyen ML, Garceau DC, Bohorquez-Chaux A, Lopez-Lavalle LAB, Perez-Fons L et al. 2020. Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid. BMC Genom. 21:93
    [Google Scholar]
  53. 53.
    Isaacs R, Byrne DN, Hendrix DL. 1998. Feeding rates and carbohydrate metabolism by Bemisia tabaci (Homoptera: Aleyrodidae) on different quality phloem saps. Physiol. Entomol. 23:241–48
    [Google Scholar]
  54. 54.
    Jain RG, Fletcher SJ, Manzie N, Robinson KE, Li P et al. 2022. Foliar application of clay-delivered RNA interference for whitefly control. Nat. Plants 8:535–48
    [Google Scholar]
  55. 55.
    Jain RG, Robinson KE, Asgari S, Mitter N. 2021. Current scenario of RNAi-based hemipteran control. Pest Manag. Sci. 77:2188–96
    [Google Scholar]
  56. 56.
    Jain RG, Robinson KE, Fletcher SJ, Mitter N. 2020. RNAi-based functional genomics in hemiptera. Insects 11:557
    [Google Scholar]
  57. 57.
    Jing X, White TA, Luan J, Jiao C, Fei Z, Douglas AE. 2016. Evolutionary conservation of candidate osmoregulation genes in plant phloem sap-feeding insects. Insect Mol. Biol. 25:251–58
    [Google Scholar]
  58. 58.
    Jing X, Wong AC, Chaston JM, Colvin J, McKenzie CL, Douglas AE. 2014. The bacterial communities in plant phloem-sap-feeding insects. Mol. Ecol. 23:1433–44
    [Google Scholar]
  59. 59.
    Jones MS, Delborne JA, Elsensohn J, Mitchell PD, Brown ZS. 2019. Does the U.S. public support using gene drives in agriculture? And what do they want to know?. Sci. Adv. 5:eaau8462p
    [Google Scholar]
  60. 60.
    Kanakala S, Ghanim M. 2016. RNA interference in insect vectors for plant viruses. Viruses 8:329
    [Google Scholar]
  61. 61.
    Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y et al. 2019. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 107:53–62
    [Google Scholar]
  62. 62.
    Kempema LA, Cui XP, Holzer FM, Walling LL. 2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–65
    [Google Scholar]
  63. 63.
    Khan SA, Reichelt M, Heckel DG. 2017. Functional analysis of the ABCs of eye color in Helicoverpa armigera with CRISPR/Cas9-induced mutations. Sci. Rep. 7:40025
    [Google Scholar]
  64. 64.
    Kirsch R, Okamura Y, Haeger W, Vogel H, Kunert G, Pauchet Y. 2022. Metabolic novelty originating from horizontal gene transfer is essential for leaf beetle survival. PNAS 119:671286
    [Google Scholar]
  65. 65.
    Klobasa W, Chu FC, Huot O, Grubbs N, Rotenberg D et al. 2021. Microinjection of corn planthopper, Peregrinus maidis, embryos for CRISPR/Cas9 genome editing. J. Vis. Exp. https://doi.org/10.3791/62417-v
    [Crossref] [Google Scholar]
  66. 66.
    Knop C, Voitsekhovskaja O, Lohaus G. 2001. Sucrose transporters in two members of the Scrophulariaceae with different types of transport sugar. Planta 213:80–91
    [Google Scholar]
  67. 67.
    Krause-Sakate R, Maranho Watanabe LF, Silva Gorayeb E, Barreto da Silva F, de Lima Alvarez D et al. 2020. Population dynamics of whiteflies and associated viruses in South America: research progress and perspectives. Insects 11:847
    [Google Scholar]
  68. 68.
    Lao SH, Huang XH, Huang HJ, Liu CW, Zhang CX, Bao YY. 2015. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens. Genomics 106:301–9
    [Google Scholar]
  69. 69.
    Le Caherec F, Guillam MT, Beuron F, Cavalier A, Thomas D et al. 1997. Aquaporin-related proteins in the filter chamber of homopteran insects. Cell Tissue Res 290:143–51
    [Google Scholar]
  70. 70.
    Lee H-R, Lee S, Park S, van Kleeff PJM, Schuurink RC, Ryu C-M. 2018. Transient expression of whitefly effectors in Nicotiana benthamiana leaves activates systemic immunity against the leaf pathogen Pseudomonas syringae and soil-borne pathogen Ralstonia solanacearum. Front. Ecol. Evol. 6:90
    [Google Scholar]
  71. 71.
    Lester PJ, Bulgarella M, Baty JW, Dearden PK, Guhlin J, Kean JM. 2020. The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps. Sci. Rep. 10:12398
    [Google Scholar]
  72. 72.
    Li F, Di Z, Tian J, Dewer Y, Qu C et al. 2022. Silencing the gustatory receptor BtGR11 affects the sensing of sucrose in the whitefly Bemisia tabaci. Front. Bioeng. Biotechnol. 10:1054943
    [Google Scholar]
  73. 73.
    Li F, Li D, Dewer Y, Qu C, Yang Z et al. 2019. Discrimination of oviposition deterrent volatile β-ionone by odorant-binding proteins 1 and 4 in the whitefly Bemisia tabaci. Biomolecules 9:563
    [Google Scholar]
  74. 74.
    Li J, Harari OA, Doss AL, Walling LL, Atkinson PW et al. 2020. Can CRISPR gene drive work in pest and beneficial haplodiploid species?. Evol. Appl. 13:2392–403
    [Google Scholar]
  75. 75.
    Li J, Hull JJ, Liang SJ, Wang QQ, Chen L et al. 2019. Genome-wide analysis of cotton miRNAs during whitefly infestation offers new insights into plant-herbivore interaction. Int. J. Mol. Sci. 20:5357
    [Google Scholar]
  76. 76.
    Li J, Zhu L, Hull JJ, Liang S, Daniell H et al. 2016. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnol. J. 14:1956–75
    [Google Scholar]
  77. 77.
    Li Y, Liu Z, Liu C, Shi Z, Pang L et al. 2022. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 185:2975–87
    [Google Scholar]
  78. 78.
    Li Y, Zhong S, Qin Y, Zhang S, Gao Z et al. 2014. Identification of plant chemicals attracting and repelling whiteflies. Arthropod-Plant Interact 8:183–90
    [Google Scholar]
  79. 79.
    Li Z, Cai T, Qin Y, Zhang Y, Jin R et al. 2020. Transcriptional response of ATP-binding cassette (ABC) transporters to insecticide in the brown planthopper, Nilaparvata lugens (Stål). Insects 11:280
    [Google Scholar]
  80. 80.
    Liu GX, Ma HM, Xie HY, Xuan N, Guo X et al. 2016. Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLOS ONE 11:e0154706
    [Google Scholar]
  81. 81.
    Liu L, Hong B, Wei JW, Wu YT, Song LW, Wang SS. 2022. Transcriptional response and functional analysis of ATP-binding cassette transporters to tannic acid in pea aphid, Acyrthosiphon pisum (Harris). Int. J. Biol. Macromol. 220:250–57
    [Google Scholar]
  82. 82.
    Liu S, Lenoir CJG, Amaro T, Rodriguez PA, Huitema E, Bos JIB. 2022. Virulence strategies of an insect herbivore and oomycete plant pathogen converge on host E3 SUMO ligase SIZ1. New Phytol 235:1599–614
    [Google Scholar]
  83. 83.
    Liu S, Zhou S, Tian L, Guo E, Luan Y et al. 2011. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genom. 12:491
    [Google Scholar]
  84. 84.
    Liu X-Q, Jiang H-B, Xiong Y, Peng P, Li H-F et al. 2019. Genome-wide identification of ATP-binding cassette transporters and expression profiles in the Asian citrus psyllid, Diaphorina citri, exposed to imidacloprid. Comp. Biochem. Physiol. D 30:305–11
    [Google Scholar]
  85. 85.
    Liu YR, Champer J. 2022. Modelling homing suppression gene drive in haplodiploid organisms. Proc. R. Soc. B 289:20220320
    [Google Scholar]
  86. 86.
    Lohaus G, Moellers C. 2000. Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content. Planta 211:833–40
    [Google Scholar]
  87. 87.
    Luan JB, Chen W, Hasegawa DK, Simmons AM, Wintermantel WM et al. 2015. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol. Evol. 7:2635–47
    [Google Scholar]
  88. 88.
    Luo YA, Chen QG, Luan JB, Chung SH, Van Eck J et al. 2017. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Insect Biochem. Mol. Biol. 88:21–29
    [Google Scholar]
  89. 89.
    MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC et al. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLOS Biol. 12:e1001835
    [Google Scholar]
  90. 90.
    Malka O, Easson M, Paetz C, Gotz M, Reichelt M et al. 2020. Glucosylation prevents plant defense activation in phloem-feeding insects. Nat. Chem. Biol. 16:1420–26
    [Google Scholar]
  91. 91.
    Malka O, Feldmesser E, van Brunschot S, Santos-Garcia D, Han WH et al. 2021. The molecular mechanisms that determine different degrees of polyphagy in the Bemisia tabaci species complex. Evol. Appl. 14:807–20
    [Google Scholar]
  92. 92.
    Malka O, Santos-Garcia D, Feldmesser E, Sharon E, Krause-Sakate R et al. 2018. Species-complex diversification and host-plant associations in Bemisia tabaci: a plant-defence, detoxification perspective revealed by RNA-seq analyses. Mol. Ecol. 27:4241–56
    [Google Scholar]
  93. 93.
    Malka O, Shekhov A, Reichelt M, Gershenzon J, Vassao DG, Morin S. 2016. Glucosinolate desulfation by the phloem-feeding insect Bemisia tabaci. J. Chem. Ecol. 42:230–35
    [Google Scholar]
  94. 94.
    Manivannan A, Israni B, Luck K, Gotz M, Seibel E et al. 2021. Identification of a sulfatase that detoxifies glucosinolates in the phloem-feeding insect Bemisia tabaci and prefers indolic glucosinolates. Front. Plant Sci. 12:671286
    [Google Scholar]
  95. 95.
    Mao K, Ren Z, Li W, Cai T, Qin X et al. 2021. Carboxylesterase genes in nitenpyram-resistant brown planthoppers, Nilaparvata lugens. Insect Sci 28:1049–60
    [Google Scholar]
  96. 96.
    Mathew LG, Campbell EM, Yool AJ, Fabrick JA. 2011. Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochem. Mol. Biol. 41:178–90
    [Google Scholar]
  97. 97.
    Matu FK, Murungi LK, Mohamed S, Deletre E. 2021. Behavioral response of the greenhouse whitefly (Trialeurodes vaporariorum) to plant volatiles of Ocimum basilicum and Tagetes minuta. Chemoecology 31:47–62
    [Google Scholar]
  98. 98.
    Naalden D, van Kleeff PJM, Dangol S, Mastop M, Corkill R et al. 2021. Spotlight on the roles of whitefly effectors in insect–plant interactions. Front. Plant Sci. 12:661141
    [Google Scholar]
  99. 99.
    Nadwodnik J, Lohaus G. 2008. Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens. Planta 227:1079–89
    [Google Scholar]
  100. 100.
    Ngou BPM, Jones JDG, Ding P. 2022. Plant immune networks. Trends Plant Sci 27:255–73
    [Google Scholar]
  101. 101.
    Nguyen TNM, Choo A, Baxter SW. 2021. Lessons from Drosophila: engineering genetic sexing strains with temperature-sensitive lethality for sterile insect technique applications. Insects 12:243
    [Google Scholar]
  102. 102.
    Nolan T. 2021. Control of malaria-transmitting mosquitoes using gene drives. Philos. Trans. R. Soc. B 376:20190803
    [Google Scholar]
  103. 103.
    Opatovsky I, Santos-Garcia D, Ruan Z, Lahav T, Ofaim S et al. 2018. Modeling trophic dependencies and exchanges among insects’ bacterial symbionts in a host-simulated environment. BMC Genom. 19:402
    [Google Scholar]
  104. 104.
    Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–91
    [Google Scholar]
  105. 105.
    Pacheco ID, Walling LL, Atkinson PW. 2022. Gene editing and genetic control of Hemipteran pests: progress, challenges and perspectives. Front. Bioeng. Biotechnol. 10:900785
    [Google Scholar]
  106. 106.
    Peng Z, Su Q, Ren J, Tian L, Zeng Y et al. 2023. A novel salivary effector, BtE3, is essential for whitefly performance on host plants. J. Exp. Bot. 74:2146–59
    [Google Scholar]
  107. 107.
    Perez-Fons L, Bohorquez-Chaux A, Irigoyen ML, Garceau DC, Morreel K et al. 2019. A metabolomics characterisation of natural variation in the resistance of cassava to whitefly. BMC Plant Biol 19:518
    [Google Scholar]
  108. 108.
    Pignatelli P, Ingham VA, Balabanidou V, Vontas J, Lycett G, Ranson H. 2018. The Anopheles gambiae ATP-binding cassette transporter family: phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance. Insect Mol. Biol. 27:110–22
    [Google Scholar]
  109. 109.
    Price DR, Karley AJ, Ashford DA, Isaacs HV, Pownall ME et al. 2007. Molecular characterisation of a candidate gut sucrase in the pea aphid, Acyrthosiphon pisum. Insect Biochem. Mol. Biol. 37:307–17
    [Google Scholar]
  110. 110.
    Puthoff DP, Holzer FM, Perring TM, Walling LL. 2010. Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B feeding. J. Chem. Ecol. 36:1271–85
    [Google Scholar]
  111. 111.
    Pym A, Singh KS, Nordgren A, Davies TGE, Zimmer CT et al. 2019. Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC Genom. 20:996
    [Google Scholar]
  112. 112.
    Ramsey JS, Rider DS, Walsh TK, De Vos M, Gordon KH et al. 2010. Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Mol. Biol. 19:155–64
    [Google Scholar]
  113. 113.
    Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J et al. 2002. Evolution of supergene families associated with insecticide resistance. Science 298:179–81
    [Google Scholar]
  114. 114.
    Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ et al. 2015. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genom. 16:226
    [Google Scholar]
  115. 115.
    Reding K, Pick L. 2020. High-efficiency CRISPR/Cas9 mutagenesis of the white gene in the milkweed bug Oncopeltus fasciatus. Genetics 215:1027–37
    [Google Scholar]
  116. 116.
    Rhodes JD, Croghan PC, Dixon AFG. 1997. Dietary sucrose and oligosaccharide synthesis in relation to osmoregulation in the pea aphid, Acyrthosiphon pisum. Physiol. Entomol. 22:373–79
    [Google Scholar]
  117. 117.
    Rispe C, Kutsukake M, Doublet V, Hudaverdian S, Legeai F et al. 2008. Large gene family expansion and variable selective pressures for cathepsin B in aphids. Mol. Biol. Evol. 25:5–17
    [Google Scholar]
  118. 118.
    Salvucci ME. 2000. Effect of the α-glucosidase inhibitor, bromoconduritol, on carbohydrate metabolism in the silverleaf whitefly, Bemisia argentifolii. Arch. Insect Biochem. Physiol. 45:117–28
    [Google Scholar]
  119. 119.
    Salvucci ME. 2003. Distinct sucrose isomerases catalyze trehalulose synthesis in whiteflies, Bemisia argentifolii, and Erwinia rhapontici. Comp. Biochem. Physiol. B 135:385–95
    [Google Scholar]
  120. 120.
    Salvucci ME, Wolfe GR, Hendrix DL. 1997. Effect of sucrose concentration on carbohydrate metabolism in Bemisia argentifolii: biochemical mechanism and physiological role for trehalulose synthesis in the silverleaf whitefly. J. Insect Physiol. 43:457–64
    [Google Scholar]
  121. 121.
    Sánchez-Gracia A, Vieira FG, Rozas J. 2009. Molecular evolution of the major chemosensory gene families in insects. Heredity 103:208–16
    [Google Scholar]
  122. 122.
    Santos-Garcia D, Farnier PA, Beitia F, Zchori-Fein E, Vavre F et al. 2012. Complete genome sequence of “Candidatus Portiera aleyrodidarum” BT-QVLC, an obligate symbiont that supplies amino acids and carotenoids to Bemisia tabaci. J. Bacteriol. 194:6654–55
    [Google Scholar]
  123. 123.
    Santos-Garcia D, Juravel K, Freilich S, Zchori-Fein E, Latorre A et al. 2018. To B or not to B: Comparative genomics suggests Arsenophonus as a source of B vitamins in whiteflies. Front. Microbiol. 9:2254
    [Google Scholar]
  124. 124.
    Santos-Garcia D, Mestre-Rincon N, Zchori-Fein E, Morin S. 2020. Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME J 14:847–56
    [Google Scholar]
  125. 125.
    Santos-Garcia D, Vargas-Chavez C, Moya A, Latorre A, Silva FJ. 2015. Genome evolution in the primary endosymbiont of whiteflies sheds light on their divergence. Genome Biol. Evol. 7:873–88
    [Google Scholar]
  126. 126.
    Schetelig MF, Schwirz J, Yan Y. 2021. A transgenic female killing system for the genetic control of Drosophila suzukii. Sci. Rep. 11:12938
    [Google Scholar]
  127. 127.
    Selvaraj G, Santos-Garcia D, Mozes-Daube N, Medina S, Zchori-Fein E, Freilich S. 2021. An eco-systems biology approach for modeling tritrophic networks reveals the influence of dietary amino acids on symbiont dynamics of Bemisia tabaci. FEMS Microbiol. Ecol. 97:fiab117
    [Google Scholar]
  128. 128.
    Shakesby AJ, Wallace IS, Isaacs HV, Pritchard J, Roberts DM, Douglas AE. 2009. A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem. Mol. Biol. 39:1–10
    [Google Scholar]
  129. 129.
    Simon JC, d'Alençon E, Guy E, Jacquin-Joly E, Jaquiéry J et al. 2015. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct. Genom. 14:413–23
    [Google Scholar]
  130. 130.
    Snoeck S, Guayazan-Palacios N, Steinbrenner AD. 2022. Molecular tug-of-war: plant immune recognition of herbivory. Plant Cell 34:1497–513
    [Google Scholar]
  131. 131.
    Su Q, Oliver KM, Xie W, Wu Q, Wang S, Zhang Y. 2015. The whitefly-associated facultative symbiont Hamiltonella defensa suppresses induced plant defences in tomato. Funct. Ecol. 29:1007–18
    [Google Scholar]
  132. 132.
    Su Q, Peng Z, Tong H, Xie W, Wang S et al. 2019. A salivary ferritin in the whitefly suppresses plant defenses and facilitates host exploitation. J. Exp. Bot. 70:3343–55
    [Google Scholar]
  133. 133.
    Suhag A, Yadav H, Chaudhary D, Subramanian S, Jaiwal R, Jaiwal PK. 2021. Biotechnological interventions for the sustainable management of a global pest, whitefly (Bemisia tabaci). Insect Sci 28:1228–52
    [Google Scholar]
  134. 134.
    Sun Y-C, Pan L-L, Ying F-Z, Li P, Wang X-W, Liu S-S 2017. Jasmonic acid-related resistance in tomato mediates interactions between whitefly and whitefly-transmitted virus. Sci. Rep. 7:566
    [Google Scholar]
  135. 135.
    Tadmor E, Juravel K, Morin S, Santos-Garcia D. 2022. Evolved transcriptional responses and their trade-offs after long-term adaptation of Bemisia tabaci to a marginally suitable host. Genome Biol. Evol. 14:evac118
    [Google Scholar]
  136. 136.
    Tian J, Dewer Y, Hu HY, Li FQ, Yang SY, Luo C. 2022. Diversity and molecular evolution of odorant receptor in hemipteran insects. Insects 13:214
    [Google Scholar]
  137. 137.
    Tian LX, Song TX, He RJ, Zeng Y, Xie W et al. 2017. Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci. BMC Genom. 18:330
    [Google Scholar]
  138. 138.
    Tian Y, Deng Y, Zhang W, Mu W. 2019. Sucrose isomers as alternative sweeteners: properties, production, and applications. Appl. Microbiol. Biotechnol. 103:8677–87
    [Google Scholar]
  139. 139.
    Tu HT, Qin YC. 2017. Repellent effects of different celery varieties in Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q. J. Econ. Entomol. 110:1307–16
    [Google Scholar]
  140. 140.
    Van Ekert E, Chauvigne F, Finn RN, Mathew LG, Hull JJ et al. 2016. Molecular and functional characterization of Bemisia tabaci aquaporins reveals the water channel diversity of hemipteran insects. Insect Biochem. Mol. Biol. 77:39–51
    [Google Scholar]
  141. 141.
    van Kleeff PJM, Galland M, Schuurink RC, Bleeker PM. 2016. Small RNAs from Bemisia tabaci are transferred to Solanum lycopersicum phloem during feeding. Front. Plant Sci. 7:1759
    [Google Scholar]
  142. 142.
    Walker GP. 2022. Sieve element occlusion: interactions with phloem sap-feeding insects. A review. J. Plant Physiol. 269:153582
    [Google Scholar]
  143. 143.
    Walker GP, Perring TM, Freeman TP 2010. Life history, functional anatomy, feeding and mating behavior. Bemisia: Bionomics and Management of a Global Pest PA Stansly, SE Naranjo 109–60. Berlin: Springer
    [Google Scholar]
  144. 144.
    Walling LL. 2008. Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–66
    [Google Scholar]
  145. 145.
    Wang N, Zhao PZ, Ma YH, Yao XM, Sun YW et al. 2019. A whitefly effector Bsp9 targets host immunity regulator WRKY33 to promote performance. Philos. Trans. R. Soc. B 374:20180313
    [Google Scholar]
  146. 146.
    Wang R, Hu Y, Wei P, Qu C, Luo C. 2020. Molecular and functional characterization of one odorant-binding protein gene OBP3 in Bemisia tabaci (Hemiptera: Aleyrodidae). J. Econ. Entomol. 113:299–305
    [Google Scholar]
  147. 147.
    Wang R, Li F, Zhang W, Zhang X, Qu C et al. 2017. Identification and expression profile analysis of odorant binding protein and chemosensory protein genes in Bemisia tabaci MED by head transcriptome. PLOS ONE 12:e0171739
    [Google Scholar]
  148. 148.
    Wang XW, Blanc S. 2021. Insect transmission of plant single-stranded DNA viruses. Annu. Rev. Entomol. 66:389–405
    [Google Scholar]
  149. 149.
    Wang Y-B, Ren F-R, Yao Y-L, Sun X, Walling LL et al. 2020. Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. ISME J 14:2923–35
    [Google Scholar]
  150. 150.
    Wang YL, Wang YJ, Luan JB, Yan GH, Liu SS, Wang XW. 2013. Analysis of the transcriptional differences between indigenous and invasive whiteflies reveals possible mechanisms of whitefly invasion. PLOS ONE 8:e62176
    [Google Scholar]
  151. 151.
    Wani SH, Anand S, Singh B, Bohra A, Joshi R. 2021. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep 40:1071–85
    [Google Scholar]
  152. 152.
    Wei YA, Hendrix DL, Nieman R. 1997. Diglucomelezitose, a novel pentasaccharide in silverleaf whitefly honeydew. J. Agric. Food Chem. 45:3481–86
    [Google Scholar]
  153. 153.
    Wu X, Yan J, Wu Y, Zhang H, Mo S et al. 2019. Proteomic analysis by iTRAQ-PRM provides integrated insight into mechanisms of resistance in pepper to Bemisia tabaci (Gennadius). BMC Plant Biol 19:270
    [Google Scholar]
  154. 154.
    Xia J, Guo Z, Yang Z, Han H, Wang S et al. 2021. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 184:3588
    [Google Scholar]
  155. 155.
    Xia J, Xu HF, Yang ZZ, Pan HP, Yang X et al. 2019. Genome-wide analysis of carboxylesterases (COEs) in the whitefly, Bemisia tabaci (Gennadius). Int. J. Mol. Sci. 20:4973
    [Google Scholar]
  156. 156.
    Xia WQ, Wang XR, Liang Y, Liu SS, Wang XW. 2017. Transcriptome analyses suggest a novel hypothesis for whitefly adaptation to tobacco. Sci. Rep. 7:12102
    [Google Scholar]
  157. 157.
    Xie W, Chen C, Yang Z, Guo L, Yang X et al. 2017. Genome sequencing of the sweetpotato whitefly Bemisia Tabaci MED/Q. GigaScience 6:gix018
    [Google Scholar]
  158. 158.
    Xie W, He C, Fei ZJ, Zhang YJ. 2020. Chromosome-level genome assembly of the greenhouse whitefly (Trialeurodes vaporariorum Westwood). Mol. Ecol. Res. 20:995–1006
    [Google Scholar]
  159. 159.
    Xie W, Wu QJ, Wang SL, Jiao XG, Guo LT et al. 2014. Transcriptome analysis of host-associated differentiation in Bemisia tabaci (Hemiptera: Aleyrodidae). Front. Physiol. 5:487
    [Google Scholar]
  160. 160.
    Xu HX, Hong Y, Zhang MZ, Wang YL, Liu SS, Wang XW. 2015. Transcriptional responses of invasive and indigenous whiteflies to different host plants reveal their disparate capacity of adaptation. Sci. Rep. 5:10774
    [Google Scholar]
  161. 161.
    Xu HX, Qian LX, Wang XW, Shao RX, Hong Y et al. 2019. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. PNAS 116:490–95
    [Google Scholar]
  162. 162.
    Yang C-H, Guo J-Y, Chu D, Ding T-B, Wei K-K et al. 2017. Secretory laccase 1 in Bemisia tabaci MED is involved in whitefly-plant interaction. Sci. Rep. 7:3623
    [Google Scholar]
  163. 163.
    Yang F, Zhang Q, Yao Q, Chen G, Tong H et al. 2020. Direct and indirect plant defenses induced by (Z)-3-hexenol in tomato against whitefly attack. J. Pest Sci. 93:1243–54
    [Google Scholar]
  164. 164.
    Yang F, Zhang X, Xue H, Tian T, Tong H et al. 2022. (Z)-3-hexenol primes callose deposition against whitefly-mediated begomovirus infection in tomato. Plant J. 112:694–708
    [Google Scholar]
  165. 165.
    Yang ZZ, Xia JX, Pan HP, Gong C, Xie W et al. 2017. Genome-wide characterization and expression profiling of sugar transporter family in the whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Front. Physiol. 8:322
    [Google Scholar]
  166. 166.
    Yao D-M, Zou C, Shu Y-N, Liu S-S. 2021. WRKY transcription factors in Nicotiana tabacum modulate plant immunity against whitefly via interacting with MAPK cascade pathways. Insects 12:16
    [Google Scholar]
  167. 167.
    Ye XD, Su YL, Zhao QY, Xia WQ, Liu SS, Wang XW 2014. Transcriptomic analyses reveal the adaptive features and biological differences of guts from two invasive whitefly species. BMC Genom. 15:370
    [Google Scholar]
  168. 168.
    Yue H, Huang L-P, Lu D-Y-H, Zhang Z-H, Zhang Z et al. 2021. Integrated analysis of microRNA and mRNA transcriptome reveals the molecular mechanism of Solanum lycopersicum response to Bemisia tabaci and Tomato chlorosis virus. Front. Microbiol. 12:693574
    [Google Scholar]
  169. 169.
    Zarate SI, Kempema LA, Walling LL. 2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–75
    [Google Scholar]
  170. 170.
    Zchori-Fein E, Lahav T, Freilich S. 2014. Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front. Microbiol. 5:310
    [Google Scholar]
  171. 171.
    Zeng Y, Yang YT, Wu QJ, Wang SL, Xie W, Zhang YJ. 2019. Genome-wide analysis of odorant-binding proteins and chemosensory proteins in the sweet potato whitefly, Bemisia tabaci. Insect Sci. 26:620–34
    [Google Scholar]
  172. 172.
    Zhang PJ, He Y-C, Zhao C, Ye Z-H, Yu X-P. 2018. Jasmonic acid-dependent defenses play a key role in defending tomato against Bemisia tabaci nymphs, but not adults. Front. Plant Sci. 9:1065
    [Google Scholar]
  173. 173.
    Zhang PJ, Wei JN, Zhao C, Zhang YF, Li CY et al. 2019. Airborne host-plant manipulation by whiteflies via an inducible blend of plant volatiles. PNAS 116:7387–96
    [Google Scholar]
  174. 174.
    Zhang PJ, Xu CX, Zhang JM, Lu YB, Wei JN et al. 2013. Phloem-feeding whiteflies can fool their host plants, but not their parasitoids. Funct. Ecol. 27:1304–12
    [Google Scholar]
  175. 175.
    Zhang PJ, Zheng SJ, van Loon JJA, Boland W, David A et al. 2009. Whiteflies interfere with indirect plant defense against spider mites in lima bean. PNAS 106:21202–7
    [Google Scholar]
  176. 176.
    Zhang ST, Long Y, Zhang SJ, Li N, Chen DX et al. 2019. iTRAQ-based proteomic analysis of resistant Nicotiana tabacum in response to Bemisia tabaci infestation. Arthropod-Plant Interact 13:505–16
    [Google Scholar]
  177. 177.
    Zhao P, Yao X, Cai C, Li R, Du J et al. 2019. Viruses mobilize plant immunity to deter nonvector insect herbivores. Sci. Adv 5:eaav9801
    [Google Scholar]
  178. 178.
    Zhao YJ, Wang ZQ, Zhu JY, Liu NY. 2020. Identification and characterization of detoxification genes in two cerambycid beetles, Rhaphuma horsfieldi and Xylotrechus quadripes (Coleoptera: Cerambycidae: Clytini). Comp. Biochem. Physiol. B 243–44:110431
    [Google Scholar]
  179. 179.
    Zhou WW, Liang QM, Xu Y, Gurr GM, Bao YY et al. 2013. Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). PLOS ONE 8:e56604
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120120-093940
Loading
/content/journals/10.1146/annurev-ento-120120-093940
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error