1932

Abstract

Locusts are grasshoppers that can migrate en masse and devastate food security. Plant nutrient content is a key variable influencing population dynamics, but the relationship is not straightforward. For an herbivore, plant quality depends not only on the balance of nutrients and antinutrients in plant tissues, which is influenced by land use and climate change, but also on the nutritional state and demands of the herbivore, as well as its capacity to extract nutrients from host plants. In contrast to the concept of a positive relationship between nitrogen or protein concentration and herbivore performance, a five-decade review of lab and field studies indicates that equating plant N to plant quality is misleading because grasshoppers respond negatively or neutrally to increasing plant N just as often as they respond positively. For locusts specifically, low-N environments are actually beneficial because they supply high energy rates that support migration. Therefore, intensive land use, such as continuous grazing or cropping, and elevated ambient CO levels that decrease the protein:carbohydrate ratios of plants are predicted to broadly promote locust outbreaks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-120220-110415
2024-01-25
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-120220-110415.html?itemId=/content/journals/10.1146/annurev-ento-120220-110415&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbas M, Klein A-M, Ebeling A, Oelmann Y, Ptacnik R et al. 2014. Plant diversity effects on pollinating and herbivorous insects can be linked to plant stoichiometry. Basic Appl. Ecol. 15:2169–78
    [Google Scholar]
  2. 2.
    Amadio ME, Pietrantuono AL, Lozada M, Fernández-Arhex V. 2020. Effect of plant nutritional traits on the diet of grasshoppers in a wetland of northern Patagonia. Int. J. Pest Manag. 67:4288–97
    [Google Scholar]
  3. 3.
    Applebaum SW, Heifetz Y. 1999. Density-dependent physiological phase in insects. Annu. Rev. Entomol. 44:317–41
    [Google Scholar]
  4. 4.
    Asshoff R, Hättenschwiler S. 2005. Growth and reproduction of the alpine grasshopper Miramella alpina feeding on CO2-enriched dwarf shrubs at treeline. Oecologia 142:2191–201
    [Google Scholar]
  5. 5.
    Barakat EMS, Abd-El Aziz MF, El-Monairy OM, El-Barky NM, Abd-El Khalek HF. 2015. Interactions of host plants and Bacillus thuringiensis israelensis injection on the performance and midgut protein profile of Schistocerca gregaria Forskal, adults. Egypt. J. Biol. Pest Control 25:1151–58
    [Google Scholar]
  6. 6.
    Barbehenn RV, Karowe DN, Chen Z. 2004. Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality. Oecologia 140:196–103
    [Google Scholar]
  7. 7.
    Beenakkers AMT, Van der Horst DJ, Van Marrewijk WJA. 1981. Metabolism during locust flight. Comp. Biochem. Physiol. B 69:3315–21
    [Google Scholar]
  8. 8.
    Behmer ST. 2009. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54:165–878. A review and introduction to insect herbivore nutrient regulation using the Geometric Framework for Nutrition.
    [Google Scholar]
  9. 9.
    Behmer ST, Joern A. 2008. Coexisting generalist herbivores occupy unique nutritional feeding niches. PNAS 105:61977–82
    [Google Scholar]
  10. 10.
    Behmer ST, Simpson SJ, Raubenheimer D. 2002. Herbivore foraging in chemically heterogeneous environments: nutrients and secondary metabolites. Ecology 83:92489–501
    [Google Scholar]
  11. 11.
    Belovsky GE, Slade JB. 2000. Insect herbivory accelerates nutrient cycling and increases plant production. PNAS 97:2614412–17
    [Google Scholar]
  12. 12.
    Bernays EA, Chapman RF. 2000. Plant secondary compounds and grasshoppers: beyond plant defenses. J. Chem. Ecol. 26:81773–94
    [Google Scholar]
  13. 13.
    Bernays EA, Woodhead S. 1982. Incorporation of dietary phenols into the cuticle in the tree locust Anacridium melanorhodon. J. Insect Physiol. 28:7601–6
    [Google Scholar]
  14. 14.
    Bernays EA, Woodhead S. 1982. Plant phenols utilized as nutrients by a phytophagous insect. Science 216:4542201–3
    [Google Scholar]
  15. 15.
    Berner D, Blanckenhorn WU, Körner C. 2005. Grasshoppers cope with low host plant quality by compensatory feeding and food selection: N limitation challenged. Oikos 111:3525–33
    [Google Scholar]
  16. 16.
    Bownes A, Hill MP, Byrne MJ. 2013a. Nutrient-mediated effects on Cornops aquaticum Brüner (Orthoptera: Acrididae), a potential biological control agent of water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae). Biol. Control 67:3548–54
    [Google Scholar]
  17. 17.
    Bownes A, Hill MP, Byrne MJ. 2013b. The role of nutrients in the responses of water hyacinth, Eichhornia crassipes (Pontederiaceae) to herbivory by a grasshopper Cornops aquaticum Brüner (Orthoptera: Acrididae). Biol. Control 67:3555–62
    [Google Scholar]
  18. 18.
    Branson DH. 2006. Life-history responses of Ageneotettix deorum (Scudder) (Orthoptera: Acrididae) to host plant availability and population density. J. Kans. Entomol. Soc. 79:2146–55
    [Google Scholar]
  19. 19.
    Branson DH, Joern A, Sword GA. 2006. Sustainable management of insect herbivores in grassland ecosystems: new perspectives in grasshopper control. Bioscience 56:9743–55
    [Google Scholar]
  20. 20.
    Brosemann JK, Overson RP, Cease AJ, Millerwise SC, Le Gall M. 2023. Nutrient supply and accessibility in plants: effect of protein and carbohydrates on Australian plague locust (Chortoicetes terminifera) preference and performance. Front. Insect Sci. 3:1110518
    [Google Scholar]
  21. 21.
    Butler CG, Innes JM. 1936. A comparison of the rate of metabolic activity in the solitary and migratory phases of Locusta migratoria. Proc. R. Soc. Lond. B 119:814296–304
    [Google Scholar]
  22. 22.
    Cease AJ, Elser JJ, Fenichel EP, Hadrich JC, Harrison JF, Robinson BE. 2015. Living with locusts: connecting soil nitrogen, locust outbreaks, livelihoods, and livestock markets. Bioscience 65:6551–58
    [Google Scholar]
  23. 23.
    Cease AJ, Elser JJ, Ford CF, Hao S, Kang L, Harrison JF. 2012. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335:6067467–69The first study demonstrating a mechanistic link between land use that lowers plant nitrogen and locust outbreaks.
    [Google Scholar]
  24. 24.
    Cease AJ, Hao S, Kang L, Elser JJ, Harrison JF. 2010. Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper, Oedaleus asiaticus?. J. Insect Physiol. 56:8926–36
    [Google Scholar]
  25. 25.
    Cease AJ, Harrison JF, Hao S, Niren DC, Zhang G et al. 2017. Nutritional imbalance suppresses migratory phenotypes of the Mongolian locust (Oedaleus asiaticus). R. Soc. Open Sci. 4:6161039
    [Google Scholar]
  26. 26.
    Cease AJ, Trumper EV, Medina HE, Bazán FC, Harrison JF et al. 2023. Field bands of marching locust juveniles show carbohydrate, not protein, limitation. Curr. Res. Insect Sci. 4:100069
    [Google Scholar]
  27. 27.
    Chapman RF, Joern A 1990. Biology of Grasshoppers Hoboken, NJ: WileyAn edited book spanning many aspects of grasshopper biology.
    [Google Scholar]
  28. 28.
    Clissold FJ, Brown ZP, Simpson SJ. 2013. Protein-induced mass increase of the gastrointestinal tract of locusts improves net nutrient uptake via larger meals rather than more efficient nutrient absorption. J. Exp. Biol. 216:2329–37
    [Google Scholar]
  29. 29.
    Clissold FJ, Coggan N, Simpson SJ. 2013. Insect herbivores can choose microclimates to achieve nutritional homeostasis. J. Exp. Biol. 216:112089–96
    [Google Scholar]
  30. 30.
    Clissold FJ, Kertesz H, Saul AM, Sheehan JL, Simpson SJ. 2014. Regulation of water and macronutrients by the Australian plague locust, Chortoicetes terminifera. J. Insect Physiol. 69:35–40
    [Google Scholar]
  31. 31.
    Clissold FJ, Sanson GD, Read J. 2006. The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust: Supply rate alters ratio of nutrients gained. J. Anim. Ecol. 75:41000–13
    [Google Scholar]
  32. 32.
    Clissold FJ, Sanson GD, Read J, Simpson SJ. 2009. Gross versus net income: how plant toughness affects performance of an insect herbivore. Ecology 90:123393–405
    [Google Scholar]
  33. 33.
    Clissold FJ, Simpson SJ. 2015. Temperature, food quality and life history traits of herbivorous insects. Curr. Opin. Insect Sci. 11:63–70
    [Google Scholar]
  34. 34.
    Cullen DA, Cease AJ, Latchininsky AV, Ayali A, Berry K et al. 2017. From molecules to management: mechanisms and consequences of locust phase polyphenism. Adv. Insect Physiol. 53:167–285An international community review of locust phase change, from molecules to landscapes.
    [Google Scholar]
  35. 35.
    Das M, Ganguly A, Haldar P. 2012. Effect of food plants on nutritional ecology of two acridids (Orthoptera: Acrididae) to provide alternative protein supplement for poultry. Turk. J. Zool. 36:5699–718
    [Google Scholar]
  36. 36.
    De Vreyer P, Guilbert N, Mesple-Somps S. 2014. Impact of natural disasters on education outcomes: evidence from the 1987–89 locust plague in Mali. J. Afr. Econ. 24:157–100
    [Google Scholar]
  37. 37.
    Despland E, Simpson SJ. 2000. The role of food distribution and nutritional quality in behavioural phase change in the desert locust. Anim. Behav. 59:3643–52
    [Google Scholar]
  38. 38.
    Deveson ED. 2012. Naturae Amator and the grasshopper infestations of South Australia's early years. Trans. R. Soc. South Aust. 136:11–15
    [Google Scholar]
  39. 39.
    Farrow R. 1979. Population dynamics of the Australian plague locust, Chortoicetes terminifera (Walker), in central western New South Wales. I. Reproduction and migration in relation to weather. Aust. J. Zool. 27:5717–45
    [Google Scholar]
  40. 40.
    Farrow R. 1982. Population dynamics of the Australian Plague locust, Chortoicetes terminifera (Walker) in central western New South Wales. III. Analysis of population processes. Aust. J. Zool. 30:4569–80
    [Google Scholar]
  41. 41.
    Fielding DJ, Defoliart LS. 2007. Growth, development, and nutritional physiology of grasshoppers from subarctic and temperate regions. Physiol. Biochem. Zool. 80:6607–18
    [Google Scholar]
  42. 42.
    Fielding DJ, Trainor E, Zhang M. 2013. Diet influences rates of carbon and nitrogen mineralization from decomposing grasshopper frass and cadavers. Biol. Fertil. Soils 49:5537–44
    [Google Scholar]
  43. 43.
    Franzke A, Reinhold K. 2011. Stressing food plants by altering water availability affects grasshopper performance. Ecosphere 2:71–13
    [Google Scholar]
  44. 44.
    Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. 2001. Effects of size and temperature on metabolic rate. Science 293:55382248–51
    [Google Scholar]
  45. 45.
    Gokuldas M, Hunt PA, Candy DJ. 1988. The inhibition of lipid synthesis in vitro in the locust, Schistocerca gregaria, by factors from the corpora cardiaca. Physiol. Entomol. 13:143–48
    [Google Scholar]
  46. 46.
    González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F. 2020. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. Camb. Philos. Soc. 95:3802–21
    [Google Scholar]
  47. 47.
    Graham RI, Deacutis JM, Pulpitel T, Ponton F, Simpson SJ, Wilson K. 2014. Locusts increase carbohydrate consumption to protect against a fungal biopesticide. J. Insect Physiol. 69:27–34
    [Google Scholar]
  48. 48.
    Graham RI, Deacutis JM, Simpson SJ, Wilson K. 2015. Body condition constrains immune function in field populations of female Australian plague locust Chortoicetes terminifera. Parasite Immunol. 37:5233–41
    [Google Scholar]
  49. 49.
    Harrison JF, Fewell JH. 1995. Thermal effects on feeding behavior and net energy intake in a grasshopper experiencing large diurnal fluctuations in body temperature. Physiol. Zool. 68:3453–73
    [Google Scholar]
  50. 50.
    Hassan N, Li X, Wang J, Zhu H, Nummi P et al. 2021. Effects of grazing on C:N:P stoichiometry attenuate from soils to plants and insect herbivores in a semi-arid grassland. Oecologia 195:785–95
    [Google Scholar]
  51. 51.
    Hatle JD, Borst DW, Eskew MR, Juliano SA. 2001. Maximum titers of vitellogenin and total hemolymph protein occur during the canalized phase of grasshopper egg production. Physiol. Biochem. Zool. 74:6885–93
    [Google Scholar]
  52. 52.
    Hatle JD, Maslikova V, Short CA, Bracey D, Darmanjian M et al. 2022. Protein storage and reproduction increase in grasshoppers on a diet matched to the amino acids of egg yolk protein. J. Exp. Biol. 225:17jeb244450
    [Google Scholar]
  53. 53.
    Hawlena D, Schmitz OJ. 2010. Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. PNAS 107:3515503–7
    [Google Scholar]
  54. 54.
    Hawlena D, Schmitz OJ. 2010. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176:5537–56
    [Google Scholar]
  55. 55.
    Heidorn TJ, Joern A. 1987. Feeding preference and spatial distribution of grasshoppers (Acrididae) in response to nitrogen fertilization of Calamovilfa longifolia. Funct. Ecol. 1:369–75
    [Google Scholar]
  56. 56.
    Heifetz Y. 1997. The Control of Phase Transition in the Desert Locust Schistocerca gregaria (Forskal) Jerusalem: Hebr. Univ. Jerus.
    [Google Scholar]
  57. 57.
    Hendriks RJJ, Carvalheiro LG, Kleukers RMJC, Biesmeijer JC. 2013. Temporal-spatial dynamics in Orthoptera in relation to nutrient availability and plant species richness. PLOS ONE 8:8e71736
    [Google Scholar]
  58. 58.
    Herreid CF, Full RJ. 1984. Cockroaches on a treadmill: aerobic running. J. Insect Physiol. 30:5395–403
    [Google Scholar]
  59. 59.
    Hess JE, Beck JL. 2014. Forb, insect, and soil response to burning and mowing Wyoming big sagebrush in greater sage-grouse breeding habitat. Environ. Manag. 53:4813–22
    [Google Scholar]
  60. 60.
    Hinks CF, Cheeseman MT, Erlandson MA, Olfert O, Westcott ND. 1991. The effects of kochia, wheat and oats on digestive proteinases and the protein economy of adult grasshoppers, Melanoplus sanguinipes. J. Insect Physiol. 37:6417–30
    [Google Scholar]
  61. 61.
    Hinks CF, Erlandson MA. 1995. The accumulation of haemolymph proteins and activity of digestive proteinases of grasshoppers (Melanoplus sanguinipes) fed wheat, oats or kochia. J. Insect Physiol. 41:5425–33
    [Google Scholar]
  62. 62.
    Houston AI, McNamara JM. 2014. Foraging currencies, metabolism and behavioural routines. J. Anim. Ecol. 83:130–40
    [Google Scholar]
  63. 63.
    Ibanez S, Millery A, D'Ottavio M, Guilhot R, Vesin E. 2017. Phosphorus-rich grasshoppers consume plants high in nitrogen and phosphorus. Ecol. Entomol. 42:5610–16
    [Google Scholar]
  64. 64.
    Joern A, Behmer ST. 1997. Importance of dietary nitrogen and carbohydrates to survival, growth, and reproduction in adults of the grasshopper Ageneotettix deorum (Orthoptera: Acrididae). Oecologia 112:2201–8
    [Google Scholar]
  65. 65.
    Joern A, Behmer ST. 1998. Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis. Ecol. Entomol. 23:2174–84
    [Google Scholar]
  66. 66.
    Joern A, Gaines SB. 1990. Population dynamics and regulation in grasshoppers. Biology of Grasshoppers RF Chapman, A Joern 415–82. Hoboken, NJ: Wiley
    [Google Scholar]
  67. 67.
    Joern A, Mole S. 2005. The plant stress hypothesis and variable responses by blue grama grass (Bouteloua gracilis) to water, mineral nitrogen, and insect herbivory. J. Chem. Ecol. 31:92069–90
    [Google Scholar]
  68. 68.
    Joern A, Provin T, Behmer ST. 2012. Not just the usual suspects: Insect herbivore populations and communities are associated with multiple plant nutrients. Ecology 93:51002–15
    [Google Scholar]
  69. 69.
    Johnson RH, Lincoln DE. 1990. Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Oecologia 84:1103–10
    [Google Scholar]
  70. 70.
    Johnson RH, Lincoln DE. 1991. Sagebrush carbon allocation patterns and grasshopper nutrition: the influence of CO2 enrichment and soil mineral limitation. Oecologia 87:1127–34
    [Google Scholar]
  71. 71.
    Jonas JL, Joern A. 2008. Host-plant quality alters grass/forb consumption by a mixed-feeding insect herbivore, Melanoplus bivittatus (Orthoptera: Acrididae). Ecol. Entomol. 33:4546–54
    [Google Scholar]
  72. 72.
    Jutsum AR, Goldsworthy GJ. 1976. Fuels for flight in Locusta. J. Insect Physiol. 22:2243–49
    [Google Scholar]
  73. 73.
    Kaspari M, Joern A, Welti EAR. 2022. How and why grasshopper community maturation rates are slowing on a North American tall grass prairie. Biol. Lett. 18:120210510
    [Google Scholar]
  74. 74.
    Latchininsky AV. 2017. Climate change and locusts: what to expect?. Sci. Notes Russ. State Hydrometeorol. Univ. 46:134–43
    [Google Scholar]
  75. 75.
    Lavy O, Gophna U, Gefen E, Ayali A. 2019. The effect of density-dependent phase on the locust gut bacterial composition. Front. Microbiol. 9:3020
    [Google Scholar]
  76. 76.
    Lawton D, Le Gall M, Waters C, Cease AJ. 2021. Mismatched diets: defining the nutritional landscape of grasshopper communities in a variable environment. Ecosphere 12:3e03409
    [Google Scholar]
  77. 77.
    Lawton D, Scarth P, Deveson E, Piou C, Spessa A et al. 2022. Seeing the locust in the swarm: Accounting for spatiotemporal hierarchy improves ecological models of insect populations. Ecography 2022:2 https://doi.org/10.1111/ecog.05763
    [Google Scholar]
  78. 78.
    Lawton D, Waters C, Le Gall M, Cease A. 2020. Woody vegetation remnants within pastures influence locust distribution: testing bottom-up and top-down control. Agric. Ecosyst. Environ. 296:106931
    [Google Scholar]
  79. 79.
    Le Gall M, Beye A, Diallo M, Cease AJ. 2022. Generational variation in nutrient regulation for an outbreaking herbivore. Oikos 2022:7e09096
    [Google Scholar]
  80. 80.
    Le Gall M, Overson R, Cease A. 2019. A global review on locusts (Orthoptera: Acrididae) and their interactions with livestock grazing practices. Front. Ecol. Evol. 7:263A comprehensive review of the ecology of locust species and the interactions between livestock grazing and locusts.
    [Google Scholar]
  81. 81.
    Le Gall M, Word ML, Beye A, Cease AJ. 2021. Physiological status is a stronger predictor of nutrient selection than ambient plant nutrient content for a wild herbivore. Curr. Res. Insect Sci. 1:100004
    [Google Scholar]
  82. 82.
    Le Gall M, Word ML, Thompson N, Beye A, Cease AJ. 2020a. Nitrogen fertilizer decreases survival and reproduction of female locusts by increasing plant protein to carbohydrate ratio. J. Anim. Ecol. 89:102214–21
    [Google Scholar]
  83. 83.
    Le Gall M, Word ML, Thompson N, Manneh B, Beye A, Cease AJ. 2020b. Linking land use and the nutritional ecology of herbivores: a case study with the Senegalese locust. Funct. Ecol. 34:1167–81
    [Google Scholar]
  84. 84.
    Lecoq M, Cease AJ. 2022. What have we learned after millennia of locust invasions?. Agronomy 12:2472
    [Google Scholar]
  85. 85.
    Lecoq M, Sukirno 1999. Drought and an exceptional outbreak of the Oriental migratory locust, Locusta migratoria manilensis (Meyen 1835) in Indonesia (Orthoptera: Acrididae). J. Orthoptera Res. 8:153–61
    [Google Scholar]
  86. 86.
    Lenhart PA, Eubanks MD, Behmer ST. 2015. Water stress in grasslands: dynamic responses of plants and insect herbivores. Oikos 124:3381–90
    [Google Scholar]
  87. 87.
    Loaiza V, Jonas JL, Joern A. 2011. Grasshoppers (Orthoptera: Acrididae) select vegetation patches in local-scale responses to foliar nitrogen but not phosphorus in native grassland: grasshopper distribution and food quality. Insect Sci. 18:5533–40
    [Google Scholar]
  88. 88.
    Mariottini Y, Lange CE, Cepeda R, De Wysiecki ML. 2019. Efficiency of food utilization by Dichroplus maculipennis (Orthoptera: Acrididae: Melanoplinae) on four crop plants under controlled conditions. Stud. Neotrop. Fauna Environ. 54:3206–16
    [Google Scholar]
  89. 89.
    McMahon JD, Lashley MA, Brooks CP, Barton BT. 2018. Covariance between predation risk and nutritional preferences confounds interpretations of giving-up density experiments. Ecology 99:71517–22
    [Google Scholar]
  90. 90.
    Medina H, Cease A, Trumper E. 2017. The resurgence of the South American locust (Schistocerca cancellata). Metaleptea 37:317–21
    [Google Scholar]
  91. 91.
    Meynard CN, Gay P-E, Lecoq M, Foucart A, Piou C, Chapuis M-P. 2017. Climate-driven geographic distribution of the desert locust during recession periods: subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Change Biol. 23:114739–49
    [Google Scholar]
  92. 92.
    Meynard CN, Lecoq M, Chapuis M, Piou C. 2020. On the relative role of climate change and management in the current desert locust outbreak in East Africa. Glob. Change Biol. 26:3753–55
    [Google Scholar]
  93. 93.
    Miller GA, Clissold FJ, Mayntz D, Simpson SJ. 2009. Speed over efficiency: Locusts select body temperatures that favour growth rate over efficient nutrient utilization. Proc. Biol. Sci. 276:16733581–89
    [Google Scholar]
  94. 94.
    Mlinarić A, Horvat M, Šupak Smolčić V. 2017. Dealing with the positive publication bias: why you should really publish your negative results. Biochem. Med. 27:3030201
    [Google Scholar]
  95. 95.
    Nabity PD, Orpet R, Miresmailli S, Berenbaum MR, DeLucia EH. 2012. Silica and nitrogen modulate physical defense against chewing insect herbivores in bioenergy crops Miscanthus × giganteus and Panicum virgatum (Poaceae). J. Econ. Entomol. 105:3878–83
    [Google Scholar]
  96. 96.
    Nespolo RF, Roff DA, Fairbairn DJ. 2008. Energetic trade-off between maintenance costs and flight capacity in the sand cricket (Gryllus firmus). Funct. Ecol. 22:4624–31
    [Google Scholar]
  97. 97.
    Ozment KA, Welti EAR, Shaffer M, Kaspari M. 2021. Tracking nutrients in space and time: Interactions between grazing lawns and drought drive abundances of tallgrass prairie grasshoppers. Nat. Ecol. Evol. 11:105413–23
    [Google Scholar]
  98. 98.
    Pener MP. 1983. Endocrine aspects of phase polymorphism in locusts. Invertebrate Endocrinology, Vol. 1: Endocrinology of Insects RGH Downer, H Laufer 379–94. New York: Alan R. Liss
    [Google Scholar]
  99. 99.
    Pener MP, Simpson SJ. 2009. Locust phase polyphenism: an update. Adv. Insect Physiol. 36:1–272detailed review of the mechanisms of locust phase polyphenism.
    [Google Scholar]
  100. 100.
    Peng W, Ma NL, Zhang D, Zhou Q, Yue X et al. 2020. A review of historical and recent locust outbreaks: links to global warming, food security and mitigation strategies. Environ. Res. 191:110046
    [Google Scholar]
  101. 101.
    Ponton F, Wilson K, Holmes AJ, Cotter SC, Raubenheimer D, Simpson SJ. 2013. Integrating nutrition and immunology: a new frontier. J. Insect Physiol. 59:2130–37
    [Google Scholar]
  102. 102.
    Poot-Pech MA. 2017. Meeting on the locust situation in South America and the OIRSA region. Metaleptea 37:22–4
    [Google Scholar]
  103. 103.
    Popova EN, Semenov SM, Popov IO. 2016. Assessment of possible expansion of the climatic range of Italian locust (Calliptamus italicus L.) in Russia in the 21st century at simulated climate changes. Russ. Meteorol. Hydrol. 41:3213–17
    [Google Scholar]
  104. 104.
    Qin X, Wu H, Huang X, Lock TR, Kallenbach RL et al. 2019. Plant composition changes in a small-scale community have a large effect on the performance of an economically important grassland pest. BMC Ecol. 19:32
    [Google Scholar]
  105. 105.
    Raubenheimer D, Bassil K. 2007. Separate effects of macronutrient concentration and balance on plastic gut responses in locusts. J. Comp. Physiol. B 177:8849–55
    [Google Scholar]
  106. 106.
    Raubenheimer D, Simpson SJ. 1993. The geometry of compensatory feeding in the locust. Anim. Behav. 45:5953–64
    [Google Scholar]
  107. 107.
    Raubenheimer D, Simpson SJ. 1997. Integrative models of nutrient balancing: application to insects and vertebrates. Nutr. Res. Rev. 10:1151–79
    [Google Scholar]
  108. 108.
    Raubenheimer D, Simpson SJ. 1999. Integrating nutrition: a geometrical approach. Entomol. Exp. Appl. 91:167–82
    [Google Scholar]
  109. 109.
    Raubenheimer D, Simpson SJ. 2018. Nutritional ecology and foraging theory. Curr. Opin. Insect Sci. 27:38–45
    [Google Scholar]
  110. 110.
    Raubenheimer D, Simpson SJ, Mayntz D. 2009. Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct. Ecol. 23:14–16
    [Google Scholar]
  111. 111.
    Redinger JM, Halvorson HM, Gifford ME. 2022. Variable stoichiometric and macronutrient responses to lizard predation in Ozark glade grasshopper communities. Oecologia 199:4757–68
    [Google Scholar]
  112. 112.
    Ritchie ME. 2000. Nitrogen limitation and trophic versus abiotic influences on insect herbivores in a temperate grassland. Ecology 81:61601–12
    [Google Scholar]
  113. 113.
    Ritchie ME, Tilman D. 1993. Predictions of species interactions from consumer-resource theory: experimental tests with grasshoppers and plants. Oecologia 94:4516–27
    [Google Scholar]
  114. 114.
    Rode M, Lemoine NP, Smith MD. 2017. Prospective evidence for independent nitrogen and phosphorus limitation of grasshopper (Chorthippus curtipennis) growth in a tallgrass prairie. PLOS ONE 12:5e0177754
    [Google Scholar]
  115. 115.
    Samejo AA, Sultana R, Kumar S, Soomro S. 2021. Could entomophagy be an effective mitigation measure in desert locust management?. Agronomy 11:3455
    [Google Scholar]
  116. 116.
    Schmitz OJ, Rosenblatt AE, Smylie M. 2016. Temperature dependence of predation stress and the nutritional ecology of a generalist herbivore. Ecology 97:113119–30
    [Google Scholar]
  117. 117.
    Schoener TW. 1971. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2:369–404
    [Google Scholar]
  118. 118.
    Simpson SJ, Despland E, Hagele BF, Dodgson T. 2001. Gregarious behavior in desert locusts is evoked by touching their back legs. PNAS 98:73895–97
    [Google Scholar]
  119. 119.
    Simpson SJ, Raubenheimer D. 2001. The geometric analysis of nutrient-allelochemical interactions: a case study using locusts. Ecology 82:2422–39
    [Google Scholar]
  120. 120.
    Simpson SJ, Raubenheimer D. 2012. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity Princeton, NJ: Princeton Univ. PressA comprehensive review of and introduction to the Geometric Framework for Nutrition.
    [Google Scholar]
  121. 121.
    Song H. 2011. Density-dependent phase polyphenism in non-model locusts. Psyche 2011:741769
    [Google Scholar]
  122. 122.
    Sparks EL, Cebrian J. 2015. Effects of fertilization on grasshopper grazing of northern Gulf of Mexico salt marshes. Estuaries Coasts 38:3988–99
    [Google Scholar]
  123. 123.
    Sperfeld E, Halvorson HM, Malishev M, Clissold FJ, Wagner ND. 2016. Woodstoich III: integrating tools of nutritional geometry and ecological stoichiometry to advance nutrient budgeting and the prediction of consumer-driven nutrient recycling. Oikos 125:111539–53
    [Google Scholar]
  124. 124.
    Srygley RB. 2016. Diet drives the collective migrations and affects the immunity of mormon crickets and locusts: a comparison of these potential superspreaders of disease. Integr. Comp. Biol. 56:2268–77
    [Google Scholar]
  125. 125.
    Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere Princeton, NJ: Princeton Univ. PressA comprehensive review of and introduction to Ecological Stoichiometry.
    [Google Scholar]
  126. 126.
    Strengbom J, Reich PB, Ritchie ME. 2008. High plant species diversity indirectly mitigates CO2- and N-induced effects on grasshopper growth. Acta Oncol. 34:2194–201
    [Google Scholar]
  127. 127.
    Sword GA, Simpson SJ, El Hadi OT, Wilps H. 2000. Density-dependent aposematism in the desert locust. PNAS 267:143863–68
    [Google Scholar]
  128. 128.
    Talal S, Cease A, Farington R, Medina HE, Rojas J, Harrison J. 2021. High carbohydrate diet ingestion increases post-meal lipid synthesis and drives respiratory exchange ratios above 1. J. Exp. Biol. 224:4jeb240010
    [Google Scholar]
  129. 129.
    Talal S, Cease AJ, Youngblood JP, Farington R, Trumper EV et al. 2020. Plant carbohydrate content limits performance and lipid accumulation of an outbreaking herbivore. Proc. R. Soc. B 287:194020202500
    [Google Scholar]
  130. 130.
    Talal S, Harrison JF, Farington R, Youngblood JP, Medina HE et al. 2023. Growth rates determine protein intake, but environment sets non-protein energy consumption for animals. bioRxiv 2023.06.20.545784. https://doi.org/10.1101/2023.06.20.545784
  131. 131.
    Talal S, Parmar S, Osgood GM, Harrison JF, Cease AJ. 2023. High carbohydrate consumption increases lipid storage and promotes migratory flight in locusts. J. Exp. Biol. 226:3jeb245351
    [Google Scholar]
  132. 132.
    Torrence JD. 1975. Response of acridid grasshoppers to differential nitrogen treatments on tallgrass prairie Ph.D. thesis Kans. State Univ. Manhattan:
    [Google Scholar]
  133. 133.
    Trisnawati DW, Tsukamoto T, Yasuda H. 2015. Indirect effects of nutrients in organic and conventional paddy field soils on the rice grasshopper, Oxya japonica (Orthoptera: Acrididae), mediated by rice plant nutrients. Appl. Entomol. Zool. 50:199–107
    [Google Scholar]
  134. 134.
    Trumper EV, Cease AJ, Cigliano MM, Bazán FC, Lange CE et al. 2022. A review of the biology, ecology, and management of the South American locust, Schistocerca cancellata (Serville, 1838), and future prospects. Agronomy 12:1135
    [Google Scholar]
  135. 135.
    Uvarov B. 1966. Grasshoppers and Locusts: A Handbook of General Acridology Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  136. 136.
    van Huis A, Woldewahid G, Toleubayev K, van der Werf W. 2008. Relationships between food quality and fitness in the desert locust, Schistocerca gregaria, and its distribution over habitats on the Red Sea coastal plain of Sudan. Entomol. Exp. Appl. 127:2144–56
    [Google Scholar]
  137. 137.
    Vaudo AD, Patch HM, Mortensen DA, Tooker JF, Grozinger CM. 2016. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. PNAS 113:28E4035–42
    [Google Scholar]
  138. 138.
    Wang B, Deveson ED, Waters C, Spessa A, Lawton D et al. 2019. Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Sci. Total Environ. 668:947–57
    [Google Scholar]
  139. 139.
    Wang Q, Liu Y, Yin X. 2022. Comparison of gut bacterial communities of Locusta migratoria manilensis (Meyen) reared on different food plants. Biology 11:91347
    [Google Scholar]
  140. 140.
    Wang Y-P, Wu M-F, Lin P-J, Wang Y, Chen A-D et al. 2020. Plagues of desert locusts: very low invasion risk to China. Insects 11:9628
    [Google Scholar]
  141. 141.
    Webb SC, Hedges REM, Simpson SJ. 1998. Diet quality influences the δ13C and δ15N of locusts and their biochemical components. J. Exp. Biol. 201:202903–11
    [Google Scholar]
  142. 142.
    Weis-Fogh T. 1967. Respiration and tracheal ventilation in locusts and other flying insects. J. Exp. Biol. 47:3561–87
    [Google Scholar]
  143. 143.
    Welti EAR, Prather RM, Sanders NJ, De Beurs KM, Kaspari M. 2020a. Bottom-up when it is not top-down: Predators and plants control biomass of grassland arthropods. J. Anim. Ecol. 89:51286–94
    [Google Scholar]
  144. 144.
    Welti EAR, Roeder KA, de Beurs KM, Joern A, Kaspari M. 2020b. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. PNAS 117:137271–75A study using two decades of data to link grasshopper declines to plant nutrient dilution from elevated CO2.
    [Google Scholar]
  145. 145.
    White TCR. 1993. The Inadequate Environment: Nitrogen and the Abundance of Animals Berlin: Springer
    [Google Scholar]
  146. 146.
    Word ML, Hall SJ, Robinson BE, Manneh B, Beye A, Cease AJ. 2019. Soil-targeted interventions could alleviate locust and grasshopper pest pressure in West Africa. Sci. Total Environ. 663:632–43A study linking land use, soil and plant N, and locust populations in a West African agroecosystem.
    [Google Scholar]
  147. 147.
    Youngblood JP, Cease AJ, Talal S, Copa F, Medina HE et al. 2022. Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts. Ecol. Monogr. 93:1e1550
    [Google Scholar]
  148. 148.
    Yu G, Shen H, Liu J. 2009. Impacts of climate change on historical locust outbreaks in China. J. Geophys. Res. 114:D18 https://doi.org/10.1029/2009JD011833
    [Google Scholar]
  149. 149.
    Zanotto FP, Gouveia SM, Simpson SJ, Raubenheimer D, Calder PC. 1997. Nutritional homeostasis in locusts: Is there a mechanism for increased energy expenditure during carbohydrate overfeeding?. J. Exp. Biol. 200:182437–48
    [Google Scholar]
  150. 150.
    Zanotto FP, Simpson SJ, Raubenheimer D. 1993. The regulation of growth by locusts through post-ingestive compensation for variation in the levels of dietary protein and carbohydrate. Physiol. Entomol. 18:4425–34
    [Google Scholar]
  151. 151.
    Zembrzuski D, Woller DA, Jaronski S, Black LR, Reuter KC et al. 2023. Understanding how diet and temperature affect survival and subsequent sporulation in a major rangeland grasshopper pest, Melanoplus sanguinipes, infected with the entomopathogenic fungus, Metarhizium robertsii. Biol. Control 183:105268
    [Google Scholar]
  152. 152.
    Zembrzuski D, Woller DA, Jech L, Black LR, Reuter KC et al. 2021. Establishing the nutritional landscape and macronutrient preferences of a major United States rangeland pest, Melanoplus sanguinipes, in field and lab populations. J. Ovarian Res. 30:2163–72
    [Google Scholar]
  153. 153.
    Zhang L, Lecoq M, Latchininsky A, Hunter D. 2019. Locust and grasshopper management. Annu. Rev. Entomol. 64:15–3453. An overview of the major challenges and opportunities for locust and grasshopper management from historical to current.
    [Google Scholar]
  154. 154.
    Zhang M, Fielding DJ. 2011. Populations of the northern grasshopper, Melanoplus borealis (Orthoptera: Acrididae), in Alaska are rarely food limited. Environ. Entomol. 40:3541–48
    [Google Scholar]
  155. 155.
    Zhu Y, Veen GF, Wang D, Wang L, Zhong Z et al. 2020. Herbivore phenology can predict response to changes in plant quality by livestock grazing. Oikos 129:6811–19
    [Google Scholar]
  156. 156.
    Zhu Y, Zhong Z, Pagès JF, Finke D, Wang D et al. 2019. Negative effects of vertebrate on invertebrate herbivores mediated by enhanced plant nitrogen content. J. Ecol. 107:2901–12
    [Google Scholar]
/content/journals/10.1146/annurev-ento-120220-110415
Loading
/content/journals/10.1146/annurev-ento-120220-110415
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error