1932

Abstract

Mirids (Hemiptera: Heteroptera: Miridae) feed upon a wide variety of cultivated and wild plants and can be economically important crop pests. They have traditionally been perceived as innocuous herbivores in East Asia; however, population levels of various mirid species have dramatically increased over the past decades. High-profile pests such as spp., spp., and spp. are now widely distributed across the region, and their infestation pressure is associated with climate, agroecological conditions, and farming practices. This review outlines how an in-depth understanding of pest biology, a systems-level characterization of pest ecology, and a comprehensive evaluation of integrated pest management tactics have enabled sustainable management of mirids across crop boundaries and harvest cycles. This work underscores how more holistic, integrative research approaches can accelerate the implementation of area-wide management of generalist pests, effectively prevent pest population build-up and yield impact, and shrink the environmental footprint of agriculture. In addition to highlighting the merits of interdisciplinary systems approaches, we discuss prospects and challenges for the sustainable management of polyphagous mirid pests in landscape matrices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-121322-015345
2024-01-25
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-121322-015345.html?itemId=/content/journals/10.1146/annurev-ento-121322-015345&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    An XK, Khashaveh A, Liu DF, Xiao Y, Wang Q et al. 2020. Functional characterization of one sex pheromone receptor (AlucOR4) in Apolygus lucorum (Meyer-Dür). J. Insect Physiol. 120:103986
    [Google Scholar]
  2. 2.
    Bordini I, Ellsworth PC, Naranjo SE, Fournier A. 2021. Novel insecticides and generalist predators support conservation biological control in cotton. Biol. Control 154:104502
    [Google Scholar]
  3. 3.
    Cai XM, Wu KM, Yuan GH. 2008. Electrical penetration graphs of Adelphocoris suturalis Jakovlev in main host crops. Sci. Agric. Sin. 41:431–36
    [Google Scholar]
  4. 4.
    Cao PP, Lu CK, Wang XQ. 2016. Field trapping assessment and population dynamics of Apolygus lucorum in vineyards. Acta Phytophylacica Sin. 43:523–24
    [Google Scholar]
  5. 5.
    Carriere Y, Goodell PB, Ellers-Kirk C, Larocque G, Dutilleul P et al. 2012. Effects of local and landscape factors on population dynamics of a cotton pest. PLOS ONE 7:e39862
    [Google Scholar]
  6. 6.
    Cassis G, Schuh RT. 2012. Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). Annu. Rev. Entomol. 57:377–404
    [Google Scholar]
  7. 7.
    Chu HF, Meng HL. 1958. Studies on three species of cotton plant-bugs, Adelphocoris taeniophorus Reuter, A. lineolatus (Goeze), and Lygus lucorum Meyer-Dür (Hemiptera, Miridae). Acta Entomol. Sin. 8:97–118
    [Google Scholar]
  8. 8.
    Dang ZH, An JJ, Liu HS, Zhang T, Gao ZL et al. 2021. Application effect of green mirid control technology system in alfalfa fields. China Plant Prot. 41:39–42
    [Google Scholar]
  9. 9.
    Dong JW, Lu YH, Yang YZ. 2012. Oviposition behavior of adult female Apolygus lucorum. Chin. J. Appl. Entomol. 49:591–95
    [Google Scholar]
  10. 10.
    Dong JW, Pan HS, Lu YH, Yang YZ. 2013. Nymphal performance correlated with adult preference for flowering host plants in a polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae). Arthropod-Plant Interact. 7:83–91
    [Google Scholar]
  11. 11.
    Dong S, Li LL, Lu ZB, Li C, Li WQ et al. 2018. Indoor toxicity test of five neonicotinoid insecticides against Apolygus lucorum. Shandong Agric. Sci. 50:115–17
    [Google Scholar]
  12. 12.
    Dou SY, Xiu CL, Zhang JP, Lu YH. 2017. The trapping efficacy of plant-derived attractant on mirid bugs under field conditions. Plant Prot. 43:239–42
    [Google Scholar]
  13. 13.
    Feng HQ, Chen PY, Li GP, Qiu F, Guo XR. 2012. Diapause induction in Apolygus lucorum and Adelphocoris suturalis (Hemiptera: Miridae) in northern China. Environ. Entomol. 41:1606–11
    [Google Scholar]
  14. 14.
    Feng HQ, Jin YL, Zhang YF, Huang JR, Feng HY, Hou YM. 2021. Modelling the combined effects of photoperiod and temperature on diapause induction in Apolygus lucorum (Meyer-Dür) across different latitudes. Pest Manag. Sci. 77:2231–37
    [Google Scholar]
  15. 15.
    Frank SD, Tooker JF. 2020. Neonicotinoids pose undocumented threats to food webs. PNAS 117:22609–13
    [Google Scholar]
  16. 16.
    Fu XW, Liu YQ, Li C, Lu YH, Li YH, Wu KM. 2014. Seasonal migration of Apolygus lucorum (Hemiptera: Miridae) over the Bohai Sea in northern China. J. Econ. Entomol. 107:1399–410
    [Google Scholar]
  17. 17.
    Fujii T, Hori M, Matsuda K. 2010. Influence of host plant odours on invasion of the rice leaf bug Trigonotylus caelestialium into paddy fields. Agric. Forest Entomol. 12:99–105
    [Google Scholar]
  18. 18.
    Geng HH, Lu YH, Yang YZ. 2012. Activity of adult Apolygus lucorum in cotton field. Chin. J. Appl. Entomol. 49:601–4
    [Google Scholar]
  19. 19.
    Geng HH, Pan HS, Lu YH, Yang YZ. 2012. Nymphal and adult performance of Apolygus lucorum (Hemiptera: Miridae) on a preferred host plant, mungbean Vigna radiata. Appl. Entomol. Zool. 47:191–97
    [Google Scholar]
  20. 20.
    George J, Glover JP, Gore J, Crow WD, Reddy GVP. 2021. Biology, ecology, and pest management of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) in southern row crops. Insects 12:807
    [Google Scholar]
  21. 21.
    Gowda A, Rydel TJ, Wollacott AM, Brown RS, Akbar W et al. 2016. A transgenic approach for controlling Lygus in cotton. Nat. Commun. 7:12213
    [Google Scholar]
  22. 22.
    Hachiya K. 1985. Control threshold of rice leaf bug (Trigonotylus caelestialium Kirkaldy). Bull. Hokkaido Prefect. Agric. Exp. Stn. 53:43–49
    [Google Scholar]
  23. 23.
    Higuchi H. 2006. Seasonal changes in egg parasitism of the rice leaf bug, Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) in Italian rye-grass fields. Jpn. J. Appl. Entomol. Zool. 50:167–69
    [Google Scholar]
  24. 24.
    Higuchi H. 2010. Ecology and management of rice bugs causing pecky rice. Jpn. J. Appl. Entomol. Zool. 54:171–88
    [Google Scholar]
  25. 25.
    Higuchi H, Takahashi A. 2005. Seasonal changes in egg diapause induction and effects of photoperiod and temperature on egg diapause in the rice leaf bug, Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae). Jpn. J. Appl. Entomol. Zool. 49:113–18
    [Google Scholar]
  26. 26.
    Huang JK, Zhou K, Zhang W, Deng XZ, van der Werf W et al. 2018. Uncovering the economic value of natural enemies and true costs of chemical insecticides to cotton farmers in China. Environ. Res. Lett. 13:064027
    [Google Scholar]
  27. 27.
    Iimura S. 1994. Attack timing and control threshold of the sorghum plant bug, Stenotus rubrovittatus Matsumura (Hemiptera: Miridae). Annu. Rep. Plant Prot. North Jpn. 45:132–36
    [Google Scholar]
  28. 28.
    Iimura S. 2004. Diapause of sorghum plant bug, Stenotus rubrovittatus. Annu. Rep. Plant Prot. North Jpn. 55:113–16
    [Google Scholar]
  29. 29.
    Ishimoto M, Sato H, Muraoka Y, Aoki Y, Takita M et al. 2006. Monitoring adult rice leaf bug, Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae), with a synthetic sex pheromone trap in paddy fields. Jpn. J. Appl. Entomol. Zool. 50:311–18
    [Google Scholar]
  30. 30.
    Ito K. 2004. A possible cause of recent outbreaks of rice-ear bugs-changes in the use of paddy field. Annu. Rep. Plant Prot. North Jpn. 55:134–39
    [Google Scholar]
  31. 31.
    Ji P, Liu JT, Gu SH, Zhu XQ, Zhang YJ, Guo YY. 2013. Expression and binding specificity analysis of odorant binding protein AlucOBP7 from Apolygus lucorum (Hemiptera: Miridae). Acta Entomol. Sin. 56:575–83
    [Google Scholar]
  32. 32.
    Jiang YY, Liu J, Zeng J, Xia B, Lu YH. 2021. Monitoring and forecast of cotton pests in China: a review over the past 70 years. Acta Phytophylacica Sin. 48:940–46
    [Google Scholar]
  33. 33.
    Jiang YY, Lu YH, Zeng J. 2015. Forecast and Management of Mirid Bugs in Multiple Agroecosystems of China Beijing: China Agric. Press
    [Google Scholar]
  34. 34.
    Jiao ZB, Lu YH, Wu KM. 2012. Sampling techniques for estimating the population density of Apolygus lucorum in cotton fields. Chin. J. Appl. Entomol. 49:610–13
    [Google Scholar]
  35. 35.
    Jin WX, Jiang YP, Shen F, Wang RY, Gao H et al. 2022. Influence of damage by Apolygus lucorum on yield and quality of peach. Jiangsu J. Agric. Sci. 50:113–16
    [Google Scholar]
  36. 36.
    Jones AG, Hoover K, Pearsons K, Tooker JF, Felton GW. 2020. Potential impacts of translocation of neonicotinoid insecticides to cotton (Gossypium hirsutum (Malvales: Malvaceae)) extrafloral nectar on parasitoids. Environ. Entomol. 49:159–68
    [Google Scholar]
  37. 37.
    Kakizaki M, Sugie H. 2001. Identification of female sex pheromone of the rice leaf bug, Trigonotylus caelestialium. J. Chem. Ecol. 27:2447–58
    [Google Scholar]
  38. 38.
    Kerzhner IM, Josifov M. 1999. Cimicomorpha II: Miridae Amsterdam: Neth. Entomol. Soc.
    [Google Scholar]
  39. 39.
    Kim DS, Cho MR, Lee JH, Jeon HY, Choi YM. 2002. Seasonal migration of Apolygus spinolae (Hemiptera: Miridae) between grapevines and herbaceous plants. J. Asia-Pac. Entomol. 5:91–95
    [Google Scholar]
  40. 40.
    Kudo SI, Kurihara M. 1988. Seasonal occurrence of egg diapause in the rice leaf bug, Trigonotylus coelestialium Kirkaldy (Hemiptera: Miridae). Appl. Entomol. Zool. 23:365–66
    [Google Scholar]
  41. 41.
    Layton MB. 2000. Biology and damage of the tarnished plant bug, Lygus lineolaris, in cotton. Southwest. Entomol. 23:7–20
    [Google Scholar]
  42. 42.
    Lee S, Lee GS, Goh HG. 2002. Mirid bugs (Heteroptera: Miridae) on grapevine: their damages and host plants. Korean J. Appl. Entomol. 41:33–41
    [Google Scholar]
  43. 43.
    Lee SK, Kang HJ, Lee KH, Oh HK, Park HS, Shin HM. 2019. Evaluating pesticides for controlling Apolygus spinolae and A. lucorum mirid bug population patterns in jujube orchards in Boeun, Chungbuk. Korean J. Appl. Entomol. 58:197–202
    [Google Scholar]
  44. 44.
    Li GP, Feng HQ, Chen PY, Wu SY, Liu B, Qiu F. 2010. Effects of transgenic Bt cotton on the population density, oviposition behavior, development, and reproduction of a nontarget pest, Adelphocoris suturalis (Hemiptera: Miridae). Environ. Entomol. 39:1378–87
    [Google Scholar]
  45. 45.
    Li GP, Feng HQ, McNeil JN, Liu B, Chen PY, Qiu F. 2011. Impacts of transgenic Bt cotton on a non-target pest, Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae), in northern China. Crop Prot. 30:1573–78
    [Google Scholar]
  46. 46.
    Li JH, Liu B, Pan HS, Luo SP, Wyckhuys KAG et al. 2019. Buckwheat strip crops increase parasitism of Apolygus lucorum in cotton. BioControl 64:645–54
    [Google Scholar]
  47. 47.
    Li JH, Pan HS, Yang F, Luo SP, Yuan HB, Lu YH. 2016. Parasitism of overwintering eggs of Apolygus lucorum by Telenomus sp. in jujube orchard. Chin. J. Biol. Control 32:294–98
    [Google Scholar]
  48. 48.
    Li JH, Yang F, Wang Q, Pan HS, Yuan HB, Lu YH. 2017. Predation by generalist arthropod predators on Apolygus lucorum (Hemiptera: Miridae): molecular gut-content analysis and field-cage assessment. Pest Manag. Sci. 73:628–35
    [Google Scholar]
  49. 49.
    Li LM, Men XY, Ye BH, Yu Y, Zhang AS et al. 2012. Occurrence and management of fruit mirids. Chin. J. Appl. Entomol. 49:793–801
    [Google Scholar]
  50. 50.
    Li ML, Yang L, Pan YF, Zhang Q, Yuan HB, Lu YH. 2020. Landscape effects on the abundance of Apolygus lucorum in cotton fields. Insects 11:185
    [Google Scholar]
  51. 51.
    Li WJ, Wang LL, Jaworski CC, Yang F, Liu B et al. 2020. The outbreaks of nontarget mirid bugs promote arthropod pest suppression in Bt cotton agroecosystems. Plant Biotechnol. J. 18:322–24
    [Google Scholar]
  52. 52.
    Li WJ, Yuan W, Zhao XC, Wu KM. 2016. Molecular cloning and the expression profile of vitellogenin in relation to tissue and food source in Apolygus lucorum (Hemiptera: Miridae). Ann. Entomol. Soc. Am. 109:350–56
    [Google Scholar]
  53. 53.
    Li WJ, Zhao XC, Yuan W, Wu KM. 2016. Activities of digestive enzymes in the omnivorous pest Apolygus lucorum (Hemiptera: Miridae). J. Econ. Entomol. 110:101–10
    [Google Scholar]
  54. 54.
    Lin FM, Wu D, Lu YH, Wang M, Zhang YJ, Wu KM. 2010. The relationship between the trichome characteristics of cotton leaves and the resistance to Apolygus lucorum (Meyer-Dür). Acta Phytophylacica Sin. 37:165–71
    [Google Scholar]
  55. 55.
    Lin FM, Wu D, Lu YH, Zhang YJ, Wang M, Wu KM. 2011. The relationship between the main secondary metabolites and the resistance of cotton to Apolygus lucorum. Acta Phytophylacica Sin. 38:202–8
    [Google Scholar]
  56. 56.
    Lin FM, Wu D, Lu YH, Zhang YJ, Wang M et al. 2010. Effects of leaf thickness and gossypol gland density of cotton on its resistance to Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae). Acta Entomol. Sin. 53:780–85
    [Google Scholar]
  57. 57.
    Liu B, Li HQ, Ali A, Li HB, Liu J et al. 2015. Effects of temperature and humidity on immature development of Lygus pratensis (L.) (Hemiptera: Miridae). J. Asia-Pac. Entomol. 18:139–43
    [Google Scholar]
  58. 58.
    Liu FZ, Yang B, Zhang AH, Ding DR, Wang GR. 2019. Plant-mediated RNAi for controlling Apolygus lucorum. Front. Plant Sci. 10:84
    [Google Scholar]
  59. 59.
    Liu GQ. 2022. Fauna Sinica: Insecta, Volume 73 Hemiptera, Miridae, Bryocorinae, Cylapinae, Deraeocorinae, Isometopinae and Psallopinae Beijing: Science Press
    [Google Scholar]
  60. 60.
    Liu GQ, Zheng LY. 2014. Fauna Sinica: Insecta, Volume 62 Hemiptera, Miridae (Ⅱ), Orthotylinae Beijing: Science Press
    [Google Scholar]
  61. 61.
    Liu J, Li TT, Huang JM, Kang ZK, Yang YH et al. 2015. Resistance to beta-cypermethrin and chlorpyrifos in populations of Apolygus lucorum from the Yellow and Changjiang River cotton growing areas of China. Chin. J. Appl. Entomol. 52:616–22
    [Google Scholar]
  62. 62.
    Liu Y, Liu HW, Wang HC, Huang TY, Liu B et al. 2021. Apolygus lucorum genome provides insights into omnivorousness and mesophyll feeding. Mol. Ecol. Resour. 21:287–300
    [Google Scholar]
  63. 63.
    Liu YQ, Liu B, Ali A, Luo SP, Lu YH, Liang GM. 2015. Insecticide toxicity to Adelphocoris lineolatus (Hemiptera: Miridae) and its nymphal parasitoid Peristenus spretus (Hymenoptera: Braconidae). J. Econ. Entomol. 108:1779–85
    [Google Scholar]
  64. 64.
    Llandres AL, Almohamad R, Brevault T, Renou A, Tereta I et al. 2018. Plant training for induced defense against insect pests: a promising tool for integrated pest management in cotton. Pest Manag. Sci. 74:2004–12
    [Google Scholar]
  65. 65.
    Lu YH, Jiao ZB, Li GP, Wyckhuys KAG, Wu KM. 2011. Comparative overwintering host range of three Adelphocoris species (Hemiptera: Miridae) in northern China. Crop Prot. 30:1455–60
    [Google Scholar]
  66. 66.
    Lu YH, Jiao ZB, Wu KM. 2012. Early season host plants of Apolygus lucorum (Heteroptera: Miridae) in northern China. J. Econ. Entomol. 105:1603–11
    [Google Scholar]
  67. 67.
    Lu YH, Liang GM, Zhang YJ, Yang XM. 2020. Advances in the management of insect pests of cotton in China since the 21st century. Chin. J. Appl. Entomol. 57:477–90
    [Google Scholar]
  68. 68.
    Lu YH, Qiu F, Feng HQ, Li HB, Yang ZC et al. 2008. Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt cotton in China. Crop Prot. 27:465–72
    [Google Scholar]
  69. 69.
    Lu YH, Wu KM. 2008. Biology and Control of Cotton Mirids Beijing: Gold. Shield Press
    [Google Scholar]
  70. 70.
    Lu YH, Wu KM. 2011. Effect of relative humidity on population growth of Apolygus lucorum (Heteroptera: Miridae). Appl. Entomol. Zool. 46:421–27
    [Google Scholar]
  71. 71.
    Lu YH, Wu KM. 2011. Mirid bugs in China: pest status and management strategies. Outlooks Pest Manag. 22:248–51
    [Google Scholar]
  72. 72.
    Lu YH, Wu KM, Guo YY. 2007. Flight potential of Lygus lucorum (Meyer-Dür) (Heteroptera: Miridae). Environ. Entomol. 36:1007–13
    [Google Scholar]
  73. 73.
    Lu YH, Wu KM, Jiang YY, Xia B. 2010. Occurrence trend and control strategy of cotton mirids in China. Plant Prot. 36:150–53
    [Google Scholar]
  74. 74.
    Lu YH, Wu KM, Jiang YY, Xia B, Li P et al. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–54
    [Google Scholar]
  75. 75.
    Lu YH, Wu KM, Wyckhuys KAG, Guo YY. 2009. Comparative flight performance of three important pest Adelphocoris species of Bt cotton in China. Bull. Entomol. Res. 99:543–50
    [Google Scholar]
  76. 76.
    Lu YH, Wu KM, Wyckhuys KAG, Guo YY. 2009. Comparative study of temperature-dependent life histories of three economically important Adelphocoris spp. Physiol. Entomol. 34:318–24
    [Google Scholar]
  77. 77.
    Lu YH, Wu KM, Wyckhuys KAG, Guo YY. 2009. Potential of mungbean, Vigna radiatus as a trap crop for managing Apolygus lucorum (Hemiptera: Miridae) on Bt cotton. Crop Prot. 28:77–81
    [Google Scholar]
  78. 78.
    Lu YH, Wu KM, Wyckhuys KAG, Guo YY. 2010. Overwintering hosts of Apolygus lucorum (Hemiptera: Miridae) in northern China. Crop Prot. 29:1026–33
    [Google Scholar]
  79. 79.
    Lu YH, Wu KM, Wyckhuys KAG, Guo YY. 2010. Temperature-dependent life history of the green plant bug, Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae). Appl. Entomol. Zool. 45:387–93
    [Google Scholar]
  80. 80.
    Lu YH, Zeng J, Jiang YY, Wu KM. 2014. Techniques for surveying mirid bug (Heteroptera: Miridae) populations and assessing crop damage caused by these pests. Chin. J. Appl. Entomol. 51:848–52
    [Google Scholar]
  81. 81.
    Luo SP, Li HM, Lu YH, Zhang F, Haye T et al. 2014. Functional response and mutual interference of Peristenus spretus (Hymenoptera: Braconidae), a parasitoid of Apolygus lucorum (Heteroptera: Miridae). Biocontrol Sci. Technol. 24:247–56
    [Google Scholar]
  82. 82.
    Luo SP, Lu YH, Cui GZ, Zhang T, Zhao T et al. 2018. Establishment and demonstration of green control technique system on Apolygus lucorum in jujube orchards. Plant Prot. 44:194–98
    [Google Scholar]
  83. 83.
    Luo SP, Lu YH, Men XY, Zhang F, Wu KM. 2016. Parasitism of Apolygus lucorum by Peristenus spretus at different release levels in jujube orchards. Chin. J. Biol. Control 32:698–702
    [Google Scholar]
  84. 84.
    Luo SP, Xia SK, Lu YH, Wu KM. 2022. Parasitism efficiency and progeny fitness of Peristenus spretus Chen et van Achterberg vary with nymphal instar of host, Apolygus lucorum (Meyer-Dür). Biol. Control 167:104839
    [Google Scholar]
  85. 85.
    Luo SP, Zhang F, Wu KM. 2015. Effect of temperature on the reproductive biology of Peristenus spretus (Hymenoptera: Braconidae), a biological control agent of the plant bug Apolygus lucorum (Hemiptera: Miridae). Biocontrol Sci. Technol. 25:1410–25
    [Google Scholar]
  86. 86.
    Ma XL, Song HW, Feng HQ, Zhang Z, Lu SH et al. 2016. Migration abilities and host transfer rules of Apolygus lucorum Meyer-Dür in spring and autumn in Henan jujube area. J. Henan Agric. Sci. 45:73–77
    [Google Scholar]
  87. 87.
    Men XY, Li LL, Ding N, Sun TL, Yu Y. 2015. Occurrence and green control technique of tea mirid bug in tea garden of Northern China. Shandong Agric. Sci. 47:109–12
    [Google Scholar]
  88. 88.
    Ohtomo R. 2013. Occurrence and control of Stenotus rubrovittatus (Hemiptera: Miridae) in Touhoku area in Japan. Jpn. J. Appl. Entomol. Zool. 57:137–49
    [Google Scholar]
  89. 89.
    Osawa T, Yamasaki K, Tabuchi K, Yoshioka A, Ishigooka Y et al. 2018. Climate-mediated population dynamics enhance distribution range expansion in a rice pest insect. Basic Appl. Ecol. 30:41–51
    [Google Scholar]
  90. 90.
    Osawa T, Yamasaki K, Tabuchi K, Yoshioka A, Takada MB. 2018. Detecting crucial dispersal pathways using a virtual ecology approach: a case study of the mirid bug Stenotus rubrovittatus. Ambio 47:806–15
    [Google Scholar]
  91. 91.
    Pan HS, Liu B, Lu YH. 2019. Host-plant switching promotes the population growth of Apolygus lucorum: implications for laboratory rearing. Bull. Entomol. Res. 109:309–15
    [Google Scholar]
  92. 92.
    Pan HS, Liu B, Lu YH, Desneux N. 2014. Identification of the key weather factors affecting overwintering success of Apolygus lucorum eggs in dead host tree branches. PLOS ONE 9:e94190
    [Google Scholar]
  93. 93.
    Pan HS, Liu B, Lu YH, Desneux N. 2014. Life table parameters of three mirid bug (Adelphocoris) species (Hemiptera: Miridae) under contrasted relative humidity regimes. PLOS ONE 9:e115878
    [Google Scholar]
  94. 94.
    Pan HS, Liu B, Lu YH, Wyckhuys KAG. 2015. Seasonal alterations in host range and fidelity in the polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae). PLOS ONE 10:e0117153
    [Google Scholar]
  95. 95.
    Pan HS, Lu YH, Wyckhuys KAG. 2013. Early-season host switching in Adelphocoris spp. (Hemiptera: Miridae) of differing host breadth. PLOS ONE 8:e59000
    [Google Scholar]
  96. 96.
    Pan HS, Lu YH, Wyckhuys KAG. 2013. Repellency of dimethyl disulfide to Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) under laboratory and field conditions. Crop Prot. 50:40–45
    [Google Scholar]
  97. 97.
    Pan HS, Lu YH, Wyckhuys KAG, Wu KM. 2013. Preference of a polyphagous mirid bug, Apolygus lucorum (Meyer-Dür) for flowering host plants. PLOS ONE 8:e68980
    [Google Scholar]
  98. 98.
    Pan HS, Lu YH, Xiu CL, Geng HH, Cai XM et al. 2015. Volatile fragrances associated with flowers mediate host plant alternation of a polyphagous mirid bug. Sci. Rep. 5:14805
    [Google Scholar]
  99. 99.
    Pan HS, Tena A, Xiu CL, Liu B, Lu YH, Desneux N. 2019. Floral feeding increases diet breadth in a polyphagous mirid. J. Pest Sci. 92:1089–100
    [Google Scholar]
  100. 100.
    Pan HS, Xiu CL, Williams L III, Lu YH. 2021. Plant volatiles modulate seasonal dynamics between hosts of the polyphagous mirid bug Apolygus lucorum. J. Chem. Ecol. 47:87–98
    [Google Scholar]
  101. 101.
    Ratnadass A, Deguine JP. 2020. Three-way interactions between crop plants, phytopathogenic fungi, and mirid bugs. A review. Agron. Sustain. Dev. 40:46
    [Google Scholar]
  102. 102.
    Rice P, Kashin J, Hatanaka N, Ono T, Oyama J, Kidokoro T. 2009. Effect of Scirpus juncoides Roxb. var. ohwianus on occurrence of sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae) and pecky rice. Jpn. J. Appl. Entomol. Zool. 53:7–12
    [Google Scholar]
  103. 103.
    Song GJ, Feng HQ, Li GP, Zhang LX, Qiu F, Li HP. 2012. Using the Rb marking technique to track the spring migration of Apolygus lucorum and Adelphocoris suturalis in Henan. Chin. J. Appl. Entomol. 49:620–25
    [Google Scholar]
  104. 104.
    Stern VM, Van Den Bosch R, Leigh TF. 1964. Strip catting alfalfa for Lygus bug control. Calif. Agric. 18:44–46
    [Google Scholar]
  105. 105.
    Sugiura N, Koga S, Suzuki Y. 2002. Relationship between occurrence of pecky rice caused by rice bugs and meteorological conditions in Kumamoto Prefecture. Kyushu Plant Prot. Res. 48:54–59
    [Google Scholar]
  106. 106.
    Takada MB, Yoshioka A, Takagi S, Iwabuchi S, Washitani I. 2012. Multiple spatial scale factors affecting mirid bug abundance and damage level in organic rice paddies. Biol. Control 60:169–74
    [Google Scholar]
  107. 107.
    Takahashi A, Higuchi H. 2002. Efficiency of light trap for monitoring adult emergence of the overwintering generation of the rice leaf bug, Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae). Jpn. J. Appl. Entomol. Zool. 46:163–68
    [Google Scholar]
  108. 108.
    Takahashi Y, Kikuchi H. 2010. Control of rice leaf bugs, Trigonotylus caelestialium and Stenotus rubrovittatus, with the management of levee. Annu. Rep. Plant Prot. North Jpn. 61:116–20
    [Google Scholar]
  109. 109.
    Takeda A. 2017. Habitat management and prevalence reconnaissance of Miridae (Hemiptera) species causing pecky rice. Jpn. J. Appl. Entomol. Zool. 61:49–61
    [Google Scholar]
  110. 110.
    Tan Y, Zhang S, Gao XW. 2012. Monitoring the insecticide resistance of the cotton bugs Apolygus lucorum and Adelphocoris suturalis. Chin. J. Appl. Entomol. 49:348–58
    [Google Scholar]
  111. 111.
    Tarazi R, Jimenez JLS, Vaslin MFS. 2020. Biotechnological solutions for major cotton (Gossypium hirsutum) pathogens and pests. Biotechnol. Res. Innov. 3:19–26
    [Google Scholar]
  112. 112.
    Ting YC. 1963. Studies on the ecological characteristics of cotton mirid bugs. Ⅱ. The correlation of the injury caused by mirid bugs with the chemical composition of the cotton plant. Acta Phytophylacica Sin. 2:365–70
    [Google Scholar]
  113. 113.
    Ting YC. 1963. Studies on the ecological characteristics of cotton mirids. I. Effect of temperature and humidity on the development and distribution of the pests. Acta Phytophylacica Sin. 2:285–96
    [Google Scholar]
  114. 114.
    Ting YC. 1964. Studies on the population fluctuations of cotton mirids in the cotton cultivation region of Kwanchuang, Shensi, China. Acta Entomol. Sin. 13:297–310
    [Google Scholar]
  115. 115.
    Ting YC. 1965. Studies on the ecological characteristics of cotton plant bugs. Ⅲ. The pattern of spatial distribution of the plant bugs in cotton fields with analysis of its effective factors. Acta Entomol. Sin. 14:264–73
    [Google Scholar]
  116. 116.
    Ting YC, Zou CR, Zhao TX. 1957. Study and control of cotton mirid bugs in Shensi, China. J. Northwest Agric. Univ. 4:37–76
    [Google Scholar]
  117. 117.
    Tong YJ, Wu KM, Gao XW. 2009. Predation of Misumenops tricuspidatus on mirids, Apolygus lucorum and Adelphocoris lineolatus. Chin. J. Biol. Control 25:97–101
    [Google Scholar]
  118. 118.
    Tong YJ, Wu KM, Lu YH, Gao XW. 2010. Pathogenicity of Beauveria spp. strains to three species of mirids, Apolygus lucorum, Adelphocoris suturalis and Adelphocoris lineolatus. Acta Phytophylacica Sin. 37:172–76
    [Google Scholar]
  119. 119.
    Wang LK, Lin LY, Wang H, Duan WB, Li F et al. 2020. Two classic mutations in the linker-helix IIL45 and segment IIS6 of Apolygus lucorums odium channel confer pyrethroid resistance. Pest Manag. Sci. 76:3954–64
    [Google Scholar]
  120. 120.
    Wang LL, Chen M, Luan BH, Wang PS, Wang YZ. 2017. Effects of leaf thickness and trichome density of grapes on their resistance to Apolygus lucorum. J. Fruit Sci. 34:238–44
    [Google Scholar]
  121. 121.
    Wang LL, Ni SS, Luan BH, Wang HT, Wang YZ. 2016. Laboratory toxicity and control efficacy of five botanical insecticides to Apolygus lucorum. Chin. J. Biol. Control 32:46–49
    [Google Scholar]
  122. 122.
    Wang W, Zhang RF, Liu HY, Tian JC, Shelton AM, Yao J. 2021. Use of safflower as a trap crop for managing the mirid bug, Lygus pratensis Linnaeus (Hemiptera: Miridae), in cotton fields. Pest Manag. Sci. 77:1829–38
    [Google Scholar]
  123. 123.
    Wang ZL, Han HZ, Liu MJ, Shao XH, Zhang XH. 2011. Distribution and hatching of overwintering eggs of Lygus lucorum Meyer-Dür (Hemiptera: Miridae). J. Northwest A&F Univ. 39:148–58
    [Google Scholar]
  124. 124.
    Watanabe K, Kikuchi S, Tanaka T. 1997. Seasonal occurrence of Lygocoris (Apolygus) lucorum (Meyer-Dür) (Heteroptera: Miridae) on Artemisia spp. in Japan. Annu. Rep. Plant Prot. North Jpn. 48:181–83
    [Google Scholar]
  125. 125.
    Wheeler AG Jr. 2001. Biology of the Plant Bugs (Hemiptera: Miridae): Pests, Predators, Opportunists Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  126. 126.
    Wu KM, Li W, Feng HQ, Guo YY. 2002. Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China. Crop Prot. 21:997–1002
    [Google Scholar]
  127. 127.
    Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–78
    [Google Scholar]
  128. 128.
    Wyckhuys KAG, Heong KL, Sanchez-Bayo F, Bianchi FJJA, Lundgren JG, Bentley JW. 2019. Ecological illiteracy can deepen farmers’ pesticide dependency. Environ. Res. Lett. 14:093004
    [Google Scholar]
  129. 129.
    Wyckhuys KAG, Zhang W, Colmenarez Y, Simelton E, Sander BO, Lu Y. 2022. Tri-trophic defenses as a central pivot of low-emission, pest-suppressive farming systems. Curr. Opin. Environ. Sustain. 58:101208
    [Google Scholar]
  130. 130.
    Wyckhuys KAG, Zou Y, Wanger TC, Zhou WW, Gc YD, Lu YH. 2022. Agro-ecology science relates to economic development but not global pesticide pollution. J. Environ. Manag. 307:114529
    [Google Scholar]
  131. 131.
    Xia SK, Liu B, Yang YZ, Lu YH. 2021. Imidacloprid application weakens the parasitism of endoparasitoid Peristenus spretus on green mirid bug Apolygus lucorum nymphs in cotton field. J. Plant Prot. 48:1193–94
    [Google Scholar]
  132. 132.
    Xia SK, Luo SP, Li JQ, Yang Q, Dai CC et al. 2021. Fructose and glucose in buckwheat nectar enhance Peristenus spretus (Hymenoptera: Braconidae) survival and parasitism of the mirid Apolygus lucorum. Biol. Control 161:104710
    [Google Scholar]
  133. 133.
    Xia SK, Zhang T, Williams L III, Yang YZ, Lu YH. 2023. Buckwheat flower volatiles attract Peristenus spretus and enhance its field-level parasitism of Apolygus lucorum. Plants 12:1658
    [Google Scholar]
  134. 134.
    Xiao LB, Wang FL, Chen H, Wang Z, Bai LX. 2015. Development and application of a medium-term prediction model for Apolygus lucorum (Hemiptera: Miridae). Chin. J. Appl. Entomol. 52:623–30
    [Google Scholar]
  135. 135.
    Xiu CL, Pan HS, Liu B, Luo ZX, Williams L III et al. 2019. Perception of and behavioral responses to host plant volatiles for three Adelphocoris species. J. Chem. Ecol. 45:779–88
    [Google Scholar]
  136. 136.
    Yamasaki K, Tabuchi K, Takahashi A, Osawa T, Yoshioka A et al. 2021. Intraspecific variations in life history traits of two pecky rice bug species from Japan: mapping emergence dates and number of annual generations. Ecol. Evol. 11:16936–50
    [Google Scholar]
  137. 137.
    Yang CY, Kim J, Ahn SJ, Kim DH, Cho MR. 2014. Identification of the female-produced sex pheromone of the plant bug Apolygus spinolae. J. Chem. Ecol. 40:244–49
    [Google Scholar]
  138. 138.
    Yasuda M, Mitsunaga T, Takeda A, Tabuchi K, Oku K et al. 2011. Comparison of the effects of landscape composition on two mirid species in Japanese rice paddies. Appl. Entomol. Zool. 46:519–25
    [Google Scholar]
  139. 139.
    Yasuda M, Takeda A, Tabuchi K, Yasuda T, Watanabe T. 2013. Effects of Japanese rice field boundary vegetation on Stenotus rubrovittatus (Hemiptera: Miridae) abundance. Appl. Entomol. Zool. 48:289–94
    [Google Scholar]
  140. 140.
    Yasuda M, Takeda A, Yasuda T, Hirae M. 2013. Suitable weeding periods for a preventive measure of two mirid bugs in Chiba Prefecture, Japan. Annu. Rep. Kanto-Tosan Plant Prot. Soc. 60:87–89
    [Google Scholar]
  141. 141.
    Yasuda T, Higuchi H. 2012. Sex pheromones of Stenotus rubrovittatus and Trigonotylus caelestialium, two mirid bugs causing pecky rice, and their application to insect monitoring in Japan. Psyche 2012:435640
    [Google Scholar]
  142. 142.
    Yasuda T, Mochizuki F, Yasuda M, Takeda A, Higuchi H et al. 2013. Performance of polyethylene tubes as pheromone lures for the sorghum plant bug, Stenotus rubrovittatus (Hemiptera: Heteroptera: Miridae). Appl. Entomol. Zool. 48:325–30
    [Google Scholar]
  143. 143.
    Yasuda T, Oku K, Higuchi H, Shigehisa S, Okutani-Akamatsu Y et al. 2009. Optimization of blends of synthetic sex pheromone components for attraction of the sorghum plant bug Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae). Appl. Entomol. Zool. 44:611–19
    [Google Scholar]
  144. 144.
    Yasuda T, Oku K, Higuchi H, Suzuki T, Kashin J et al. 2010. A multi-species pheromone lure: a blend of synthetic sex pheromone components for two mirid species, Stenotus rubrovittatus (Matsumura) and Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae). Appl. Entomol. Zool. 45:593–99
    [Google Scholar]
  145. 145.
    Yasuda T, Shigehisa S, Yuasa K, Okutani-Akamatsu Y, Teramoto N et al. 2008. Sex attractant pheromone of the sorghum plant bug Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae). Appl. Entomol. Zool. 43:219–26
    [Google Scholar]
  146. 146.
    Yuan HB, Ding YX, Gu SH, Sun L, Zhu XQ et al. 2015. Molecular characterization and expression profiling of odorant-binding proteins in Apolygus lucorum. PLOS ONE 10:e0140562
    [Google Scholar]
  147. 147.
    Yuan W, Li WJ, Li YH, Wu KM. 2013. Combination of plant and insect eggs as food sources facilitates ovarian development in an omnivorous bug Apolygus lucorum (Hemiptera: Miridae). J. Econ. Entomol. 106:1200–8
    [Google Scholar]
  148. 148.
    Zhang LL, Lu YH, Liang GM. 2013. A method for field assessment of plant injury elicited by the salivary proteins of Apolygus lucorum. Entomol. Exp. Appl. 149:292–97
    [Google Scholar]
  149. 149.
    Zhang P, Zhang XF, Zhao YH, Ren YP, Mu W, Liu F. 2015. Efficacy of granular applications of clothianidin and nitenpyram against Aphis gossypii (Glover) and Apolygus lucorum (Meyer-Dür) in cotton fields in China. Crop Prot. 78:27–34
    [Google Scholar]
  150. 150.
    Zhang P, Zhao YH, Zhang XF, Song YY, Zhang ZQ, Liu F. 2015. Field resistance monitoring of Apolygus lucorum (Hemiptera: Miridae) in Shandong, China to seven commonly used insecticides. Crop Prot. 76:127–33
    [Google Scholar]
  151. 151.
    Zhang Q, Liu YQ, Lu YH, Wu KM. 2017. Toxicity and persistence of four kinds of insecticides against Apolygus lucorum. China Cotton 44:5–7, 10
    [Google Scholar]
  152. 152.
    Zhang RF, Wang W, Liu HY, Wang DY, Yao J. 2020. Field evaluation of sunflower as a potential trap crop of Lygus pratensis in cotton fields. PLOS ONE 15:0237318
    [Google Scholar]
  153. 153.
    Zhang S, Wang XQ, Wang GR, Liu F, Liu Y. 2022. An odorant receptor of the green mirid bug, Apolygus lucorum, tuned to linalool. Insect Biochem. Mol. Biol. 144:103764
    [Google Scholar]
  154. 154.
    Zhang S, Yan SW, Zhang ZX, Cao S, Li B et al. 2021. Identification and functional characterization of sex pheromone receptors in mirid bugs (Heteroptera: Miridae). Insect Biochem. Mol. Biol. 136:103621
    [Google Scholar]
  155. 155.
    Zhang T, Mei XD, Li YF, Zhang KX, Wu KM, Ning J. 2015. Sex pheromone of the alfalfa plant bug, Adelphocoris lineolatus. Entomol. Exp. Appl. 156:263–70
    [Google Scholar]
  156. 156.
    Zhang T, Mei XD, Zhang L, Wu KM, Ning J. 2015. Identification of female sex pheromone of a plant bug, Adelphocoris fasciaticollis Reuter (Hemiptera: Miridae). J. Appl. Entomol. 139:87–93
    [Google Scholar]
  157. 157.
    Zhang T, Mei XD, Zhang XF, Lu YH, Ning J, Wu KM. 2020. Identification and field evaluation of the sex pheromone of Apolygus lucorum (Hemiptera: Miridae) in China. Pest Manag. Sci. 76:1847–55
    [Google Scholar]
  158. 158.
    Zhang T, Zhang XF, Wyckhuys KAG, Yao YS, Li HQ et al. 2021. Optimization and field demonstration of the Lygus pratensis (Hemiptera: Miridae) sex pheromone. Pest Manag. Sci. 77:817–23
    [Google Scholar]
  159. 159.
    Zhang W, Lu YH, van der Werf W, Huang JK, Wu F et al. 2018. Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. PNAS 115:7700–9
    [Google Scholar]
  160. 160.
    Zhang WN, Liu B, Lu YH, Liang GM. 2017. Functional analysis of two polygalacturonase genes in Apolygus lucorum associated with eliciting plant injury using RNA interference. Arch. Insect Biochem. Physiol. 94:e21382
    [Google Scholar]
  161. 161.
    Zhang X. 2010. The Study on Systematics of Subfamily Phylinae from China (Hemiptera: Heteroptera: Miridae) Tianjing, China: Nankai Univ.
    [Google Scholar]
  162. 162.
    Zhang XB, Wang K, Wang M, Wang JM, Mu W. 2014. Effects of imidacloprid on population dynamics of Apolygus lucorum under different application modes. Acta Phytophylacica Sin. 41:93–97
    [Google Scholar]
  163. 163.
    Zhang YX, Cao YP, Bai LX, Cao CY. 1986. Plant bug damage on cotton in different growing stages and the threshold for control. Acta Phytophylacica Sin. 13:73–78
    [Google Scholar]
  164. 164.
    Zhang ZL, Zhang T, Zhang AJ, Luo J, Chen LZ et al. 2016. Identification and field verification of sex pheromone from the mirid bug, Adelphocoris suturalis. Chemoecology 26:25–31
    [Google Scholar]
  165. 165.
    Zhang ZQ, Guo TE, Wang W, Liu F, Mu W. 2009. Assessment of relative toxicity of insecticides to the green plant bug, Lygus lucorum Meyer-Dür (Hemiptera: Miridae), by two different bioassay methods. Acta Entomol. Sin. 52:967–73
    [Google Scholar]
  166. 166.
    Zhang ZQ, Zhang XF, Liu F, Mu W. 2015. Insecticide susceptibility of the green plant bug, Apolygus lucorum Meyer-Dür (Homoptera: Miridae) and two predatory arthropods. J. Plant Prot. Res. 55:36270
    [Google Scholar]
  167. 167.
    Zhen CA, Gao XW. 2016. A point mutation (L1015F) of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum (Meyer-Dür) population from the transgenic Bt cotton field of China. Pestic. Biochem. Physiol. 127:82–89
    [Google Scholar]
  168. 168.
    Zhen CA, Miao L, Liang P, Gao XW. 2016. Survey of organophosphate resistance and an A1a216Ser substitution of acetylcholinesterase-1 gene associated with chlorpyrifos resistance in Apolygus lucorum (Meyer-Dür) collected from the transgenic Bt cotton fields in China. Pestic. Biochem. Physiol. 132:2937
    [Google Scholar]
  169. 169.
    Zheng LY, Lu N, Liu GQ, Xu BH. 2004. Fauna Sinica: Insecta, Volume 33 Hemiptera, Miridae, Mirinae Beijing: Science Press
    [Google Scholar]
  170. 170.
    Zhou YL, Zhu XQ, Gu SH, Cui HH, Guo YY et al. 2014. Silencing in Apolygus lucorum of the olfactory coreceptor Orco gene by RNA interference induces EAG response declining to two putative semiochemicals. J. Insect Physiol. 60:31–39
    [Google Scholar]
  171. 171.
    Zhuo DG, Li ZH, Men XY, Yu Y, Zhang AS et al. 2011. Effects of low temperature and photoperiod on diapause termination and developmental duration of the overwintering egg of Apolygus lucorum Meyer-Dür (Hemiptera: Miridae). Acta Entomol. Sin. 54:136–42
    [Google Scholar]
/content/journals/10.1146/annurev-ento-121322-015345
Loading
/content/journals/10.1146/annurev-ento-121322-015345
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error