1932

Abstract

Land degradation continues to be an enormous challenge to human societies, reducing food security, emitting greenhouse gases and aerosols, driving the loss of biodiversity, polluting water, and undermining a wide range of ecosystem services beyond food supply and water and climate regulation. Climate change will exacerbate several degradation processes. Investment in diverse restoration efforts, including sustainable agricultural and forest land management, as well as land set aside for conservation wherever possible, will generate co-benefits for climate change mitigation and adaptation and morebroadly for human and societal well-being and the economy. This review highlights the magnitude of the degradation problem and some of the key challenges for ecological restoration. There are biophysical as well as societal limits to restoration. Better integrating policies to jointly address poverty, land degradation, and greenhouse gas emissions and removals is fundamental to reducing many existing barriers and contributing to climate-resilient sustainable development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-012320-054809
2021-10-18
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/energy/46/1/annurev-environ-012320-054809.html?itemId=/content/journals/10.1146/annurev-environ-012320-054809&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Arneth A, Denton F, Agus F, Elbehri A, Erb K et al. 2019. Framing and context. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, HO Pörtner et al.77–129 Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  2. 2. 
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) 2019. The IPBES Global Assessment on Biodiversity and Ecosystem Services. Bonn, Ger: IPBES Secr.
    [Google Scholar]
  3. 3. 
    Olsson L, Barbosa H, Bhadwal S, Cowie A, Delusca K et al. 2019. Land degradation. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, HO Pörtner et al.345–436 Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  4. 4. 
    Mirzabaev A, Wu J, Evans J, García-Oliva F, Hussein IAG et al. 2019. Desertification. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, HO Pörtner et al.249–343 Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  5. 5. 
    Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N 2017. Tropical dead zones and mass mortalities on coral reefs. PNAS 114:3660–65
    [Google Scholar]
  6. 6. 
    Haberl H, Erb K-H, Krausmann F. 2014. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39:363–91
    [Google Scholar]
  7. 7. 
    Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber PJ. 2017. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 14:1–8
    [Google Scholar]
  8. 8. 
    FAO. (United Nations Food and Agric. Organ.) 2020. Global Forest Resources Assessment 2020: Main report Rome. Rep., FAO https://doi.org/10.4060/ca9825en
    [Crossref] [Google Scholar]
  9. 9. 
    Erb K-H, Kastner T, Plutzar C, Bais ALS, Carvalhais N et al. 2018. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553:73–76
    [Google Scholar]
  10. 10. 
    Marzen M, Iserloh T, de Lima J, Fister W, Ries JB. 2017. Impact of severe rain storms on soil erosion: experimental evaluation of wind-driven rain and its implications for natural hazard management. Sci. Total Environ. 590:502–13
    [Google Scholar]
  11. 11. 
    IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) 2018. The IPBES Assessment Report on Land Degradation and Restoration Bonn, Ger: IPBES Secr.
    [Google Scholar]
  12. 12. 
    Anderegg WRL, Trugman AT, Badgley G, Anderson CM, Bartuska A et al. 2020. Climate-driven risks to the climate mitigation potential of forests. Science 368:eaaz7005
    [Google Scholar]
  13. 13. 
    Hember RA, Kurz WA, Girardin MP. 2019. Tree ring reconstructions of stemwood biomass indicate increases in the growth rate of black spruce trees across boreal forests of Canada. J. Geophys. Res. Biogeosci. 124:2460–80
    [Google Scholar]
  14. 14. 
    Trant A, Higgs E, Starzomski BM. 2020. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10:9698
    [Google Scholar]
  15. 15. 
    Bullock EL, Woodcock CE, Souza C, Olofsson P. 2020. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26:2956–69
    [Google Scholar]
  16. 16. 
    Matricardi EAT, Skole DL, Costa OB, Pedlowski MA, Samek JH, Miguel EP 2020. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369:1378–82
    [Google Scholar]
  17. 17. 
    Maxwell SL, Evans T, Watson JEM, Morel A, Grantham H et al. 2019. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci. Adv. 5:eaax2546
    [Google Scholar]
  18. 18. 
    Pugh TAM, Lindeskog M, Smith B, Poulter B, Arneth A et al. 2019. Role of forest regrowth in global carbon sink dynamics. PNAS 116:4382–87
    [Google Scholar]
  19. 19. 
    Mayer M, Prescott CE, Abaker WEA, Augusto L, Cecillon L et al. 2020. Tamm Review: Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. Forest Ecol. Manag. 466:118127
    [Google Scholar]
  20. 20. 
    Thorn S, Seibold S, Leverkus AB, Michler T, Müller J et al. 2020. The living dead: acknowledging life after tree death to stop forest degradation. Front. Ecol. Environ. 18:505–12
    [Google Scholar]
  21. 21. 
    Meyfroidt P, Lambin EF. 2011. Global forest transition: prospects for an end to deforestation. Annu. Rev. Environ. Resour. 36:343–71
    [Google Scholar]
  22. 22. 
    Koutroulis A. 2018. Dryland changes under different levels of global warming. Sci. Total Environ. 655:482–511
    [Google Scholar]
  23. 23. 
    Prăvălie R. 2016. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 161:259–78
    [Google Scholar]
  24. 24. 
    FAO (United Nations Food Agric. Organ.) 2016. Trees, Forests and Land Use in Drylands: The First Global Assessment—Preliminary Findings Rome: FAO
    [Google Scholar]
  25. 25. 
    Brandt M, Tucker CJ, Kariryaa A, Rasmussen K, Abel C et al. 2020. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587:78–82
    [Google Scholar]
  26. 26. 
    Murphy BP, Andersen AN, Parr CL. 2016. The underestimated biodiversity of tropical grassy biomes. Philos. Trans. R. Soc. B 371:20150319
    [Google Scholar]
  27. 27. 
    Carbutt C, Henwood WD, Gilfedder LA. 2017. Global plight of native temperate grasslands: going, going, gone?. Biodivers. Conserv. 26:2911–32
    [Google Scholar]
  28. 28. 
    van Oijen M, Bellocchi G, Hoglind M. 2018. Effects of climate change on grassland biodiversity and productivity: the need for a diversity of models. Agronomy 8:14
    [Google Scholar]
  29. 29. 
    Brandt M, Mbow C, Diouf A, Verger A, Samimi C, Fensholt R. 2014. Ground and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Glob. Change Biol. 21:1610–20
    [Google Scholar]
  30. 30. 
    Rishmawi K, Prince S 2016. Environmental and anthropogenic degradation of vegetation in the Sahel from 1982 to 2006. Remote Sens. 8:948
    [Google Scholar]
  31. 31. 
    Lehman CER, Parr CL. 2016. Tropical grassy biomes: linking ecology, human use and conservation. Philos. Trans. R. Soc. B 371:20160329
    [Google Scholar]
  32. 32. 
    Morton J. 2010. Why should governmentality matter for the study of pastoral development?. Nomad. Peoples 14:6–30
    [Google Scholar]
  33. 33. 
    Ramankutty N, Evan AT, Monfreda C, Foley JA. 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22:GB1003
    [Google Scholar]
  34. 34. 
    Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S et al. 2016. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540:266–69
    [Google Scholar]
  35. 35. 
    Shin Y-J, Arneth A, Roy-Chaudhury R, Midgley G, Boafo Y et al. 2019. Plausible futures of nature, its contributions to people and their good quality of life. The IPBES Global Assessment on Biodiversity and Ecosystem Services IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) Bonn, Ger: IPBES Secr https://ipbes.net/sites/default/files/ipbes_global_assessment_chapter_4_unedited_31may.pdf
    [Google Scholar]
  36. 36. 
    Gang C, Zhou W, Chen Y, Wang Z, Sun Z et al. 2014. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72:4273–82
    [Google Scholar]
  37. 37. 
    McSherry ME, Ritchie ME. 2013. Effects of grazing on grassland soil carbon: a global review. Glob. Change Biol. 19:1347–57
    [Google Scholar]
  38. 38. 
    Smith P. 2014. Do grasslands act as a perpetual sink for carbon?. Glob. Change Biol. 20:2708–11
    [Google Scholar]
  39. 39. 
    Sanderman J, Hengl T, Fiske GJ 2017. Soil carbon debt of 12,000 years of human land use. PNAS 114:9575–80
    [Google Scholar]
  40. 40. 
    Bossio DA, Cook-Patton SC, Ellis PW, Fargione J, Sanderman J et al. 2020. The role of soil carbon in natural climate solutions. Nat. Sustain. 3:391–98
    [Google Scholar]
  41. 41. 
    Humphreys J, Brye KR, Rector C, Gbur EE. 2019. Methane emissions from rice across a soil organic matter gradient in Alfisols of Arkansas, USA. Geoderma Reg. 16:e00200
    [Google Scholar]
  42. 42. 
    da Silva Cardoso A, Quintana BG, Janusckiewicz ER, de Figueiredo Brito L, da Silva Morgado E et al. 2019. How do methane rates vary with soil moisture and compaction, N compound and rate, and dung addition in a tropical soil?. Int. J. Biometeorol. 63:1533–40
    [Google Scholar]
  43. 43. 
    Tian H, Yang J, Xu R, Lu C, Canadell JG et al. 2019. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob. Change Biol. 25:640–59
    [Google Scholar]
  44. 44. 
    Kayranli B, Scholz M, Mustafa A, Hedmark Å. 2010. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–24
    [Google Scholar]
  45. 45. 
    Page SE, Baird AJ. 2016. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41:35–57
    [Google Scholar]
  46. 46. 
    Tootchi A, Jost A, Ducharne A. 2019. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 11:189–220
    [Google Scholar]
  47. 47. 
    Prince S, Von Maltitz G, Zhang F, Byrne K, Driscoll C et al. 2018. Status and trends of land degradation and restoration and associated changes in biodiversity and ecosystem functions. The IPBES Assessment Report on Land Degradation and Restoration IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.), 315–426 Bonn, Ger: IPBES Secr.
    [Google Scholar]
  48. 48. 
    Darrah SE, Shennan-Farpón Y, Loh J, Davidson NC, Finlayson CM et al. 2019. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Indic. 99:294–98
    [Google Scholar]
  49. 49. 
    Colloff MJ, Lavorel S, Wise RM, Dunlop M, Overton IC, Williams KJ. 2016. Adaptation services of floodplains and wetlands under transformational climate change. Ecol. Appl. 26:1003–17
    [Google Scholar]
  50. 50. 
    Nisbet EG, Manning MR, Dlugokencky EJ, Fisher RE, Lowry D et al. 2019. Very strong atmospheric methane growth in the 4 years 2014–2017: implications for the Paris Agreement. Glob. Biogeochem. Cycles 33:318–42
    [Google Scholar]
  51. 51. 
    Mikaloff Fletcher SE, Schaefer H 2019. Rising methane: a new climate challenge. Science 364:932–33
    [Google Scholar]
  52. 52. 
    Oh Y, Zhuang Q, Liu L, Welp LR, Lau MCY et al. 2020. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nat. Clim. Change 10:317–21
    [Google Scholar]
  53. 53. 
    Hemes KS, Chamberlain SD, Eichelmann E, Anthony T, Valach A et al. 2019. Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agric. Forest Meteorol. 268:202–14
    [Google Scholar]
  54. 54. 
    Meli P, Benayas J, Balvanera P, Martinez-Ramos M. 2014. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. PLOS ONE 9:e93507
    [Google Scholar]
  55. 55. 
    Hogeboom RJ, de Bruin D, Schyns JF, Krol MS, Hoekstra AY. 2020. Capping human water footprints in the world's river basins. Earths Future 8:e2019EF001363
    [Google Scholar]
  56. 56. 
    Bogardi JJ, Fekete BM, Vorosmarty CJ. 2013. Planetary boundaries revisited: a view through the ‘water lens. ’. Curr. Opin. Environ. Sustain. 5:581–89
    [Google Scholar]
  57. 57. 
    Grill G, Lehner B, Thieme M, Geenen B, Tickner D et al. 2019. Mapping the world's free-flowing rivers. Nature 569:215–21
    [Google Scholar]
  58. 58. 
    Sabater S, Bregoli F, Acuna V, Barcelo D, Elosegi A et al. 2018. Effects of human-driven water stress on river ecosystems: a meta-analysis. Sci. Rep. 8:11462
    [Google Scholar]
  59. 59. 
    Zarfl C, Berlekamp J, He F, Jähnig SC, Darwall W, Tockner K. 2019. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9:18531
    [Google Scholar]
  60. 60. 
    Zhu ZC, Piao SL, Myneni RB, Huang MT, Zeng ZZ et al. 2016. Greening of the Earth and its drivers. Nat. Clim. Change 6:791–95
    [Google Scholar]
  61. 61. 
    Liu YY, Yang Y, Wang Q, Khalifa M, Zhang ZY et al. 2019. Assessing the dynamics of grassland net primary productivity in response to climate change at the global scale. Chinese Geogr. Sci. 29:725–40
    [Google Scholar]
  62. 62. 
    Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J et al. 2018. Global carbon budget 2018. Earth Syst. Sci. Data 10:2141–94
    [Google Scholar]
  63. 63. 
    Smith P, Calvin K, Nkem J, Campbell D, Cherubini F et al. 2019. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?. Glob. Change Biol. 26:1532–75
    [Google Scholar]
  64. 64. 
    Wilhite D, Pulwarty RS. 2017. Drought and Water Crises, Integrating Science, Management, and Policy Boca Raton: CRC Press
    [Google Scholar]
  65. 65. 
    Mo K, Lettenmaier D. 2015. Heat wave flash droughts in decline. Geophys. Res. Lett. 42:2823–29
    [Google Scholar]
  66. 66. 
    Stroosnijder L. 2009. Modifying land management in order to improve efficiency of rainwater use in the African highlands. Soil Tillage Res. 103:247–56
    [Google Scholar]
  67. 67. 
    Jia G, Shevliakova E, Artaxo P, De Noblet-Ducoudré N, Houghton R et al. 2019. Land–climate interactions. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, HO Pörtner et al.131–247 Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  68. 68. 
    Zheng J, Yingzhuo Y, Zhang X, Hao Z. 2018. Variation of extreme drought and flood in North China revealed by document-based seasonal precipitation reconstruction for the past 300 years. Clim. Past 14:1135–45
    [Google Scholar]
  69. 69. 
    Ziese M, Schneider U, Meyer-Christoffer A, Schamm K, Vido J et al. 2014. The GPCC Drought Index—a new, combined and gridded global drought index. Earth Syst. Sci. Data 6:285–95
    [Google Scholar]
  70. 70. 
    Byers E, Gidden M, Leclère D, Balkovič J, Burek P et al. 2018. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13:5
    [Google Scholar]
  71. 71. 
    Hurlbert M, Krishnaswamy J, Davin E, Johnson FX, Mena CF et al. 2019. Risk management and decision-making in relation to sustainable development. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems PR Shukla, J Skea, E Calvo Buendia, V Masson-Delmotte, HO Pörtner et al.673–800 Geneva: Intergov. Panel Clim. Change
    [Google Scholar]
  72. 72. 
    Shrestha S, Hoang NAT, Shrestha PK, Bhatta B. 2018. Climate change impact on groundwater recharge and suggested adaptation strategies for selected Asian cities. APN Sci. Bull. 8:1 https://doi.org/10.30852/sb.2018.499
    [Crossref] [Google Scholar]
  73. 73. 
    Clarke H, Evans JP. 2018. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Climatol. 136:513–27
    [Google Scholar]
  74. 74. 
    Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J et al. 2010. Forest responses to increasing aridity and warmth in the southwestern United States. PNAS 107:21289–94
    [Google Scholar]
  75. 75. 
    McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J et al. 2020. Fire as a fundamental ecological process: research advances and frontiers. J. Ecol. 108:2047–69
    [Google Scholar]
  76. 76. 
    Ward M, Tulloch AIT, Radford JQ, Williams BA, Reside AE et al. 2020. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4:1321–26
    [Google Scholar]
  77. 77. 
    Halofsky JE, Peterson DL, Harvey BJ. 2020. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol 16:4
    [Google Scholar]
  78. 78. 
    Kukavskaya EA, Buryak LV, Shvetsov EG, Conard SG, Kalenskaya OP. 2016. The impact of increasing fire frequency on forest transformations in southern Siberia. Forest Ecol. Manag. 382:225–35
    [Google Scholar]
  79. 79. 
    Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M et al. 2017. Forest disturbances under climate change. Nat. Clim. Change 7:395–402
    [Google Scholar]
  80. 80. 
    Pellegrini AFA, Hobbie SE, Reich PB, Jumpponen A, Brookshire ENJ et al. 2020. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90:e01409
    [Google Scholar]
  81. 81. 
    Knorr K, Jiang L, Arneth A. 2016. Climate, CO2, and demographic impacts on global wildfire emissions. Biogeosciences 13:267–82
    [Google Scholar]
  82. 82. 
    Donat MG, Lowry AL, Alexander LV, O'Gorman PA, Maher N. 2016. More extreme precipitation in the world's dry and wet regions. Nat. Clim. Change 6:508–13
    [Google Scholar]
  83. 83. 
    Van Der Bolt B, Van Nes EH, Bathiany S, Vollebregt ME, Scheffer M. 2018. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8:478–84
    [Google Scholar]
  84. 84. 
    Wang Z-H, Li S-X. 2019. Nitrate N loss by leaching and surface runoff in agricultural land: a global issue (a review). Advances in Agronomy, Vol. 156 DL Sparks 159–217 Amsterdam: Elsevier
    [Google Scholar]
  85. 85. 
    Withers P, Neal C, Jarvie H, Doody D. 2014. Agriculture and eutrophication: Where do we go from here?. Sustainability 6:5853–75
    [Google Scholar]
  86. 86. 
    Eekhout JP, De Vente J. 2020. How soil erosion model conceptualization affects soil loss projections under climate change. Prog. Phys. Geogr. Earth Environ. 44:212–32
    [Google Scholar]
  87. 87. 
    Lee C-Y, Camargo SJ, Sobel AH, Tippett MK. 2020. Statistical–dynamical downscaling projections of tropical cyclone activity in a warming climate: two diverging genesis scenarios. J. Clim. 33:4815–34
    [Google Scholar]
  88. 88. 
    Patricola CM, Wehner MF. 2018. Anthropogenic influences on major tropical cyclone events. Nature 563:339–46
    [Google Scholar]
  89. 89. 
    Marsooli R, Lin N, Emanuel K, Feng K. 2019. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 10:3785
    [Google Scholar]
  90. 90. 
    Aksha SK, Juran L, Resler LM. 2018. Spatial and temporal analysis of natural hazard mortality in Nepal. Environ. Hazards 17:163–79
    [Google Scholar]
  91. 91. 
    IPCC (Intergov. Panel Clim. Change) 2018. Global Warming of 1.5°C Geneva: IPCC
    [Google Scholar]
  92. 92. 
    Hanssen SV, Daioglou V, Steinmann ZJN, Doelman JC, Van Vuuren DP, Huijbregts MAJ. 2020. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Change 10:1023–29
    [Google Scholar]
  93. 93. 
    Gregg JS, Izaurralde RC. 2010. Effect of crop residue harvest on long-term crop yield, soil erosion and nutrient balance: trade-offs for a sustainable bioenergy feedstock. Biofuels 1:69–83
    [Google Scholar]
  94. 94. 
    Liska AJ, Yang H, Milner M, Goddard S, Blanco-Canqui H et al. 2014. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nat. Clim. Change 4:398–401
    [Google Scholar]
  95. 95. 
    Hof C, Voskamp A, Biber MF, Böhning-Gaese K, Engelhardt EK et al. 2018. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. PNAS 115:13294–99
    [Google Scholar]
  96. 96. 
    Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F et al. 2018. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13:063002
    [Google Scholar]
  97. 97. 
    Girardello M, Santangeli A, Mori E, Chapman A, Fattorini S et al. 2019. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 9:5636
    [Google Scholar]
  98. 98. 
    Strassburg BBN, Beyer HL, Crouzeilles R, Iribarrem A, Barros P et al. 2019. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol. 3:62–70
    [Google Scholar]
  99. 99. 
    Palomo I, Dujardin Y, Midler E, Robin M, Sanz MJ, Pascual U 2019. Modeling trade-offs across carbon sequestration, biodiversity conservation, and equity in the distribution of global REDD plus funds. PNAS 116:22645–50
    [Google Scholar]
  100. 100. 
    Nilsson C, Riis T, Sarneel J, Svavarsdóttir K. 2018. Ecological restoration as a means of managing inland flood hazards. BioScience 68:89–99
    [Google Scholar]
  101. 101. 
    Morecroft MD, Duffield S, Harley M, Pearce-Higgins JW, Stevens N et al. 2019. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366:eaaw9256
    [Google Scholar]
  102. 102. 
    Donatti CI, Harvey CA, Hole D, Panfil SN, Schurman H. 2020. Indicators to measure the climate change adaptation outcomes of ecosystem-based adaptation. Clim. Change 158:413–33
    [Google Scholar]
  103. 103. 
    Seddon N, Chausson A, Berry P, Girardin CAJ, Smith A, Turner B. 2020. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 375:20190120
    [Google Scholar]
  104. 104. 
    Rhodes CJ. 2017. The imperative for regenerative agriculture. Sci. Prog. 100:80–129
    [Google Scholar]
  105. 105. 
    Montgomery DR. 2017. Growing a Revolution: Bringing Our Soil Back to Life New York: WW Norton & Co.
    [Google Scholar]
  106. 106. 
    Kassam A, Friedrich T, Derpsch R. 2019. Global spread of conservation agriculture. Int. J. Environ. Stud. 76:29–51
    [Google Scholar]
  107. 107. 
    Davis SC, Boddey RM, Alves BJR, Cowie AL, George BH et al. 2013. Management swing potential for bioenergy crops. GCB Bioenergy 5:623–38
    [Google Scholar]
  108. 108. 
    Witters N, Van Slycken S, Ruttens A, Adriaensen K, Meers E et al. 2009. Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment. BioEnergy Res 2:144–52
    [Google Scholar]
  109. 109. 
    Immerzeel DJ, Verweij PA, van der Hilst F, Faaij APC. 2014. Biodiversity impacts of bioenergy crop production: a state-of-the-art review. GCB Bioenergy 6:189–209
    [Google Scholar]
  110. 110. 
    De Stefano A, Jacobson MG. 2018. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry Syst 92:285–99
    [Google Scholar]
  111. 111. 
    Wilson MH, Lovell ST. 2016. Agroforestry—the next step in sustainable and resilient agriculture. Sustainability 8:574
    [Google Scholar]
  112. 112. 
    Churkina G, Organschi A, Reyer CPO, Ruff A, Vinke K et al. 2020. Buildings as a global carbon sink. Nat. Sustain. 3:269–76
    [Google Scholar]
  113. 113. 
    Veldman JW, Overbeck GE, Negreiros D, Mahy G, Le Stradic S et al. 2015. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65:1011–18
    [Google Scholar]
  114. 114. 
    Abreu RCR, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G. 2017. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3:e1701284
    [Google Scholar]
  115. 115. 
    Brundu G, Richardson DM 2016. Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota 30:5–47
    [Google Scholar]
  116. 116. 
    Wilson SJ, Schelhas J, Grau R, Nanni AS, Sloan S. 2017. Forest ecosystem-service transitions: the ecological dimensions of the forest transition. Ecol. Soc. 22:38
    [Google Scholar]
  117. 117. 
    Aerts R, Honnay O. 2011. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol 11:29
    [Google Scholar]
  118. 118. 
    Liang JJ, Crowther TW, Picard N, Wiser S, Zhou M et al. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354:aaf8957
    [Google Scholar]
  119. 119. 
    Crouzeilles R, Curran M, Ferreira MS, Lindenmayer DB, Grelle CEV, Benayas JMR. 2016. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7:11666
    [Google Scholar]
  120. 120. 
    Cross SL, Bateman PW, Cross AT. 2020. Restoration goals: Why are fauna still overlooked in the process of recovering functioning ecosystems and what can be done about it?. Ecol. Manag. Restor. 21:4–8
    [Google Scholar]
  121. 121. 
    Jouquet P, Blanchart E, Capowiez Y. 2014. Utilization of earthworms and termites for the restoration of ecosystem functioning. Appl. Soil Ecol. 73:34–40
    [Google Scholar]
  122. 122. 
    Schmitz OJ, Wilmers CC, Leroux SJ, Doughty CE, Atwood TB et al. 2018. Animals and the zoogeochemistry of the carbon cycle. Science 362:eaar3213
    [Google Scholar]
  123. 123. 
    Kimmerer R 2011. Restoration and reciprocity: the contributions of traditional ecological knowledge. Human Dimensions of Ecological Restoration. Society for Ecological Restoration, ed. D Egan, EE Hjerpe, J Abrams 257–76 Washington, DC: Island Press
    [Google Scholar]
  124. 124. 
    Nkonya E, Mirzabaev A, von Braun J 2016. Economics of land degradation and improvement: an introduction and overview. Economics of Land Degradation and ImprovementA Global Assessment for Sustainable Development E Nkonya, A Mirzabaev, J von Braun 1–14 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  125. 125. 
    Mentis M. 2020. Environmental rehabilitation of damaged land. Forest Ecosyst 7:19
    [Google Scholar]
  126. 126. 
    Giger M, Liniger H, Sauter C, Schwilch G. 2018. Economic benefits and costs of sustainable land management technologies: an analysis of WOCAT's global data. Land Degrad. Dev. 29:962–74
    [Google Scholar]
  127. 127. 
    Lambin E, Meyfroidt P, Rueda X, Blackman A, Börner J et al. 2014. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28:129–40
    [Google Scholar]
  128. 128. 
    Reed MS, Stringer LC, Dougill AJ, Perkins JS, Atlhopheng JR et al. 2015. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems. J. Environ. Manag. 151:472–85
    [Google Scholar]
  129. 129. 
    Scown MW, Brady MV, Nicholas KA. 2020. Billions in misspent EU agricultural subsidies could support the Sustainable Development Goals. One Earth 3:237–50
    [Google Scholar]
  130. 130. 
    Wolff S, Schrammeijer EA, Schulp C, Verburg PH. 2018. Meeting global land restoration and protection targets: What would the world look like in 2050?. Glob. Environ. Change 52:259–72
    [Google Scholar]
  131. 131. 
    Metzger JP, Esler K, Krug C, Arias M, Tambosi L et al. 2017. Best practice for the use of scenarios for restoration planning. Curr. Opin. Environ. Sustain. 29:14–25
    [Google Scholar]
  132. 132. 
    Folke C. 2016. Resilience (Republished). Ecol. Soc 21:44
    [Google Scholar]
  133. 133. 
    Acosta LA, Virk A, Kumar R, Sharma S, Ikeda T et al. 2018. Options for governance and decision-making across scales and sectors. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific M Karki, SS Sellamuttu, W Suzuki, S Okayasu 429–536 Bonn, Ger: IPBES Secr.
    [Google Scholar]
  134. 134. 
    George C, Reed MG. 2015. Operationalising just sustainability: towards a model for place-based governance. Local Environ 22:1105–23
    [Google Scholar]
  135. 135. 
    Parlee CE, Wiber MG. 2018. Using conflict over risk management in the marine environment to strengthen measures of governance. Ecol. Soc. 23:5
    [Google Scholar]
  136. 136. 
    Cowie AL, Orr BJ, Castillo Sanchez VM, Chasek P, Crossman ND et al. 2018. Land in balance: the scientific conceptual framework for land degradation neutrality. Environ. Sci. Policy 79:25–35
    [Google Scholar]
  137. 137. 
    Fagan ME, Reid JL, Holland MB, Drew JG, Zahawi RA. 2020. How feasible are global forest restoration commitments?. Conserv. Lett. 13:e12700
    [Google Scholar]
  138. 138. 
    Seddon N, Sengupta S, García-Espinosa M, Hauler I, Herr D, Rizvi AR. 2019. Nature-Based Solutions in Nationally Determined Contributions: Synthesis and Recommendations for Enhancing Climate Ambition and Action by 2020 Gland, Switz./Oxford: Int. Union Conserv. Nat., Univ. Oxford
    [Google Scholar]
  139. 139. 
    Metzger MJ, Dick J, Gardner A, Bellamy C, Blackstock K et al. 2019. Knowledge sharing, problem solving and professional development in a Scottish Ecosystem Services Community of Practice. Reg. Environ. Change 19:2275–86
    [Google Scholar]
  140. 140. 
    Eakin H, York A, Aggarwal R, Waters S, Welch J et al. 2016. Cognitive and institutional influences on farmers’ adaptive capacity: insights into barriers and opportunities for transformative change in central Arizona. Reg. Environ. Change 16:801–14
    [Google Scholar]
  141. 141. 
    Wreford A, Ignaciuk A, Gruere G. 2017. Overcoming barriers to the adoption of climate-friendly practices in agriculture. Pap. 101 Food, Agric. Fish., Org. Econ. Co-op. Dev. Paris:
    [Google Scholar]
  142. 142. 
    Barnett J, Evans LS, Gross C, Kiem AS, Kingsford RT et al. 2015. From barriers to limits to climate change adaptation: path dependency and the speed of change. Ecol. Soc. 20:5
    [Google Scholar]
  143. 143. 
    Dow K, Berkhout F, Preston BL, Klein RJT, Midgley G, Shaw MR. 2013. Limits to adaptation. Nat. Clim. Change 3:305–7
    [Google Scholar]
  144. 144. 
    Arneth A, Shin Y-J, Leadley P, Rondinini C, Bukvareva E et al. 2020. Post-2020 biodiversity targets need to embrace climate change. PNAS 117:30882–91
    [Google Scholar]
  145. 145. 
    Kwakkel JH, Haasnoot M, Walker WE. 2016. Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support under deep uncertainty. Environ. Model. Software 86:168–83
    [Google Scholar]
  146. 146. 
    Otto IM, Wiedermann M, Cremades R, Donges JF, Auer C, Lucht W. 2020. Human agency in the Anthropocene. Ecol. Econ. 167:106463
    [Google Scholar]
  147. 147. 
    Pörtner HO, Scholes RJ, Agard J, Archer E, Arneth A et al. 2021. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change Rep., IPBES (Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.) Bonn, Ger: http://doi.org/10.5281/zenodo.4659158
    [Crossref] [Google Scholar]
  148. 148. 
    Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM. 2011. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26:541–49
    [Google Scholar]
  149. 149. 
    Kollmann J, Meyer ST, Bateman R, Conradi T, Gossner MM et al. 2016. Integrating ecosystem functions into restoration ecology—recent advances and future directions. Restor. Ecol. 24:722–30
    [Google Scholar]
  150. 150. 
    Krausmann F, Erb K-H, Gingrich S, Haberl H, Bondeau A et al. 2013. Global human appropriation of net primary production doubled in the 20th century. PNAS 110:10324–29
    [Google Scholar]
/content/journals/10.1146/annurev-environ-012320-054809
Loading
/content/journals/10.1146/annurev-environ-012320-054809
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error