In recent decades, better data and methods have become available for understanding the complex functioning of cities and their impacts on sustainability. This review synthesizes the recent developments in concepts and methods being used to measure the impacts of cities on environmental sustainability. It differentiates between a dominant trend in research literature that concentrates on the accounting and allocation of greenhouse gas emissions and energy use to cities and a reemergence of studies that focus on the direct and indirect material and resource flows in cities. The methodological approaches reviewed may consider cities as either producers or consumers, and all recognize that urban environmental impacts can be local, regional, or global. As well as giving an overview of the methodological debates, we examine the implications of the different approaches for policy and the challenges these approaches face in their application in the field.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. UN 2014. World Urbanization Prospects: The 2014 Revision. New York: UN Dep. Econ. Soc. Aff. [Google Scholar]
  2. 2. UN-HABITAT 2011. Cities and Climate Change: Global Report on Human Settlements 2011 London/Washington, DC: UN-HABITAT/Earthscan [Google Scholar]
  3. Seto KC, Güneralp B, Hutyra LR. 3.  2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109:4016083–88 [Google Scholar]
  4. Seto KC, Sánchez-Rodríguez R, Fragkias M. 4.  2010. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 35:1167–94 [Google Scholar]
  5. Seto KC, Fragkias M, Güneralp B, Reilly MK. 5.  2011. A meta-analysis of global urban land expansion. PLOS ONE 6:8e23777 [Google Scholar]
  6. Glaeser E. 6.  2011. Cities, productivity, and quality of life. Science 333:6042592–94 [Google Scholar]
  7. Satterthwaite D. 7.  2007. The transition to a predominantly urban world and its underpinnings Work. Pap. 10550IIED, Int. Inst. Environ. Dev., London [Google Scholar]
  8. Satterthwaite D. 8.  2009. The implications of population growth and urbanization for climate change. Environ. Urban. 21:2545–67 [Google Scholar]
  9. Dodman D. 9.  2009. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urban. 21:1185–201 [Google Scholar]
  10. Weisz H, Steinberger JK. 10.  2010. Reducing energy and material flows in cities. Curr. Opin. Environ. Sustain. 2:3185–92 [Google Scholar]
  11. Hoornweg D, Freire M. 11.  2013. Building sustainability in an urbanizing world: a partnership report Urban Dev. Ser. Knowl. Pap. No. 17, World Bank, Washington, DC [Google Scholar]
  12. Van Staden R. 12.  2014. Climate Change: Implications for Cities. Key Findings from the Intergovernmental Panel on Climate Change Fifth Assessment Report. Cambridge, UK: Univ. Cambridge Inst. Sustain. Leadersh http://www.cisl.cam.ac.uk/Resources/Climate-and-Energy/Climate-Change-Implications-for-Cities.aspx [Google Scholar]
  13. Güneralp B, Seto KC. 13.  2013. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8:1014025 [Google Scholar]
  14. McDonald RI, Marcotullio PJ, Güneralp B. 14.  2013. Urbanization and global trends in biodiversity and ecosystem services. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities T Elmqvist, M Fragkias, J Goodness, B Güneralp, PJ Marcotullio , et al., pp. 31–52 Dordrecht, Neth: Springer [Google Scholar]
  15. Romero Lankao P, Qin H. 15.  2011. Conceptualizing urban vulnerability to global climate and environmental change. Curr. Opin. Environ. Sustain. 3:3142–49 [Google Scholar]
  16. Field CB, Barros VR, Mastrandrea MD, Mach KJ. 16.  et al. 2014. Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. IPCC Working Group II Contribution to AR5 Cambridge, UK/New York: Cambridge Univ. Press [Google Scholar]
  17. Baynes TM, Wiedmann T. 17.  2012. General approaches for assessing urban environmental sustainability. Curr. Opin. Environ. Sustain. 4:4458–64 [Google Scholar]
  18. Lechtenböhmer S, Barthel C, Merten F, Schneider C, Schüwer D, Seifried D. 18.  2010. Redesigning urban infrastructures for a low emission future, an overview of urban low carbon technologies. S.A.P.I.E.N.S. 3:21–16 [Google Scholar]
  19. Ramaswami A, Chavez A, Chertow M. 19.  2012. Carbon footprinting of cities and implications for analysis of urban material and energy flows. J. Ind. Ecol. 16:6783–85 [Google Scholar]
  20. Kennedy C, Baker L, Dhakal S, Ramaswami A. 20.  2012. Sustainable urban systems. J. Ind. Ecol. 16:6775–79 [Google Scholar]
  21. Lebel L, Garden P, Banaticla MRN, Lasco RD, Contreras A. 21.  et al. 2007. Management into the development strategies of urbanizing regions in Asia: implications of urban function, form, and role. J. Ind. Ecol. 11:261–81 [Google Scholar]
  22. Davis SJ, Caldeira K. 22.  2010. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 107:125687–92 [Google Scholar]
  23. Turner D, Williams I, Kemp S, Wright L, Coello J, McMurtry E. 23.  2012. Towards standardization in GHG quantification and reporting. Carbon Manag. 3:3223–25 [Google Scholar]
  24. Hertwich EG, Peters GP. 24.  2009. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43:166414–20 [Google Scholar]
  25. Larsen HN, Hertwich EG. 25.  2009. The case for consumption-based accounting of greenhouse gas emissions to promote local climate action. Environ. Sci. Policy 12:7791–98 [Google Scholar]
  26. 26. Eur. Environ. Agency (EEA) 2013. European union CO2 emissions: different accounting perspectives Eur. Environ. Agency Tech. Rep. No. 20/2013, Copenhagen, Den. [Google Scholar]
  27. 27. C40 Cities Clim. Leadersh. Group, ICLEI Local Gov. Sustain., World Resour. Inst., World Bank, UNEP, UN-HABITAT 2012. Global Protocol for Community-Scale Greenhouse Gas Emissions (GPC): Pilot version 1.0—May 2012. Bonn, Ger: ICLEI http://www.ghgprotocol.org/files/ghgp/GPC_PilotVersion_1.0_May2012_20120514.pdf [Google Scholar]
  28. Kennedy C, Hoornweg D. 28.  2012. Mainstreaming urban metabolism. J. Ind. Ecol. 16:6780–82 [Google Scholar]
  29. Sippel M. 29.  2011. Urban GHG inventories, target setting and mitigation achievements: how German cities fail to outperform their country. Greenh. Gas Meas. Manag. 1:155–63 [Google Scholar]
  30. D' Avignon A, Carloni FA, La Rovere EL, Dubeux CBS. 30.  2010. Emission inventory: an urban public policy instrument and benchmark. Energy Policy 38:94838–47 [Google Scholar]
  31. Wright LA, Coello J, Kemp S, Williams I. 31.  2011. Carbon footprinting for climate change management in cities. Carbon Manag. 2:149–60 [Google Scholar]
  32. 32. Natl. Dev. Reform Comm 2011. China's policies and actions for addressing climate change—the progress report. Natl. Dev. Reform Comm., People's Repub. China [Google Scholar]
  33. Bader N, Bleischwitz R. 33.  2009. Comparative analysis of local GHG inventory tools Study Rep., Coll. Eur./Inst. Veolia Environ., Bruges, Belgium/Paris. http://www.institut.veolia.org/fileadmin/medias/documents/491_Final-report-Comparative-Analysis-of.pdf [Google Scholar]
  34. Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T. 34.  et al. 2009. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 43:197297–302 [Google Scholar]
  35. Hillman T, Ramaswami A. 35.  2010. Greenhouse gas emission footprints and energy use benchmarks for eight U.S. cities. Environ. Sci. Technol. 44:61902–10 [Google Scholar]
  36. Ramaswami A, Hillman T, Janson B, Reiner M, Thomas G. 36.  2008. A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ. Sci. Technol. 42:176455–61 [Google Scholar]
  37. Chavez A, Ramaswami A. 37.  2013. Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: mathematical relationships and policy relevance. Energy Policy 54:376–84 [Google Scholar]
  38. Ramaswami A, Chavez A, Ewing-Thiel J, Reeve KE. 38.  2011. Two approaches to greenhouse gas emissions foot-printing at the city scale. Environ. Sci. Technol. 45:104205–6 [Google Scholar]
  39. Baynes T, Lenzen M, Steinberger JK, Bai X. 39.  2011. Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy. Energy Policy 39:117298–309 [Google Scholar]
  40. Minx J, Baiocchi G, Wiedmann T, Barrett J, Creutzig F. 40.  et al. 2013. Carbon footprints of cities and other human settlements in the UK. Environ. Res. Lett. 8:3035039 [Google Scholar]
  41. Ibrahim N, Sugar L, Hoornweg D, Kennedy C. 41.  2012. Greenhouse gas emissions from cities: comparison of international inventory frameworks. Local Environ 17:2223–41 [Google Scholar]
  42. Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T. 42.  et al. 2010. Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 38:94828–37 [Google Scholar]
  43. Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K. 43.  2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Hayama, Jpn: Intergov. Panel Clim. Change [Google Scholar]
  44. 44. World Resour. Inst./WBSCD 2014. Greenhouse Gas Protocol Home Page last modified May 29, accessed July 12. http://www.ghgprotocol.org [Google Scholar]
  45. Kennedy C, Demoullin S, Mohareb E. 45.  2012. Cities reducing their greenhouse gas emissions. Energy Policy 49:774–77 [Google Scholar]
  46. Bader N, Bleischwitz R. 46.  2009. Measuring urban greenhouse gas emissions: the challenge of comparability. S.A.P.I.E.N.S. 2:31–15 [Google Scholar]
  47. Kaselofsky J, März S, Schüle R. 47.  2013. Bottom-up evaluation of municipal energy and climate policy: more than an alternative to top-down approaches? Presented at Int. Energy Program Eval. Conf., Aug. 13–14, Chicago [Google Scholar]
  48. Harris PG, Chow ASY, Symons J. 48.  2012. Greenhouse gas emissions from cities and regions: international implications revealed by Hong Kong. Energy Policy 44:416–24 [Google Scholar]
  49. Fragkias M, Lobo J, Strumsky D, Seto KC. 49.  2013. Does size matter? Scaling of CO2 emissions and U.S. urban areas. PLOS ONE 8:6e64727 [Google Scholar]
  50. Wiedenhofer D, Lenzen M, Steinberger JK. 50.  2013. Energy requirements of consumption: urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy 63:696–707 [Google Scholar]
  51. Lee S, Lee B. 51.  2014. The influence of urban form on GHG emissions in the U.S. household sector. Energy Policy 68:534–49 [Google Scholar]
  52. Kennedy CA, Ibrahim N, Hoornweg D. 52.  2014. Low-carbon infrastructure strategies for cities. Nat. Clim. Change 4:5343–46 [Google Scholar]
  53. Ramaswami A, Chavez A. 53.  2013. What metrics best reflect the energy and carbon intensity of cities? Insights from theory and modeling of 20 US cities. Environ. Res. Lett. 8:3035011 [Google Scholar]
  54. Cai B. 54.  2012. Research on greenhouse gas emissions inventory in the cities of China. China Popul. Resour. Environ. 22:0121–27 [Google Scholar]
  55. Gu C, Yuan X. 55.  2011. Urban greenhouse gas inventory and methods in China. Urban Environ. Urban Ecol. 1:5–8 [Google Scholar]
  56. Dienst C, Schneider C, Xia C, Saurat M, Fischer T, Vallentin D. 56.  2013. On track to become a low carbon future city? First findings of the integrated status quo and trends assessment of the pilot city of Wuxi in China. Sustainability 5:83224–43 [Google Scholar]
  57. Sugar L, Kennedy C, Leman E. 57.  2012. Greenhouse gas emissions from Chinese cities. J. Ind. Ecol. 16:4552–63 [Google Scholar]
  58. Cai B, Zhang L. 58.  2014. Urban CO2 emissions in China: spatial boundary and performance comparison. Energy Policy 66:557–67 [Google Scholar]
  59. 59. Ecospeed Climate Software Solutions 2013. ECOSPEED software für Klimaschutz Zürich, Switzerland. http://www.ecospeed.ch [Google Scholar]
  60. Kennedy C, Ramaswami A, Carney S, Dhakal S. 60.  2011. Greenhouse gas emission baselines for global cities and metropolitan regions. Cities and Climate Change: Responding to an Urgent Agenda D Hoornweg, M Freire, MJ Lee, P Bhada-Tata, B Yuen 15–54 Washington, DC: World Bank [Google Scholar]
  61. Chavez A, Ramaswami A, Nath D, Guru R, Kumar E. 61.  2012. Implementing trans-boundary infrastructure-based greenhouse gas accounting for Delhi, India. J. Ind. Ecol. 16:6814–28 [Google Scholar]
  62. Braschel N, Posch A. 62.  2013. A review of system boundaries of GHG emission inventories in waste management. J. Clean. Prod. 44:30–38 [Google Scholar]
  63. Paloheimo E, Salmi O. 63.  2013. Evaluating the carbon emissions of the low carbon city: a novel approach for consumer based allocation. Cities 30:233–39 [Google Scholar]
  64. Heinonen J, Kyrö R, Junnila S. 64.  2011. Dense downtown living more carbon intense due to higher consumption: a case study of Helsinki. Environ. Res. Lett. 6:3034034 [Google Scholar]
  65. Larsen HN, Hertwich EG. 65.  2010. Identifying important characteristics of municipal carbon footprints. Ecol. Econ. 70:160–66 [Google Scholar]
  66. Heinonen J, Junnila S. 66.  2011. A carbon consumption comparison of rural and urban lifestyles. Sustainability 3:81234–49 [Google Scholar]
  67. Wiedmann T, Wilting HC, Lenzen M, Lutter S, Palm V. 67.  2011. Quo vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis. Ecol. Econ. 70:111937–45 [Google Scholar]
  68. Wiedmann T, Barrett J. 68.  2010. A review of the ecological footprint indicator—perceptions and methods. Sustainability 2:61645–93 [Google Scholar]
  69. Watson D, Acosta-Fernández J, Wittmer D, Gravgård Pedersen O. 69.  2013. Environmental pressures from European consumption and production Eur. Environ. Agency Tech. Rep. 2/2013, Copenhagen, Den. [Google Scholar]
  70. Lenzen M, Peters GM. 70.  2010. How city dwellers affect their resource hinterland. J. Ind. Ecol. 14:173–90 [Google Scholar]
  71. Heinonen J, Junnila S. 71.  2011. Case study on the carbon consumption of two metropolitan cities. Int. J. Life Cycle Assess. 16:6569–79 [Google Scholar]
  72. Schulz NB. 72.  2010. Delving into the carbon footprints of Singapore—comparing direct and indirect greenhouse gas emissions of a small and open economic system. Energy Policy 38:94848–55 [Google Scholar]
  73. Heinonen J, Junnila S. 73.  2011. Implications of urban structure on carbon consumption in metropolitan areas. Environ. Res. Lett. 6:1014018 [Google Scholar]
  74. 74. Br. Stand. Inst. (BSI) 2012. Specification for the assessment of greenhouse gas emissions of a city by direct plus supply chain, and consumption-based approaches: draft 2.0 for public consultation Draft PAS 2070:2012, June 26, BSI, London [Google Scholar]
  75. Riffle C, Appleby K, Martin P. 75.  2013. Wealthier, healthier cities: how climate change action is giving us wealthier, healthier cities CDP/C40 Cities/AECOM Rep., London, UK [Google Scholar]
  76. Yu W, Pagani R, Huang L. 76.  2012. CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities. Energy Policy 47:298–308 [Google Scholar]
  77. Wentz EA, Anderson S, Fragkias M, Netzband M, Mesev V. 77.  et al. 2014. Supporting global environmental change research: a review of trends and knowledge gaps in urban remote sensing. Remote Sens. 6:53879–905 [Google Scholar]
  78. Duren RM, Miller CE. 78.  2012. Measuring the carbon emissions of megacities. Nat. Clim. Change 2:8560–62 [Google Scholar]
  79. Güneralp B, Seto KC. 79.  2008. Environmental impacts of urban growth from an integrated dynamic perspective: a case study of Shenzhen, South China. Glob. Environ. Change 18:4720–35 [Google Scholar]
  80. Viguié V, Hallegatte S. 80.  2012. Trade-offs and synergies in urban climate policies. Nat. Clim. Change 2:5334–37 [Google Scholar]
  81. Wolman A. 81.  1965. The metabolism of cities. Sci. Am. 213:179–90 [Google Scholar]
  82. Kennedy C, Cuddihy J, Engel-Yan J. 82.  2007. The changing metabolism of cities. J. Ind. Ecol. 11:243–59 [Google Scholar]
  83. Kennedy C, Pincetl S, Bunje P. 83.  2011. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 159:8–91965–73 [Google Scholar]
  84. Zhang Y. 84.  2013. Urban metabolism: a review of research methodologies. Environ. Pollut. 178:463–73 [Google Scholar]
  85. Barles S. 85.  2010. Society, energy and materials: the contribution of urban metabolism studies to sustainable urban development issues. J. Environ. Plan. Manag. 53:4439–55 [Google Scholar]
  86. Goldstein B, Birkved M, Quitzau M-B, Hauschild M. 86.  2013. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environ. Res. Lett. 8:3035024 [Google Scholar]
  87. Bleischwitz R, Bringezu S, van de Sand I, Schütz H, Moll S. 87.  2009. Analysing global resource use of national and regional economies across various levels. Sustainable Resource Management: Global Trends, Visions and Policies S Bringezu, R Bleischwitz 10–51 Sheffield, UK: Greenleaf [Google Scholar]
  88. Barles S. 88.  2009. Urban metabolism of Paris and its region. J. Ind. Ecol. 13:6898–913 [Google Scholar]
  89. Hendriks C, Obernosterer R, Müller D, Kytzia S, Baccini P, Brunner PH. 89.  2000. Material flow analysis: a tool to support environmental policy decision making. Case-studies on the city of Vienna and the Swiss lowlands. Local Environ. 5:3311–28 [Google Scholar]
  90. Hammer M, Giljum S. 90.  2006. Material flow analyses of the regions of Hamburg, Vienna and Leipzig NEDS Work. Pap. 6, Sustain. Eur. Res. Inst. (SERI), Vienna [Google Scholar]
  91. Warren-Rhodes K, Koenig A. 91.  2001. Escalating trends in the urban metabolism of Hong Kong: 1971–1997. AMBIO 30:7429–38 [Google Scholar]
  92. Newcombe K, Kalma JD, Aston AR. 92.  1978. The metabolism of a city: the case of Hong Kong. AMBIO 7:3–15 [Google Scholar]
  93. Schulz NB. 93.  2005. Contributions of material and energy flow accounting to urban ecosystem analysis: case study Singapore UNU-IAS Work. Pap. No. 136, Inst. Adv. Stud., UN Univ. Yokohama, Jpn. [Google Scholar]
  94. Schulz NB. 94.  2007. The direct material inputs into Singapore's development. J. Ind. Ecol. 11:2117–31 [Google Scholar]
  95. Niza S, Rosado L, Ferrão P. 95.  2009. Urban metabolism: methodological advances in urban material flow accounting based on the Lisbon case study. J. Ind. Ecol. 13:3384–405 [Google Scholar]
  96. Sahely HR, Dudding S, Kennedy CA. 96.  2003. Estimating the urban metabolism of Canadian cities: greater Toronto area case study. Can. J. Civ. Eng. 30:2468–83 [Google Scholar]
  97. Thériault J, Laroche A-M. 97.  2009. Evaluation of the urban hydrologic metabolism of the greater Moncton region, New Brunswick. Can. Water Resour. J. 34:3255–68 [Google Scholar]
  98. Kenway S, Gregory A, McMahon J. 98.  2011. Urban water mass balance analysis. J. Ind. Ecol. 15:5693–706 [Google Scholar]
  99. Müller D. 99.  2006. Stock dynamics for forecasting material flows—case study for housing in the Netherlands. Ecol. Econ. 59:1142–56 [Google Scholar]
  100. Bergsdal H, Brattebø H, Bohne RA, Müller DB. 100.  2007. Dynamic material flow analysis for Norway's dwelling stock. Build. Res. Inf. 35:5557–70 [Google Scholar]
  101. Cai ZF, Zhang LX, Zhang B, Chen ZM. 101.  2009. Emergy-based analysis of Beijing-Tianjin-Tangshan region in China. Commun. Nonlinear Sci. 14:124319–31 [Google Scholar]
  102. Vega-Azamar RE, Glaus M, Hausler R, Oropeza-García NA, Romero-López R. 102.  2013. An emergy analysis for urban environmental sustainability assessment, the island of Montreal, Canada. Landsc. Urban Plan. 118:18–28 [Google Scholar]
  103. Zhang Y, Yang Z, Liu G, Yu X. 103.  2011. Emergy analysis of the urban metabolism of Beijing. Ecol. Model. 222:142377–84 [Google Scholar]
  104. Huang S-L, Hsu W-L. 104.  2003. Materials flow analysis and emergy evaluation of Taipei's urban construction. Landsc. Urban Plan. 63:261–74 [Google Scholar]
  105. Huang S-L, Lee C-L, Chen C-W. 105.  2006. Socioeconomic metabolism in Taiwan: emergy synthesis versus material flow analysis. Resour. Conserv. Recycl. 48:2166–96 [Google Scholar]
  106. Yuan Z, Shi J, Wu H, Zhang L, Bi J. 106.  2011. Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level. J. Environ. Manag. 92:82021–28 [Google Scholar]
  107. Forkes J. 107.  2007. Nitrogen balance for the urban food metabolism of Toronto, Canada. Resour. Conserv. Recycl. 52:174–94 [Google Scholar]
  108. Brunner PH, Rechberger H. 108.  2004. Practical Handbook of Material Flow Analysis Boca Raton, FL: CRC/Lewis [Google Scholar]
  109. 109. Eur. Comm 2012. Material flow accounts. Statistics Explained April, Eurostat, Luxembourg. Accessed June 20, 2014. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Material_flow_accounts# [Google Scholar]
  110. 110. Organ. Econ. Co-op. Dev. (OECD) 2008. Measuring Material Flows and Resource Productivity—Synthesis Report Paris: OECD [Google Scholar]
  111. Billen G, Garnier J, Barles S. 111.  2012. History of the urban environmental imprint: introduction to a multidisciplinary approach to the long-term relationships between western cities and their hinterland. Reg. Environ. Change 12:2249–53 [Google Scholar]
  112. Ramaswami A, Weible C, Main D, Heikkila T, Siddiki S. 112.  et al. 2012. A social-ecological-infrastructural systems framework for interdisciplinary study of sustainable city systems. J. Ind. Ecol. 16:6801–13 [Google Scholar]
  113. Seto KC, Reenberg A, Boone CG, Fragkias M, Haase D. 113.  et al. 2012. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 109:7687–92 [Google Scholar]
  114. Minx J, Creutzig F, Medinger V, Ziegler T, Owen A, Baiocchi G. 114.  2011. . Developing a pragmatic approach to assess urban metabolism in Europe: a report to the European Environment Agency. Climatecon Work. Pap. Ser. No. 01/2011, Technische Univ., Berlin [Google Scholar]
  115. Hubacek K, Guan D, Barrett J, Wiedmann T. 115.  2009. Environmental implications of urbanization and lifestyle change in China: ecological and water footprints. J. Clean. Prod. 17:141241–48 [Google Scholar]
  116. Feng K, Hubacek K, Minx J, Siu YL, Chapagain A. 116.  et al. 2010. Spatially explicit analysis of water footprints in the UK. Water 3:147–63 [Google Scholar]
  117. 117. Environ. Agency 2010. London's ecological footprint. State of the Environment in London Feb., p. 9 Bristol, UK: Environ. Agency. http://webarchive.nationalarchives.gov.uk/20100513120827/http://publications.environment-agency.gov.uk/pdf/GETH0210BRXE-e-e.pdf [Google Scholar]
  118. Scotti M, Bondavalli C, Bodini A. 118.  2009. Ecological footprint as a tool for local sustainability: the municipality of Piacenza (Italy) as a case study. Environ. Impact Assess. Rev. 29:139–50 [Google Scholar]
  119. Kissinger M, Sussman C, Moore J, Rees WE. 119.  2013. Accounting for the ecological footprint of materials in consumer goods at the urban scale. Sustainability 5:51960–73 [Google Scholar]
  120. McDonald GW, Patterson MG. 120.  2004. Ecological footprints and interdependencies of New Zealand regions. Ecol. Econ. 50:1–249–67 [Google Scholar]
  121. Moore J, Kissinger M, Rees WE. 121.  2013. An urban metabolism and ecological footprint assessment of metro Vancouver. J. Environ. Manag. 124:51–61 [Google Scholar]
  122. Wilson J, Tyedmers P, Grant J. 122.  2013. Measuring environmental impact at the neighbourhood level. J. Environ. Plan. Manag. 56:142–60 [Google Scholar]
  123. Wackernagel M, Kitzes J, Moran D, Goldfinger S, Thomas M. 123.  2006. The ecological footprint of cities and regions: comparing resource availability with resource demand. Environ. Urban. 18:1103–12 [Google Scholar]
  124. Blomqvist L, Brook BW, Ellis EC, Kareiva PM, Nordhaus T, Shellenberger M. 124.  2013. Does the shoe fit? Real versus imagined ecological footprints. PLOS Biol. 11:11e1001700 [Google Scholar]
  125. Chester M, Pincetl S, Allenby B. 125.  2012. Avoiding unintended tradeoffs by integrating life-cycle impact assessment with urban metabolism. Curr. Opin. Environ. Sustain. 4:4451–57 [Google Scholar]
  126. Pincetl S, Bunje P, Holmes T. 126.  2012. An expanded urban metabolism method: toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plan. 107:3193–202 [Google Scholar]
  127. Li D, Wang R. 127.  2009. Hybrid emergy-LCA (HEML) based metabolic evaluation of urban residential areas: the case of Beijing, China. Ecol. Complex 6:4484–93 [Google Scholar]
  128. Brunner PH. 128.  2011. Urban mining a contribution to reindustrializing the city. J. Ind. Ecol. 15:3339–41 [Google Scholar]
  129. Pauliuk S, Venkatesh G, Brattebø H, Müller DB. 129.  2014. Exploring urban mines: pipe length and material stocks in urban water and wastewater networks. Urban Water J. 11:4274–83 [Google Scholar]
  130. Pandis Iveroth S, Vernay A-L, Mulder KF, Brandt N. 130.  2013. Implications of systems integration at the urban level: the case of Hammarby Sjöstad, Stockholm. J. Clean. Prod. 48:220–23 [Google Scholar]
  131. Kennedy C, Pincetl S, Bunje P. 131.  2012. Reply to “Comment on ‘the study of urban metabolism and its applications to urban planning and design’ by Kennedy et al. 2011. Environ. Pollut. 167:186 [Google Scholar]
  132. 132. SUME 2011. Planning resource-efficient cities. SUME Synth. Rep., Oct. 31, SUME/OIR, Vienna, Austria [Google Scholar]
  133. Pinho P, Oliveira V, Cruz SS, Barbosa M. 133.  2013. Metabolic impact assessment for urban planning. J. Environ. Plan. Manag. 56:2178–93 [Google Scholar]
  134. González A, Donnelly A, Jones M, Chrysoulakis N, Lopes M. 134.  2013. A decision-support system for sustainable urban metabolism in Europe. Environ. Impact Assess. Rev. 38:109–19 [Google Scholar]
  135. Saldivar-Sali AND. 135.  2010. A global typology of cities: classification tree analysis of urban resource consumption PhD thesis, Mass. Inst. Technol., Cambridge, MA [Google Scholar]
  136. Codoban N, Kennedy C. 136.  2008. Metabolism of neighborhoods. J. Urban Plan. Dev. 134:121–31 [Google Scholar]
  137. Castán Broto V, Allen A, Rapoport E. 137.  2012. Interdisciplinary perspectives on urban metabolism. J. Ind. Ecol. 16:6851–61 [Google Scholar]
  138. Newman PW. 138.  1999. Sustainability and cities: extending the metabolism model. Landsc. Urban Plan. 44:4219–26 [Google Scholar]
  139. Huang S-L, Chen Y-H, Kuo F-Y, Wang S-H. 139.  2011. Emergy-based evaluation of peri-urban ecosystem services. Ecol. Complex 8:138–50 [Google Scholar]
  140. Swilling M, Robinson B, Marvin S, Hodson M. 140. UN Environ. Program 2013. City-Level Decoupling: Urban Resource Flows and the Governance of Infrastructure Transitions. Nairobi, Kenya: UN Environ. Program http://www.unep.org/resourcepanel/portals/24102/pdfs/Cities-Full_Report.pdf [Google Scholar]
  141. Brunner PH. 141.  2007. Reshaping urban metabolism. J. Ind. Ecol. 11:211–13 [Google Scholar]
  142. Yu Y, Feng K, Hubacek K. 142.  2013. Tele-connecting local consumption to global land use. Glob. Environ. Change 23:51178–86 [Google Scholar]
  143. Mitlin D, Satterthwaite D. 143.  2013. Urban Poverty in the Global South: Scale and Nature New York: Routledge [Google Scholar]
  144. Sugar L, Kennedy C, Hoornweg D. 144.  2013. Synergies between climate change adaptation and mitigation in development: case studies of Amman, Jakarta, and Dar es Salaam. Int. J. Clim. Change Strateg. Manag. 5:195–111 [Google Scholar]
  145. Amekudzi A. 145.  2011. Placing carbon reduction in the context of sustainable development priorities: a global perspective. Carbon Manag. 2:4413–23 [Google Scholar]
  146. Amekudzi AA, Ramaswami A, Chan E, Lam K, Hon Meng W, Zhu D. 146.  2011. Contextualizing carbon reduction initiatives: How should carbon mitigation be addressed by various cities worldwide?. Carbon Manag. 2:4363–65 [Google Scholar]
  147. West JJ, Smith SJ, Silva RA, Naik V, Zhang Y. 147.  et al. 2013. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3:10885–89 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error