1932

Abstract

Intertidal mangrove forests are a dynamic ecosystem experiencing rapid changes in extent and habitat quality over geological history, today and into the future. Climate and sea level have drastically altered mangrove distribution since their appearance in the geological record ∼75 million years ago (Mya), through to the Holocene. In contrast, contemporary mangrove dynamics are driven primarily by anthropogenic threats, including pollution, overextraction, and conversion to aquaculture and agriculture. Deforestation rates have declined in the past decade, but the future of mangroves is uncertain; new deforestation frontiers are opening, particularly in Southeast Asia and West Africa, despite international conservation policies and ambitious global targets for rehabilitation. In addition, geological and climatic processes such as sea-level rise that were important over geological history will continue to influence global mangrove distribution in the future. Recommendations are given to reframe mangrove conservation, with a view to improving the state of mangroves in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-environ-101718-033302
2019-10-17
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/energy/44/1/annurev-environ-101718-033302.html?itemId=/content/journals/10.1146/annurev-environ-101718-033302&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR 2010. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81:169–93
    [Google Scholar]
  2. 2. 
    Howard J, Sutton-Grier A, Herr D, Kleypas J, Landis E et al. 2017. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15:42–50
    [Google Scholar]
  3. 3. 
    Richards DR, Friess DA. 2016. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. PNAS 113:344–49One of the first descriptions of regional-scale mangrove conversion to oil palm.
    [Google Scholar]
  4. 4. 
    Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A, Simard M 2017. Distribution and drivers of global mangrove forest change, 1996–2010. PLOS ONE 12:e0179302
    [Google Scholar]
  5. 5. 
    Lee SY, Dunn RJK, Young RA, Connolly RM, Dale PER et al. 2006. Impact of urbanization on coastal wetland structure and function. Austral Ecol 31:149–63
    [Google Scholar]
  6. 6. 
    Lovelock CE, Cahoon DR, Friess DA, Guntenspergen GR, Krauss KW et al. 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526:559–63Models the impact of sea-level rise on mangroves throughout the Indo-Pacific.
    [Google Scholar]
  7. 7. 
    Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJ et al. 2017. Large-scale dieback of mangroves in Australia's Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshwat. Res. 68:1816–29
    [Google Scholar]
  8. 8. 
    Saenger P, Hegerl EJ, Davie JD, Work. Group. Mangrove. Ecosyst. IUCN Comm. Ecology, eds. 1983. Environmentalist 3:Suppl. 3)
    [Google Scholar]
  9. 9. 
    Spalding M, Blasco F, Field C, eds. 1997. World Mangrove Atlas Okinawa, JP: Int. Soc. Mangrove Ecosyst.
    [Google Scholar]
  10. 10. 
    Valiela I, Bowen JL, York JK 2001. Mangrove forests: one of the world's threatened major tropical environments. BioScience 51:807–15Agenda-setting article highlighting the potential scale of historical mangrove deforestation.
    [Google Scholar]
  11. 11. 
    Alongi DM. 2002. Present state and future of the world's mangrove forests. Environ. Conserv. 29:331–49
    [Google Scholar]
  12. 12. 
    Duke NC, Meynecke J-O, Dittman S, Ellison AM, Anger K et al. 2007. A world without mangroves?. Science 317:41–42A call to action from the academic community about global mangrove loss.
    [Google Scholar]
  13. 13. 
    Food Agric. Organ. U. N. (FAO) 2003. Status and trends in mangrove area extent worldwide Work. Pap. FRA 63, FAO, Rome Italy:.
    [Google Scholar]
  14. 14. 
    Food Agric. Organ. U. N. (FAO) 2007. The world's mangroves 19802005 Work. Pap. FRA 153, FAO, Rome Italy:
    [Google Scholar]
  15. 15. 
    Van Bochove J, Sullivan E, Nakamura T, eds. 2014. The importance of mangroves to people: a call to action Rep., U. N. Environ. Programme, World Monit. Cent Cambridge, UK:
    [Google Scholar]
  16. 16. 
    Feller IC, Friess DA, Krauss KW, Lewis RR 2017. The state of the world's mangroves under climate change. Hydrobiologia 803:1–12
    [Google Scholar]
  17. 17. 
    Duke NC. 2017. Mangrove floristics and biogeography revisited: further deductions from biodiversity hot spots, ancestral discontinuities, and common evolutionary processes. Mangrove Ecosystems: A Global Biogeographic Perspective VH Rivera-Monroy, SY Lee, E Kristensen, RR Twilley 17–53 Berlin: Springer
    [Google Scholar]
  18. 18. 
    Gee CT. 2001. The mangrove palm Nypa in the geologic past of the new world. Wetl. Ecol. Manag. 9:181–94
    [Google Scholar]
  19. 19. 
    He Z, Zhang Z, Guo W, Zhang Y, Zhou R, Shi S 2015. De novo assembly of coding sequences of the mangrove palm (Nypa fruticans) using RNA-seq and discovery of whole-genome duplications in the ancestor of palms. PLOS ONE 10:e0145385
    [Google Scholar]
  20. 20. 
    Zhang Z, He Z, Xu S, Li X, Guo W et al. 2016. Transcriptome analyses provide insights into the phylogeny and adaptive evolution of the mangrove fern genus Acrostichum. Sci. . Rep 6:35634
    [Google Scholar]
  21. 21. 
    Plaziat JC, Cavagnetto C, Koeniguer JC, Baltzer F 2001. History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl. Ecol. Manag. 9:161–79
    [Google Scholar]
  22. 22. 
    Xu S, He Z, Zhang Z, Guo W, Lyu H et al. 2017. The origin, diversification and adaptation of a major mangrove clade (Rhizophoraceae) revealed by whole-genome sequencing. Nat. Sci. Rev. 4:721–34
    [Google Scholar]
  23. 23. 
    Ricklefs RE, Schwarzbach AE, Renner SS 2006. Rate of lineage origin explains the diversity anomaly in the world's mangrove vegetation. Am. Natl. 168:805–10
    [Google Scholar]
  24. 24. 
    Guo Z, Guo W, Wu H, Fang X, Ng WL et al. 2017. Differing phylogeographic patterns within the Indo-West Pacific mangrove genus Xylocarpus (Meliaceae). J. Biogeogr. 45:676–89
    [Google Scholar]
  25. 25. 
    Yang Y, Yang S, Li J, Deng Y, Zhang Z et al. 2015. Transcriptome analysis of the Holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones. BMC Genom 16:605
    [Google Scholar]
  26. 26. 
    Duke NC. 1995. Genetic diversity, distributional barriers and rafting continents? More thoughts on the evolution of mangroves. Hydrobiologia 295:167–81
    [Google Scholar]
  27. 27. 
    Duke NC, Lo E, Sun M 2002. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. . Trees 16:65–79
    [Google Scholar]
  28. 28. 
    Suan G, Popescu SM, Suc JP, Schnyder J, Fauquette S et al. 2017. Subtropical climate conditions and mangrove growth in Arctic Siberia during the early Eocene. Geology 45:539–42
    [Google Scholar]
  29. 29. 
    Murray-Wallace CV, Woodroffe CD. 2014. Quaternary Sea-Level Changes: A Global Perspective Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  30. 30. 
    Woodroffe CD, Davies G. 2009. The morphology and development of tropical coastal wetlands. Coastal Wetlands: An Integrated Ecosystem Approach G Perillo, E Wolanski, D Cahoon, M Brinson 65–88 Amsterdam: Elsevier
    [Google Scholar]
  31. 31. 
    Clark JA, Farrell WE, Peltier WR 1978. Global changes in postglacial sea level: a numerical calculation. Quatern. Res. 9:265–87
    [Google Scholar]
  32. 32. 
    Hamilton SE, Casey D. 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25:729–38Currently the only published remote sensing data set of mangrove deforestation at the global scale.
    [Google Scholar]
  33. 33. 
    Hanebuth T, Stattegger K, Grootes PM 2000. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288:1033–35
    [Google Scholar]
  34. 34. 
    Wang X, Sun X, Wang P, Stattegger K 2009. Vegetation on the Sunda Shelf, South China Sea, during the Last Glacial Maximum. Palaeogeog. Palaeoclim. Palaeoecol. 278:88–97
    [Google Scholar]
  35. 35. 
    Tamura T, Saito Y, Sieng S, Ben B, Kong M et al. 2009. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland. Quartern. Sci. Rev. 28:327–44
    [Google Scholar]
  36. 36. 
    Li Z, Saito Y, Mao L, Tamura T, Song B et al. 2012. Mid-Holocene mangrove succession and its response to sea-level change in the upper Mekong River delta, Cambodia. Quatern. Res. 78:386–99
    [Google Scholar]
  37. 37. 
    Proske U, Hanebuth TJ, Gröger J, Diệm BP 2011. Late Holocene sedimentary and environmental development of the northern Mekong River Delta, Vietnam. Quartern. Int. 230:57–66
    [Google Scholar]
  38. 38. 
    Hashimoto TR, Saintilan N, Haberle SG 2006. Mid-Holocene development of mangrove communities featuring Rhizophoraceae and geomorphic change in the Richmond River Estuary, New South Wales, Australia. Geogr. Res. 44:63–76
    [Google Scholar]
  39. 39. 
    Saintilan N, Hashimoto TR. 1999. Mangrove-saltmarsh dynamics on a bay-head delta in the Hawkesbury River estuary, New South Wales, Australia. Hydrobiologia 413:95–102
    [Google Scholar]
  40. 40. 
    Woodroffe CD, Mulrennan ME, Chappell J 1993. Estuarine infill and coastal progradation, Southern van Diemen Gulf, Northern Australia. Sediment. Geol. 83:257–75
    [Google Scholar]
  41. 41. 
    Woodroffe CD, Thom BG, Chappell J 1985. Development of widespread mangrove swamps in mid-Holocene times in northern Australia. Nature 317:711–13A foundational article describing mangrove response to Holocene rSLR.
    [Google Scholar]
  42. 42. 
    Digerfeldt G, Hendry M. 1987. An 8000 year Holocene sea-level record from Jamaica: implications for interpretation of Caribbean reef and coastal history. Coral Reefs 5:165–69
    [Google Scholar]
  43. 43. 
    McKee KL. 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91:475–83
    [Google Scholar]
  44. 44. 
    Parkinson RW. 1989. Decelerating Holocene sea-level rise and its influence on Southwest Florida coastal evolution: a transgressive/regressive stratigraphy. J. Sediment. Res. 59:960–72
    [Google Scholar]
  45. 45. 
    Woodroffe C. 1981. Mangrove swamp stratigraphy and Holocene transgression, Grand Cayman Island, West Indies. Mar. Geol. 41:271–94
    [Google Scholar]
  46. 46. 
    Enos P, Perkins RD. 1979. Evolution of Florida Bay from island stratigraphy. Geol. Soc. Am. Bull. 90:59–83
    [Google Scholar]
  47. 47. 
    Zazzo A, Munoz O, Badel E, Béguier I, Genchi F, Marcucci LG 2016. A revised radiocarbon chronology of the aceramic shell midden of Ra's Al-Hamra 6 (Muscat, Sultanate of Oman): implication for occupational sequence, marine reservoir age, and human mobility. Radiocarbon 58:383–95
    [Google Scholar]
  48. 48. 
    Biagi P, Nisbet R. 2006. The prehistoric fisher-gatherers of the western coast of the Arabian Sea: a case of seasonal sedentarization?. World Archaeol 38:220–38
    [Google Scholar]
  49. 49. 
    López-Angarita J, Roberts CM, Tilley A, Hawkins JP, Cooke RG 2016. Mangroves and people: lessons from a history of use and abuse in four Latin American countries. For. Ecol. Manag. 368:151–62
    [Google Scholar]
  50. 50. 
    Sunseri T. 2005. Working in mangroves and beyond: scientific forestry and the labour question in early colonial Tanzania. Environ. Hist. 11:365–94
    [Google Scholar]
  51. 51. 
    González C, Urrego LE, Martínez JI, Polania J, Yokoyama Y 2010. Mangrove dynamics in the southwestern Caribbean since the ‘Little Ice Age’: a history of human and natural disturbances. Holocene 20:849–61
    [Google Scholar]
  52. 52. 
    Ottinger M, Clauss K, Kuenzer C 2016. Aquaculture: relevance, distribution, impacts and spatial assessments—a review. Ocean Coast. Manag. 119:244–66
    [Google Scholar]
  53. 53. 
    Hamilton SE. 2013. Assessing the role of commercial aquaculture in displacing mangrove forest. Bull. Mar. Sci. 89:585–601
    [Google Scholar]
  54. 54. 
    Primavera JH. 1997. Socioeconomic impacts of shrimp culture. Aquacult. Res. 28:815–27
    [Google Scholar]
  55. 55. 
    Costanzo SD, O'Donohue MJ, Dennison WC 2004. Assessing the influence and distribution of shrimp pond effluent in a tidal mangrove creek in north-east Australia. Mar. Poll. Bull. 48:514–25
    [Google Scholar]
  56. 56. 
    Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA 2008. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35:519–28
    [Google Scholar]
  57. 57. 
    Guimarães AS, Travassos P, Souza Filho PWME, Gonçalves FD, Costa F 2010. Impact of aquaculture on mangrove areas in the Northern Pernambuco Coast (Brazil) using remote sensing and geographic information system. Aquacult. Res. 41:828–38
    [Google Scholar]
  58. 58. 
    Hamilton SE, Stankwitz C. 2012. Examining the relationship between international aid and mangrove deforestation in coastal Ecuador from 1970 to 2006. J. Land Use Sci. 7:177–202
    [Google Scholar]
  59. 59. 
    Satapathy DR, Krupadam RJ, Kumar LP, Wate SR 2007. The application of satellite data for the quantification of mangrove loss and coastal management in the Godavari Estuary, east coast of India. Environ. Monit. Assess. 134:453–69
    [Google Scholar]
  60. 60. 
    Miahle F, Gunnell Y, Mering C 2013. The impacts of shrimp farming on land use, employment and migration in Tumbes, northern Peru. Ocean Coast. Manag. 73:1–12
    [Google Scholar]
  61. 61. 
    Binh TN, Vromant N, Hung N, Hens L, Boon EK 2005. Land cover changes between 1968 and 2003 In Cai Nuoc, Ca Mau Peninsula, Vietnam. Environ. Dev. Sustain. 7:519–36
    [Google Scholar]
  62. 62. 
    Jia M, Wang Z, Li L, Song K, Ren C et al. 2014. Mapping China's mangroves based on an object-oriented classification of Landsat imagery. Wetlands 34:277–83
    [Google Scholar]
  63. 63. 
    Giri C, Muhlhausen J. 2008. Mangrove forest distributions and dynamics in Madagascar (1975–2005). Sensors 8:2104–17
    [Google Scholar]
  64. 64. 
    Webb EL, Jachowski NRA, Phelps J, Friess DA, Than MM, Ziegler AD 2014. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Chang. 24:321–33
    [Google Scholar]
  65. 65. 
    Ferreira AC, Lacerda LD. 2016. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean Coast. Manag. 125:38–46
    [Google Scholar]
  66. 66. 
    Martinuzzi S, Gould WA, Lugo AE, Medina E 2009. Conversion and recovery of Puerto Rican mangroves: 200 years of changes. For. Ecol. Manag. 257:75–84
    [Google Scholar]
  67. 67. 
    Nfotabong-Atheull A, Din N, Dahdouh-Guebas F 2013. Qualitative and quantitative characterization of mangrove vegetation structure and dynamics in a peri-urban setting of Douala (Cameroon): an approach using air-borne imagery. Estuaries Coasts 36:1181–92
    [Google Scholar]
  68. 68. 
    Lai S, Loke LH, Hilton MJ, Bouma TJ, Todd PA 2015. The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean Coast. Manag. 103:78–85
    [Google Scholar]
  69. 69. 
    Carney J, Gillespie TW, Rosomoff R 2014. Assessing forest change in a priority West African mangrove ecosystem: 1986–2010. Geoforum 53:126–35
    [Google Scholar]
  70. 70. 
    Oo NW. 2002. Present state and problems of mangrove management in Myanmar. Trees 16:218–23
    [Google Scholar]
  71. 71. 
    Allen JA, Ewel KC, Jack J 2001. Patterns of natural and anthropogenic disturbance of the mangroves on the Pacific Island of Kosrae. Wetl. Ecol. Manag. 9:279–89
    [Google Scholar]
  72. 72. 
    Duke NC. 2016. Oil spill impacts on mangroves: recommendations for operational planning and action based on a global review. Mar. Poll. Bull. 109:700–15
    [Google Scholar]
  73. 73. 
    Spalding M, Kainuma M, Collins L 2010. World Atlas of Mangroves London: Earthscan
    [Google Scholar]
  74. 74. 
    Friess DA, Webb EL. 2014. Variability in mangrove change estimates and implications for the assessment of ecosystem service provision. Glob. Ecol. Biogeogr. 23:715–25
    [Google Scholar]
  75. 75. 
    Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A et al. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20:154–59
    [Google Scholar]
  76. 76. 
    Bunting P, Rosenqvist A, Lucas R, Rebelo L, Hillarides L et al. 2018. The Global Mangrove Watch—a new 2010 global baseline of mangrove extent. Remote Sensing 10:1669The most up-to-date map of global mangrove extent from 2010.
    [Google Scholar]
  77. 77. 
    Chen L, Wang W, Zhang Y, Lin G 2009. Recent progresses in mangroves conservation, restoration and research in China. J. Plant Ecol. 2:45–54
    [Google Scholar]
  78. 78. 
    Spalding M, Burke L, Hutchison J, zu Ermgassen P, Thomas H et al. 2014. Attaining Aichi Target 11: How well are marine ecosystem services covered by protected areas? Discuss. Pap., Camb. Conserv. Initiat Cambridge, UK:
    [Google Scholar]
  79. 79. 
    Friess DA, Thompson BS, Brown B, Amir AA, Cameron C et al. 2016. Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia. Conserv. Biol. 30:933–49
    [Google Scholar]
  80. 80. 
    Feller IC, Dangremond EM, Devlin DJ, Lovelock CE, Proffitt CE, Rodriguez W 2015. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA. Ecology 96:2960–72
    [Google Scholar]
  81. 81. 
    Luo L, Meng H, Wu RN, Gu JD 2017. Impact of nitrogen pollution/deposition on extracellular enzyme activity, microbial abundance and carbon storage in coastal mangrove sediment. Chemosphere 177:275–83
    [Google Scholar]
  82. 82. 
    Peng Y, Zheng M, Zheng Z, Wu G, Chen Y et al. 2016. Virtual increase or latent loss? A reassessment of mangrove populations and their conservation in Guangdong, southern China. Mar. Poll. Bull. 109:691–99
    [Google Scholar]
  83. 83. 
    Global Mangrove Alliance 2018. Goals and Objectives Washington, DC: Global Mangrove Alliance http://www.mangrovealliance.org/about/
    [Google Scholar]
  84. 84. 
    Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLOS ONE 10:e0118571
    [Google Scholar]
  85. 85. 
    Seto KC, Güneralp B, Hutyra LR 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS 109:16083–88
    [Google Scholar]
  86. 86. 
    Beveridge MCM, Thilsted SH, Phillips MJ, Metian M, Torell M, Hall SJ 2013. Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculture. J. Fish Biol. 83:1067–84
    [Google Scholar]
  87. 87. 
    Edwards P. 2015. Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447:2–14
    [Google Scholar]
  88. 88. 
    Lester SE, Gentry RR, Kappel CV, White C, Gaines SD 2018. Offshore aquaculture in the United States: untapped potential in need of smart policy. PNAS 115:7162–65
    [Google Scholar]
  89. 89. 
    Tian H, Lindenmayer DB, Wong GT, Mao Z, Huang Y, Xue X 2018. A methodological framework for coastal development assessment: a case study of Fujian Province, China. Sci. Total Environ. 615:572–80
    [Google Scholar]
  90. 90. 
    Tran N, Rodriguez U-P, Chan CY, Phillips MJ, Mohan CV et al. 2017. Indonesian aquaculture futures: an analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the AsiaFish model. Mar. Pol. 79:25–32
    [Google Scholar]
  91. 91. 
    Hashim GM. 2003. Salt-affected soils of Malaysia Rep., Food Agric. Organ., U. N. Rome:
    [Google Scholar]
  92. 92. 
    Hadiprayitno II 2017. Who owns the right to food? Interlegality and competing interests in agricultural modernisation in Papua, Indonesia. Third World Q 38:97–116
    [Google Scholar]
  93. 93. 
    Gaw LYC, Linkie M, Friess DA 2018. Mangrove forest dynamics in Tanintharyi, Myanmar from 1989–2014, and the role of future economic and political developments. Singapore J. Trop. Geog. 39:224–43
    [Google Scholar]
  94. 94. 
    Otsuyama K, Shikada M, DasGupta R, Oo TH, Shaw R 2017. Degeneration of mangroves in a changing policy environment: case study of Ayeyarwady Delta, Myanmar. Participatory Mangrove Management in a Changing Climate R DasGupta 173–86 Tokyo: Springer
    [Google Scholar]
  95. 95. 
    Veettil BK, Pereira SF, Quang NX 2018. Rapidly diminishing mangrove forests in Myanmar (Burma): a review. Hydrobiologia 822:19–35
    [Google Scholar]
  96. 96. 
    Lovelock CE, Duarte CM. 2019. Dimensions of Blue Carbon and emerging perspectives. Biol. Lett. 15:20180781
    [Google Scholar]
  97. 97. 
    Intergov. Panel Clim. Change (IPCC) 2013. Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands Geneva, Switz: IPCC
    [Google Scholar]
  98. 98. 
    Hamilton SE, Friess DA. 2018. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang 8:240–44
    [Google Scholar]
  99. 99. 
    Atwood TB, Connolly RM, Almahasheer, Carnell PE, Duarte CM et al. 2017. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7:523–28
    [Google Scholar]
  100. 100. 
    Taillardat P, Friess DA, Lupascu M 2018. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14:20180251
    [Google Scholar]
  101. 101. 
    Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4:293–97
    [Google Scholar]
  102. 102. 
    Wylie L, Sutton-Grier AE, Moore A 2016. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Pol. 65:76–84Summary of current experiences of mangrove PES.
    [Google Scholar]
  103. 103. 
    Thomas S. 2014. Blue carbon: knowledge gaps, critical issues, and novel approaches. Ecol. Econ. 107:22–38
    [Google Scholar]
  104. 104. 
    Cormier-Salem MC, Panfili J. 2016. Mangrove reforestation: greening or grabbing coastal zones and deltas? Case studies in Senegal. Afr. J. Aquat. Sci. 41:89–98
    [Google Scholar]
  105. 105. 
    Primavera JH, Esteban JMA. 2008. A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl. Ecol. Manag. 16:173–53
    [Google Scholar]
  106. 106. 
    Primavera JH, Rollon RN, Samson MS 2012. The pressing challenges of mangrove rehabilitation: pond reversion and coastal protection. Treatise on Estuarine and Coastal Science, Vol. 10: Ecohydrology and Restoration L Chicharo, M Zalewski 217–44 Amsterdam: Elsevier
    [Google Scholar]
  107. 107. 
    Kodikara KA, Mukherjee N, Jayatissa LP, Dahdouh-Guebas F, Koedam N 2017. Have mangrove restoration projects worked? An in-depth study in Sri Lanka. Restor. Ecol. 25:705–16
    [Google Scholar]
  108. 108. 
    Bayraktarov E, Saunders MI, Abdullah S, Mills M, Beher J et al. 2016. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26:1055–74
    [Google Scholar]
  109. 109. 
    Lewis RR. 2005. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24:403–18
    [Google Scholar]
  110. 110. 
    Balke T, Bouma TJ, Horstman EM, Webb EL, Erftemeijer PL, Herman PM 2011. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440:1–9
    [Google Scholar]
  111. 111. 
    Brown B, Fadillah R, Nurdin Y, Soulsby I, Ahmad R 2014. Community based ecological mangrove rehabilitation (CBEMR) in Indonesia. SAPIENS 7:253–64
    [Google Scholar]
  112. 112. 
    Duncan C, Primavera JH, Pettorelli N, Thompson JR, Loma RJ, Koldewey HJ 2016. Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Mar. Poll. Bull. 109:772–82
    [Google Scholar]
  113. 113. 
    Dale PE, Knight JM, Dwyer PG 2014. Mangrove rehabilitation: a review focusing on ecological and institutional issues. Wetl. Ecol. Manag. 22:587–604
    [Google Scholar]
  114. 114. 
    Primavera JH. 2000. Development and conservation of Philippine mangroves: institutional issues. Ecol. Econ. 35:91–106
    [Google Scholar]
  115. 115. 
    Int. Union Conserv. Nat. (IUCN), World Resour. Inst. (WRI) 2014. A guide to the Restoration Opportunities Assessment Methodology (ROAM): Assessing forest landscape restoration opportunities at the national or sub-national level Gland, Switz: IUCN, WRI
    [Google Scholar]
  116. 116. 
    Nguyen TP, Nguyen VT, Quoi LP, Parnel KE 2016. Community perspectives on an internationally funded mangrove restoration project: Kien Giang province, Vietnam. Ocean Coast. Manag. 119:146–54
    [Google Scholar]
  117. 117. 
    Giri C, Pengra B, Zhu Z, Singh A, Tieszen L 2007. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73:91–100
    [Google Scholar]
  118. 118. 
    Proisy C, Gratiot N, Anthony EJ, Gardel A, Fromard F, Heuret P 2009. Mud bank colonization by opportunistic mangroves: a case study from French Guiana using LiDAR data. Contin. Shelf Res. 29:632–41
    [Google Scholar]
  119. 119. 
    Swales A, Bentley SJ, Lovelock CE 2015. Mangrove‐forest evolution in a sediment‐rich estuarine system: opportunists or agents of geomorphic change?. Earth Surf. Process. Landforms 40:1672–87
    [Google Scholar]
  120. 120. 
    Bernardino AF, de Oliveria Gomes LE, Hadlich HL, Andrades R, Correa LB 2018. Mangrove clearing impacts on macrofaunal assemblages and benthic food webs in a tropical estuary. Mar. Poll. Bull. 126:228–35
    [Google Scholar]
  121. 121. 
    Chen Y, Li Y, Thompson C, Wang X, Cai T, Chang Y 2018. Differential sediment trapping abilities of mangrove and salt marsh vegetation in a subtropical estuary. Geomorphology 318:270–82
    [Google Scholar]
  122. 122. 
    Yando ES, Osland MJ, Willis JM, Day RH, Krauss KW, Hester MW 2016. Salt marsh‐mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. J. Ecol. 104:1020–31
    [Google Scholar]
  123. 123. 
    Saintilan N, Wilson N, Rogers K, Rajkaran A, Krauss KW 2014. Mangrove expansion and saltmarsh decline at mangrove poleward limits. Glob. Change Biol. 20:147–57
    [Google Scholar]
  124. 124. 
    Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JG et al. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. PNAS 111:7223–27
    [Google Scholar]
  125. 125. 
    McKee KL, Rooth JE, Feller IC 2007. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecol. Appl. 17:1678–93
    [Google Scholar]
  126. 126. 
    Peterson JM, Bell SS. 2012. Tidal events and salt‐marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone. Ecology 93:1648–58
    [Google Scholar]
  127. 127. 
    Rajkaran A, Adams J. 2016. Mangroves of South Africa. Mangroves of the Western Indian Ocean: Status and Management JO Bosire, MM Mangora, S Bandeira, A Rajkaran, R Ratsimbazafy et al.51–73 Zanzibar Town, Tanz: WIOMSA
    [Google Scholar]
  128. 128. 
    Woodroffe CD, Rogers K, McKee KL, Lovelock CE, Mendelssohn IA, Saintilan N 2016. Mangrove sedimentation and response to relative sea-level rise. Annu. Rev. Mar. Sci. 8:243–66
    [Google Scholar]
  129. 129. 
    Scheurch M, Spencer T, Temmerman S, Kirwan ML, Wolff C et al. 2018. Future response of global coastal wetlands to sea-level rise. Nature 561:231–34
    [Google Scholar]
  130. 130. 
    Mills M, Leon JX, Saunders MI, Bell J, Liu Y et al. 2015. Reconciling development and conservation under coastal squeeze from rising sea-level. Conserv. Lett. 9:361–68
    [Google Scholar]
  131. 131. 
    Woodroffe CD 2018. Mangrove response to sea level rise: palaeoecological insights from macrotidal systems in northern Australia. Mar. Freshwat. Res. 69:917–32
    [Google Scholar]
  132. 132. 
    Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K 2015. A global boom in hydropower dam construction. Aquat. Sci. 77:161–70
    [Google Scholar]
  133. 133. 
    Spencer T, Schuerch M, Nicholls RJ, Hinkel J, Lincke D et al. 2016. Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. Glob. Planet. Change 139:15–30
    [Google Scholar]
  134. 134. 
    Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N et al. 2014. How mangrove forests adjust to rising sea level. New Phytol 202:19–34Comprehensive summary of mangrove surface elevation change processes and response to sea-level rise.
    [Google Scholar]
  135. 135. 
    Furukawa K, Wolanski E, Mueller H 1997. Currents and sediment transport in mangrove forests. Estuar. Coast. Shelf Sci. 44:301–10
    [Google Scholar]
  136. 136. 
    Krauss KW, Allen JA, Cahoon DR 2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar. Coast. Shelf Sci. 56:251–59
    [Google Scholar]
  137. 137. 
    Huxham M, Kumara MP, Jayatissa LP, Krauss KW, Kairo J et al. 2010. Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Phil. Trans. R. Soc. B 365:2127–35
    [Google Scholar]
  138. 138. 
    Kamal S, Warnken J, Bakhtiyari M, Lee SY 2017. Sediment distribution in shallow estuaries at fine scale: in situ evidence of 3D structural complexity effects by mangrove pneumatophores. Hydrobiologia 803:121–32
    [Google Scholar]
  139. 139. 
    McKee KL, Cahoon DR, Feller IC 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16:545–56
    [Google Scholar]
  140. 140. 
    Lovelock CE, Adame MF, Bennion V, Hayes M, Reef R et al. 2015. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar. Coast. Shelf Sci. 153:1–9
    [Google Scholar]
  141. 141. 
    Cahoon DR, Hensel PF, Rybczyk J, McKee KL, Proffitt CE, Perez BC 2003. Mass tree mortality leads to mangrove pear collapse at Bat Islands, Honduras after Hurricane Mitch. J. Ecol. 91:1093–105
    [Google Scholar]
  142. 142. 
    Lang'at JKS, Kairo JG, Mencuccini M, Bouillon S, Skov MW et al. 2014. Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PLOS ONE 9:e107868
    [Google Scholar]
  143. 143. 
    Webb EL, Friess DA, Krauss KW, Cahoon DR, Guntenspergen GR, Phelps J 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat. Clim. Change 3:458–63
    [Google Scholar]
  144. 144. 
    Sanders CJ, Maher DT, Tait DR, Williams D, Holloway C et al. 2016. Are global mangrove carbon stocks driven by rainfall?. J. Geophys. Res. Biogeosci. 121:2600–9
    [Google Scholar]
  145. 145. 
    Osland MJ, Feher LC, Griffith KT, Cavanaugh KC, Enwright NM et al. 2017. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87:341–59
    [Google Scholar]
  146. 146. 
    Santini NS, Reef R, Lockington DA, Lovelock CE 2015. The use of fresh and saline water sources by the mangrove Avicennia marina. . Hydrobiologia 745:59–68
    [Google Scholar]
  147. 147. 
    Lovelock CE, Reef R, Ball MC 2017. Isotopic signatures of stem water reveal differences in water sources accessed by mangrove tree species. Hydrobiologia 803:133–45
    [Google Scholar]
  148. 148. 
    Lovelock CE, Feller IC, Reef R, Hickey S, Ball MC 2017. Mangrove dieback during fluctuating sea levels. Sci. Rep. 7:1680
    [Google Scholar]
  149. 149. 
    Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT 2018. Mangrove mortality in a changing climate: an overview. Estuar. Coast. Shelf Sci. 215:241–49
    [Google Scholar]
  150. 150. 
    Miththapala S. 2008. Mangroves Coast. Ecosystem Ser. 2. Colombo Sri Lanka: Intl. Union Conserv. Nat. Nat. Resour http://www.observatorioirsb.org/cmsAdmin/uploads/mangroves_miththapala_(2008).pdf
    [Google Scholar]
/content/journals/10.1146/annurev-environ-101718-033302
Loading
/content/journals/10.1146/annurev-environ-101718-033302
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error