1932

Abstract

A remarkable number of different flow phenomena contribute critically to the proper functioning of the hearing and balance senses, both of which are hosted by the inner ear. This includes quasi-steady and high-frequency Stokes flow, incompressible wave guides, unsteady boundary layers, and fluid–structure interactions between viscous fluids, soft membranes, and hair cell bundles. We present these phenomena, review recent results, and discuss how they relate to the physiology of the vestibular system and the mechanics of hearing. In addition, we study flow phenomena, including gravity-driven particulate flow, magnetohydrodynamics, buoyancy, and steady streaming, that are related to pathologies of the inner ear and relevant to diagnosis and treatment of these diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010518-040454
2019-01-05
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/fluid/51/1/annurev-fluid-010518-040454.html?itemId=/content/journals/10.1146/annurev-fluid-010518-040454&mimeType=html&fmt=ahah

Literature Cited

  1. Altoè A, Pulkki V, Verhulst S 2014. Transmission line cochlear models: improved accuracy and efficiency. J. Acoust. Soc. Am. 136:EL302–8
    [Google Scholar]
  2. Andrews DG, McIntyre ME 1978. An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89:4609–46
    [Google Scholar]
  3. Böhnke F, Arnold W 2006. Bone conduction in a three-dimensional model of the cochlea. ORL 68:393–96
    [Google Scholar]
  4. Boselli F, Kleiser L, Bockisch CJ, Hegemann SCA, Obrist D 2014. Quantitative analysis of benign paroxysmal positional vertigo fatigue under canalithiasis conditions. J. Biomech. 47:1853–60
    [Google Scholar]
  5. Boselli F, Obrist D, Kleiser L 2012. A multilayer method of fundamental solutions for Stokes flow problems. J. Comput. Phys. 231:6139–58
    [Google Scholar]
  6. Boselli F, Obrist D, Kleiser L 2013.a A meshless boundary method for Stokes flows with particles: application to canalithiasis. Int. J. Numer. Methods Biomed. Eng. 29:1176–91
    [Google Scholar]
  7. Boselli F, Obrist D, Kleiser L 2013.b Vortical flow in the utricle and the ampulla: a computational study on the fluid dynamics of the vestibular system. Biomech. Model. Mechanobiol. 12:335–48
    [Google Scholar]
  8. Bowers PN, Ravicz ME, Rosowski JJ 2017. Understanding bone-conduction hearing: measurements and model development. J. Acoust. Soc. Am. 141:3900
    [Google Scholar]
  9. Bowling T, Meaud J 2018. Forward and reverse waves: modeling distortion products in the intracochlear fluid pressure. Biophys. J. 114:747–57
    [Google Scholar]
  10. Bradley CE 1996. Acoustic streaming field structure: the influence of the radiator. J. Acoust. Soc. Am. 100:1399–408
    [Google Scholar]
  11. Bradley CE 2012. Acoustic streaming field structure. Part II. Examples that include boundary-driven flow. J. Acoust. Soc. Am. 131:13–23
    [Google Scholar]
  12. Bradshaw AP, Curthoys IS, Todd MJ, Magnussen JS, Taubman DS et al. 2010. A mathematical model of human semicircular canal geometry: a new basis for interpreting vestibular physiology. J. Assoc. Res. Otolaryngol. 11:145–59
    [Google Scholar]
  13. Brandt T, Dieterich M, Strupp M 2013. Vertigo and Dizziness: Common Complaints London: Springer-Verlag. , 2nd ed..
    [Google Scholar]
  14. Bungay PM, Brenner H 1973.a The motion of a closely-fitting sphere in a fluid-filled tube. Int. J. Multiphase Flow 1:25–56
    [Google Scholar]
  15. Bungay PM, Brenner H 1973.b Pressure drop due to the motion of a sphere near the wall bounding a Poiseuille flow. J. Fluid Mech. 60:81–96
    [Google Scholar]
  16. Ciganović N, Wolde-Kidan A, Reichenbach T 2017. Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance. Sci. Rep. 7:3609
    [Google Scholar]
  17. Creighton FP, Guan X, Park S, Kymissis IJ, Nakajima HH, Olson ES 2016. An intracochlear pressure sensor as a microphone for a fully implantable cochlear implant. Otol. Neurotol. 37:1596–600
    [Google Scholar]
  18. Curthoys IS, Blanks RHI, Markham CH 1977.a Semicircular canal radii of curvature (R) in cat, guinea pig and man. J. Morphol. 151:11–15
    [Google Scholar]
  19. Curthoys IS, Markham CH, Curthoys EJ 1977.b Semicircular duct and ampulla dimensions in cat, guinea pig and man. J. Morphol. 151:117–34
    [Google Scholar]
  20. Dai M, Klein A, Cohen B, Raphan T 1999. Model-based study of the human cupular time constant. J. Vestib. Res. 9:293–301
    [Google Scholar]
  21. Damiano E, Rabbitt R 1996. A singular perturbation model of fluid dynamics in the vestibular semicircular canal and ampulla. J. Fluid Mech. 307:333–72
    [Google Scholar]
  22. Davidovics NS, Rahman MA, Dai C, Ahn J, Fridman GY, Della Santina CC 2013. Multichannel vestibular prosthesis employing modulation of pulse rate and current with alignment precompensation elicits improved VOR performance in monkeys. J. Assoc. Res. Otolaryngol. 14:2233–48
    [Google Scholar]
  23. Ding XY, Li P, Lin SCS, Stratton ZS, Nama N et al. 2013. Surface acoustic wave microfluidics. Lab Chip 13:3626–49
    [Google Scholar]
  24. Edom E, Obrist D, Henniger R, Kleiser L, Sim JH, Huber AM 2013. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion. J. Acoust. Soc. Am. 134:3749–58
    [Google Scholar]
  25. Edom E, Obrist D, Kleiser L 2014. Steady streaming in a two-dimensional box model of a passive cochlea. J. Fluid Mech. 753:254–78
    [Google Scholar]
  26. Fetter M, Haslwanter T, Bork M, Dichgans J 1999. New insights into positional alcohol nystagmus using three‐dimensional eye‐movement analysis. Ann. Neurol. 45:216–23
    [Google Scholar]
  27. Fettiplace R, Hackney CM 2006. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci. 7:19–29
    [Google Scholar]
  28. Filipovic N, Saveljic I, Milosevic Z 2014. Computer simulation of hot caloric test response in the three semicircular canals Paper presented at the 2014 IEEE International Conference on Bioinformatics and Bioengineering Boca Raton, FL: Nov. 10–12
    [Google Scholar]
  29. Gentine A, Eichhorn J-L, Kopp C, Conraux C 1990. Modelling the action of caloric stimulation of the vestibule: I. The hydrostatic model. Acta Oto-laryngol 110:328–33
    [Google Scholar]
  30. Gentine A, Eichhorn J-L, Kopp C, Conraux C 1991.a Modelling the action of caloric stimulation of the vestibule: II. The mechanical model of the semi-circular canal considered as an inflatable structure. Acta Oto-laryngol 111:10–15
    [Google Scholar]
  31. Gentine A, Eichhorn J-L, Kopp C, Conraux C 1991.b Modelling the action of caloric stimulation of the vestibule: III. Caloric nystagmus induced by osmotic pressure variation. Acta Oto-laryngol 111:463–67
    [Google Scholar]
  32. Gentine A, Eichhorn J-L, Kopp C, Conraux C 1991.c Modelling the action of caloric stimulation of the vestibule: IV. The global mechanical model. Acta Oto-laryngol 111:633–38
    [Google Scholar]
  33. Gerstenberger C, Wolter F-E 2013. Numerical simulation of acoustic streaming within the cochlea. J. Comput. Acoust. 21:1350019
    [Google Scholar]
  34. Glover PM, Cavin I, Qian W, Bowtell R, Gowland PA 2007. Magnetic‐field‐induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28:349–61
    [Google Scholar]
  35. Grant JW, Van Buskirk WC 1976. Experimental measurement of the stiffness of the cupula. Biophys. J. 16:669–78
    [Google Scholar]
  36. Grant W 2006. Vestibular mechanics. Biomedical Engineering Fundamentals JD Bronzino 64–164-16 Boca Raton, FL: CRC. , 3rd ed..
    [Google Scholar]
  37. Grieser BJ, Kleiser L, Obrist D 2016. Identifying mechanisms behind the Tullio phenomenon: a computational study based on first principles. J. Assoc. Res. Otolaryngol. 17:103–18
    [Google Scholar]
  38. Grieser BJ, McGarvie L, Kleiser L, Manzari L, Obrist D, Curthoys I 2014. Numerical investigations of the effects of endolymphatic hydrops on the VOR response. J. Vestib. Res. 24:219–19
    [Google Scholar]
  39. Guinan JJ Jr. 2012. How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear. Res. 292:35–50
    [Google Scholar]
  40. Guinan JJ Jr. 2014. Cochlear mechanics, otoacoustic emissions, and medial olivocochlear efferents: twenty years of advances and controversies along with areas ripe for new work. Perspectives on Auditory Research A Popper, R Fay 229–46 New York: Springer
    [Google Scholar]
  41. Gürkov R 2017. Menière and friends: imaging and classification of hydropic ear disease. Otol. Neurotol. 38:e539–44
    [Google Scholar]
  42. Gürkov R, Flatz W, Louza J, Strupp M, Ertl-Wagner B, Krause E 2012. Herniation of the membranous labyrinth into the horizontal semicircular canal is correlated with impaired caloric response in Menière's disease. Otol. Neurotol. 33:81375–79
    [Google Scholar]
  43. Halmagyi GM, Curthoys IS, Colebatch JG, Aw ST 2005. Vestibular responses to sound. Ann. N.Y. Acad. Sci. 1039:54–67
    [Google Scholar]
  44. Happel J, Brenner H 1973. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media Leiden, Neth.: Noordhoff
    [Google Scholar]
  45. Häusler R, Stieger C, Bernhard H, Kompis M 2008. A novel implantable hearing system with direct acoustic cochlear stimulation. Audiol. Neurotol. 13:247–56
    [Google Scholar]
  46. House MG, Honrubia V 2003. Theoretical models for the mechanisms of benign paroxysmal positional vertigo. Audiol. Neurotol. 8:91–99
    [Google Scholar]
  47. Hudspeth A 2014. Integrating the active process of hair cells with cochlear function. Nat. Rev. Neurosci. 15:600–14
    [Google Scholar]
  48. Ifediba MA, Rajguru SM, Hullar TE, Rabbitt RD 2007. The role of 3-canal biomechanics in angular motion transduction by the human vestibular labyrinth. Ann. Biomed. Eng. 35:1247–63
    [Google Scholar]
  49. Imai T, Matsuda K, Takeda N, Uno A, Kitahara T et al. 2015. Light cupula: the pathophysiological basis of persistent geotropic positional nystagmus. BMJ Open 5:e006607
    [Google Scholar]
  50. Iversen MM, Rabbitt RD 2017. Wave mechanics of the vestibular semicircular canals. Biophys. J. 113:1133–49
    [Google Scholar]
  51. Iversen MM, Zhu H, Zhou W, Della Santina CC, Carey JP, Rabbitt RD 2018. Sound abnormally stimulates the vestibular system in canal dehiscence syndrome by generating pathological fluid-mechanical waves. Sci. Rep. 8:10257
    [Google Scholar]
  52. Kass J, von Baumgarten R, Vogel H, Wetzig J, Benson A et al. 1984. The European vestibular experiments in Spacelab-1. Adv. Space Res. 4:3–9
    [Google Scholar]
  53. Kassemi M, Oas J, Deserranno D 2005. Fluid-structural dynamics of ground-based and microgravity caloric tests. J. Vestib. Res. 15:93–107
    [Google Scholar]
  54. Kim C-H, Shin JE, Shin DH, Kim YW, Ban JH 2014. “Light cupula” involving all three semicircular canals: a frequently misdiagnosed disorder. Med. Hypotheses 83:541–44
    [Google Scholar]
  55. Kozlov AS, Baumgart J, Risler T, Versteegh CPC, Hudspeth AJ 2011. Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale. Nature 474:376–79
    [Google Scholar]
  56. Lesser MB, Berkley DA 1972. Fluid mechanics of the cochlea. Part 1. J. Fluid Mech. 51:497–512
    [Google Scholar]
  57. Lighthill J 1978.a Acoustic streaming. J. Sound Vib. 61:391–418
    [Google Scholar]
  58. Lighthill J 1978.b Waves in Fluids Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  59. Lighthill J 1981. Energy flow in the cochlea. J. Fluid Mech. 106:149–213
    [Google Scholar]
  60. Lighthill J 1991. Biomechanics of hearing sensitivity. J. Vib. Acoust. 113:1–13
    [Google Scholar]
  61. Lighthill J 1992. Acoustic streaming in the ear itself. J. Fluid Mech. 235:551–606
    [Google Scholar]
  62. Lim K-M, Steele CR 2002. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hear. Res. 170:190–205
    [Google Scholar]
  63. Lim K-M, Steele CR 2003. Response suppression and transient behavior in a nonlinear active cochlear model with feed-forward. Int. J. Solids Struct. 40:5097–107
    [Google Scholar]
  64. Manoussaki D, Dimitriadis EK, Chadwick RS 2006. Cochlea's graded curvature effect on low frequency waves. Phys. Rev. Lett. 96:088701
    [Google Scholar]
  65. Manzari L, Burgess AM, MacDougall HG, Curthoys IS 2011. Enhanced otolithic function in semicircular canal dehiscence. Acta Oto-laryngol 131:107–12
    [Google Scholar]
  66. McGarvie LA, Curthoys IS, MacDougall HG, Halmagyi GM 2015. What does the dissociation between the results of video head impulse versus caloric testing reveal about the vestibular dysfunction in Ménière's disease. ? Acta Oto-laryngol 135:859–65
    [Google Scholar]
  67. Minor LB, Solomon D, Zinreich JS, Zee DS 1998. Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch. Otolaryngol. Head Neck Surg. 124:249–58
    [Google Scholar]
  68. Nakajima H, Dong W, Olson E, Merchant S, Ravicz M, Rosowski J 2009. Differential intracochlear sound pressure measurements in normal human temporal bones. J. Assoc. Res. Otolaryngol. 10:23–36
    [Google Scholar]
  69. Nam J-H, Grant W 2014. Inner ear hair cell bundle mechanics. Biomedical Engineering Fundamentals JD Bronzino, DR Peterson 25–125-13 Boca Raton, FL: CRC. , 4th ed..
    [Google Scholar]
  70. Obrist D 2008. Fluid mechanics of semicircular canals—revisited. Z. Angew. Math. Phys. 59:475–97
    [Google Scholar]
  71. Obrist D 2012. Fluid mechanics of the inner ear Habilitation thesis (Habilitationsschrift), ETH Zürich Zürich, Switz.:
    [Google Scholar]
  72. Obrist D, Hegemann S 2008. Fluid-particle dynamics in canalithiasis. J. R. Soc. Interface 5:1215–29
    [Google Scholar]
  73. Obrist D, Hegemann S, Kronenberg D, Häuselmann O, Rösgen T 2010. In-vitro model of a semicircular canal: design and validation of the model and its use for the study of canalithiasis. J. Biomech. 43:1208–14
    [Google Scholar]
  74. Obrist D, Kleiser L, Rösgen T 2008. Particle trajectories in semicircular canals with canalithiasis. J. Biomech. 41:S308
    [Google Scholar]
  75. Obrist D, Nienhaus A, Zamaro E, Kalla R, Mantokoudis G, Strupp M 2016. Determinants for a successful Sémont maneuver: an in vitro study with a semicircular canal model. Front. Neurol. 7:150
    [Google Scholar]
  76. Oman CM, Marcus EN, Curthoys IS 1987. The influence of semicircular canal morphology on endolymph flow dynamics: an anatomically descriptive mathematical model. Acta Otolaryngol 103:1–13
    [Google Scholar]
  77. Parnes LS, Agrawal SK, Atlas J 2003. Diagnosis and management of benign paroxysmal positional vertigo (BPPV). Can. Med. Assoc. J. 169:681–93
    [Google Scholar]
  78. Parnes LS, McClure JA 1992. Free‐floating endolymph particles: a new operative finding during posterior semicircular canal occlusion. Laryngoscope 102:988–92
    [Google Scholar]
  79. Pau HW, Limberg W 1990.a Fluid kinetics of endolymph during calorization. Acta Otolaryngol. 109:331–36
    [Google Scholar]
  80. Pau HW, Limberg W 1990.b Fluid kinetics of endolymph during rotation. Acta Otolaryngol 110:7–10
    [Google Scholar]
  81. Pedley TJ 1980. The Fluid Mechanics of Large Blood Vessels Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  82. Pedley TJ 2003. Mathematical modelling of arterial fluid dynamics. J. Eng. Math. 47:419–44
    [Google Scholar]
  83. Péus D, Dobrev I, Prochazka L, Thoele K, Dalbert A et al. 2017. Sheep as a large animal ear model: middle-ear ossicular velocities and intracochlear sound pressure. Hear. Res. 351:88–97
    [Google Scholar]
  84. Peterson LC, Bogert BP 1950. A dynamical theory of the cochlea. J. Acoust. Soc. Am. 22:369–81
    [Google Scholar]
  85. Pfiffner F, Prochazka L, Péus D, Dobrev I, Dalbert A et al. 2017. A MEMS condenser microphone-based intracochlear acoustic receiver. IEEE Trans. Biomed. Eng. 64:2431–38
    [Google Scholar]
  86. Rabbitt RD 1999. Directional coding of three-dimensional movements by the vestibular semicircular canals. Biol. Cybern. 80:417–31
    [Google Scholar]
  87. Rabbitt RD, Damiano ER 1992. A hydroelastic model of macromechanics in the endolymphatic vestibular canal. J. Fluid Mech. 238:337–69
    [Google Scholar]
  88. Rabbitt RD, Damiano ER, Grant J 2004. Biomechanics of the semicircular canals and otolith organs. The Vestibular System SM Highstein, RR Fay, AN Popper 153–201 New York: Springer
    [Google Scholar]
  89. Rajguru SM, Ifediba MA, Rabbitt RD 2004. Three-dimensional biomechanical model of benign paroxysmal positional vertigo. Ann. Biomed. Eng. 32:831–46
    [Google Scholar]
  90. Reichenbach T, Hudspeth A 2014. The physics of hearing: fluid mechanics and the active process of the inner ear. Rep. Prog. Phys. 77:076601
    [Google Scholar]
  91. Reinfeldt S, Håkansson B, Taghavi H, Eeg-Olofsson M 2015. New developments in bone-conduction hearing implants: a review. Med. Devices 8:79–93
    [Google Scholar]
  92. Rey-Martinez J, McGarvie L, Pérez-Fernández N 2017. Computing simulated endolymphatic flow thermodynamics during the caloric test using normal and hydropic duct models. Acta Otolaryngol 137:270–74
    [Google Scholar]
  93. Riley N 2001. Steady streaming. Annu. Rev. Fluid Mech. 33:43–65
    [Google Scholar]
  94. Roberts DC, Marcelli V, Gillen JS, Carey JP, Della Santina CC, Zee DS 2011. MRI magnetic field stimulates rotational sensors of the brain. Curr. Biol. 21:1635–40
    [Google Scholar]
  95. Sasmal A, Grosh K 2016. Micro and nanofluidics of the cochlea: trade-offs of sensitivity and noise in an active biological system. J. Acoust. Soc. Am. 140:3206
    [Google Scholar]
  96. Schurzig D, Rau TS, Wallaschek J, Lenarz T, Majdani O 2016. Determination of optimal excitation patterns for local mechanical inner ear stimulation using a physiologically-based model. Biomed. Microdevices 18:36
    [Google Scholar]
  97. Shen S, Liu Y, Sun X, Zhao W, Su Y et al. 2013. A biomechanical model of the inner ear: numerical simulation of the caloric test. Sci. World J. 2013:160205
    [Google Scholar]
  98. Sim JH, Chatzimichalis M, Lauxmann M, Röösli C, Eiber A, Huber A 2010. Complex stapes motions in human ears. J. Assoc. Res. Otolaryngol. 11:329–41
    [Google Scholar]
  99. Songer JE, Rosowski JJ 2007. A mechano-acoustic model of the effect of superior canal dehiscence on hearing in chinchilla. J. Acoust. Soc. Am. 122:943–51
    [Google Scholar]
  100. Squires TM, Weidman MS, Hain TC, Stone HA 2004. A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. J. Biomech. 37:1137–46
    [Google Scholar]
  101. Steele CR, Baker G, Tolomeo JA, Zetes-Tolomeo DE 2006. Cochlear mechanics. Biomedical Engineering Fundamentals JD Bronzino 63–163-15 Boca Raton, FL: CRC. , 3rd ed..
    [Google Scholar]
  102. Steele CR, Boutet de Monvel J, Puria S 2009. A multiscale model of the organ of Corti. J. Mech. Mater. Struct. 4:755–78
    [Google Scholar]
  103. Steele CR, Lim K-M 1999. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism. Audiol. Neurotol. 4:197–203
    [Google Scholar]
  104. Steele CR, Puria S 2005. Force on inner hair cell cilia. Int. J. Solids Struct. 42:5887–904
    [Google Scholar]
  105. Steele CR, Puria S 2014. Cochlear mechanics. Biomedical Engineering Fundamentals JD Bronzino, DR Peterson 24–124-23 Boca Raton, FL: CRC. , 4th ed..
    [Google Scholar]
  106. Steinhausen W 1933. Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts. Pflügers Arch. Gesamte Physiol. Menschen Tiere 232:500–12
    [Google Scholar]
  107. Stenfelt S 2015. Inner ear contribution to bone conduction hearing in the human. Hear. Res. 329:41–51
    [Google Scholar]
  108. Stenfelt S, Håkansson B 2002. Air versus bone conduction: an equal loudness investigation. Hear. Res. 167:1–21–12
    [Google Scholar]
  109. Taber LA, Steele CR 1979. Comparison of WKB and experimental results for three-dimensional cochlear models. J. Acoust. Soc. Am. 65:1007–18
    [Google Scholar]
  110. Tullio P 1929. Das Ohr und die Entstehung der Sprache und Schrift Berlin: Urban & Schwarzberg
    [Google Scholar]
  111. Valli P, Buizza A, Botta L, Zucca G, Ghezzi L, Valli S 2002. Convection, buoyancy or endolymph expansion: What is the actual mechanism responsible for the caloric response of semicircular canals. ? J. Vestib. Res. 12:155–65
    [Google Scholar]
  112. Van Buskirk WC 1977. The effects of the utricle on fluid-flow in semicircular canals. Ann. Biomed. Eng. 5:1–11
    [Google Scholar]
  113. Van Buskirk WC, Watts RG, Liu YK 1976. The fluid mechanics of the semicircular canals. J. Fluid Mech. 78:87–98
    [Google Scholar]
  114. Verhulst S, Dau T, Shera CA 2012. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J. Acoust. Soc. Am. 132:3842–48
    [Google Scholar]
  115. von Békésy G 1949. The structure of the middle ear and the hearing of one's own voice by bone conduction. J. Acoust. Soc. Am. 21:217–32
    [Google Scholar]
  116. von Békésy G 1960. Experiments in Hearing /transl. EG Wever New York: McGraw-Hill
    [Google Scholar]
  117. Von Brevern M, Radtke A, Lezius F, Feldmann M, Ziese T et al. 2007. Epidemiology of benign paroxysmal positional vertigo: a population based study. J. Neurol. Neurosurg. Psychiatr. 78:7710–15
    [Google Scholar]
  118. Wang Y, Steele CR, Puria S 2016. Cochlear outer-hair-cell power generation and viscous fluid loss. Sci. Rep. 6:19475
    [Google Scholar]
  119. Womersley JR 1955. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–63
    [Google Scholar]
  120. Yamauchi A, Rabbitt RD, Boyle R, Highstein SM 2001. Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge. J. Assoc. Res. Otolaryngol. 3:24–44
    [Google Scholar]
  121. Yoon Y-J, Puria S, Steele CR 2007. Intracochlear pressure and derived quantities from a three-dimensional model. J. Acoust. Soc. Am. 122:952–66
    [Google Scholar]
  122. Zucca G, Botta L, Valli S, Giannoni B, Mira E et al. 1999. Effects of caloric stimuli on frog ampullar receptors. Hear. Res. 137:8–14
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010518-040454
Loading
/content/journals/10.1146/annurev-fluid-010518-040454
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error