1932

Abstract

As a fundamental topology-transforming event, reconnection plays a significant role in the dynamics of plasmas, polymers, DNA, and fluids—both (classical) viscous and quantum. Since the 1994 review by Kida & Takaoka, substantial advances have been made on this topic. We review recent studies of vortex reconnection in (classical) viscous flows, including the physical mechanism, its relationship to turbulence cascade, the formation of a finite-time singularity, helicity dynamics, and aeroacoustic noise generation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030121-125143
2022-01-05
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030121-125143.html?itemId=/content/journals/10.1146/annurev-fluid-030121-125143&mimeType=html&fmt=ahah

Literature Cited

  1. Alekseenko SV, Kuibin PA, Shtork SI, Skripkin SG, Tsoy MA. 2016. Vortex reconnection in a swirling flow. JETP Lett. 103:7455–59
    [Google Scholar]
  2. Ashurst WT, Meiron D. 1987. Numerical study of vortex reconnection. Phys. Rev. Lett. 58:161632–35
    [Google Scholar]
  3. Beale JT, Kato T, Majda A. 1984. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94:161–66
    [Google Scholar]
  4. Beardsell G, Dufresne L, Dumas G. 2016. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations. Phys. Fluids 28:9095103
    [Google Scholar]
  5. Boratav ON, Pelz RB. 1994. Direct numerical simulation of transition to turbulence from a high-symmetry initial condition. Phys. Fluids 6:82757–84
    [Google Scholar]
  6. Boratav ON, Pelz RB, Zabusky N. 1992. Reconnection in orthogonally interacting vortex tubes: direct numerical simulations and quantifications. Phys. Fluids A 4:3581–605
    [Google Scholar]
  7. Brenner MP, Hormoz S, Pumir A 2016. Potential singularity mechanism for the Euler equations. Phys. Rev. Fluids 1:8084503
    [Google Scholar]
  8. Brissaud A, Frisch U, Léorat J, Lesieur M, Mazure A 1973. Helicity cascades in fully developed isotropic turbulence. Phys. Fluids 16:81366–67
    [Google Scholar]
  9. Buntine JD, Pullin D. 1989. Merger and cancellation of strained vortices. J. Fluid Mech. 205:263–95
    [Google Scholar]
  10. Chatelain P, Kivotides D, Leonard A 2003. Reconnection of colliding vortex rings. Phys. Rev. Lett. 90:5054501
    [Google Scholar]
  11. Chen Q, Chen S, Eyink GL 2003. The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15:2361–74
    [Google Scholar]
  12. Cheng M, Lou J, Lim T 2018. Numerical simulation of head-on collision of two coaxial vortex rings. Fluid Dyn. Res. 50:6065513
    [Google Scholar]
  13. Crow SC. 1970. Stability theory for a pair of trailing vortices. AIAA J. 8:122172–79
    [Google Scholar]
  14. Daryan H, Hussain F, Hickey JP. 2020. Aeroacoustic noise generation due to vortex reconnection. Phys. Rev. Fluids 5:6062702
    [Google Scholar]
  15. De Waele A, Aarts R. 1994. Route to vortex reconnection. Phys. Rev. Lett. 72:4482–85
    [Google Scholar]
  16. Doering CR. 2009. The 3D Navier-Stokes problem. Annu. Rev. Fluid Mech. 41:109–28
    [Google Scholar]
  17. Duraisamy K, Lele SK. 2008. Evolution of isolated turbulent trailing vortices. Phys. Fluids 20:3035102
    [Google Scholar]
  18. Eggers J, Fontelos MA. 2015. Singularities: Formation, Structure, and Propagation Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  19. Ernst C, Sumners DW 1990. A calculus for rational tangles: applications to DNA recombination. Math. Proc. Camb. Philos. Soc. 108:489–515
    [Google Scholar]
  20. Fohl T, Turner J. 1975. Colliding vortex rings. Phys. Fluids 18:4433–36
    [Google Scholar]
  21. Fonda E, Meichle DP, Ouellette NT, Hormoz S, Lathrop DP 2014. Direct observation of Kelvin waves excited by quantized vortex reconnection. PNAS 111:Suppl. 14707–10
    [Google Scholar]
  22. Fonda E, Sreenivasan KR, Lathrop DP 2019. Reconnection scaling in quantum fluids. PNAS 116:61924–28
    [Google Scholar]
  23. Frisch U. 1995. Turbulence: The Legacy of A.N. Kolmogorov Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  24. Garten J, Werne J, Fritts D, Arendt S 2001. Direct numerical simulations of the Crow instability and subsequent vortex reconnection in a stratified fluid. J. Fluid Mech. 426:1–45
    [Google Scholar]
  25. Goto S. 2008. A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech. 605:355–66
    [Google Scholar]
  26. Grauer R, Marliani C, Germaschewski K. 1998. Adaptive mesh refinement for singular solutions of the incompressible Euler equations. Phys. Rev. Lett. 80:194177–80
    [Google Scholar]
  27. Hattori Y, Blanco-Rodríguez FJ, Le Dizès S. 2019. Numerical stability analysis of a vortex ring with swirl. J. Fluid Mech. 878:5–36
    [Google Scholar]
  28. Hou TY, Li R. 2006. Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16:6639–64
    [Google Scholar]
  29. Hou TY, Li R. 2008. Blowup or no blowup? The interplay between theory and numerics. Physica D 237:14–171937–44
    [Google Scholar]
  30. Hussain AF. 1983. Coherent structures—reality and myth. Phys. Fluids 26:102816–50
    [Google Scholar]
  31. Hussain AF. 1986. Coherent structures and turbulence. J. Fluid Mech. 173:303–56
    [Google Scholar]
  32. Hussain AF, Zaman K. 1981. The ‘preferred mode’ of the axisymmetric jet. J. Fluid Mech. 110:139–71
    [Google Scholar]
  33. Hussain F, Duraisamy K. 2011. Mechanics of viscous vortex reconnection. Phys. Fluids 23:2021701
    [Google Scholar]
  34. Inoue O, Hattori Y, Sasaki T. 2000. Sound generation by coaxial collision of two vortex rings. J. Fluid Mech. 424:327–65
    [Google Scholar]
  35. Ishii K, Adachi S, Kambe T 1998. Sound generation in oblique collision of two vortex rings. J. Phys. Soc. Jpn. 67:72306–14
    [Google Scholar]
  36. Kambe T. 1983. A class of exact solutions of two-dimensional viscous flow. J. Phys. Soc. Jpn. 52:3834–41
    [Google Scholar]
  37. Kambe T. 2010. Vortex sound with special reference to vortex rings: theory, computer simulations, and experiments. Int. J. Aeroacoust. 9:1–251–89
    [Google Scholar]
  38. Kambe T, Minota T. 1981. Sound radiation from vortex systems. J. Sound Vibrat. 74:161–72
    [Google Scholar]
  39. Kambe T, Minota T. 1983. Acoustic wave radiated by head-on collision of two vortex rings. Proc. R. Soc. Lond. A 386:1791277–308
    [Google Scholar]
  40. Kerr RM. 1993. Evidence for a singularity of the three-dimensional, incompressible Euler equations. Phys. Fluids A 5:71725–46
    [Google Scholar]
  41. Kerr RM. 2013a. Bounds for Euler from vorticity moments and line divergence. J. Fluid Mech. 729:R2
    [Google Scholar]
  42. Kerr RM. 2013b. Swirling, turbulent vortex rings formed from a chain reaction of reconnection events. Phys. Fluids 25:6065101
    [Google Scholar]
  43. Kerr RM. 2018a. Enstrophy and circulation scaling for Navier–Stokes reconnection. J. Fluid Mech. 839:R2
    [Google Scholar]
  44. Kerr RM. 2018b. Trefoil knot timescales for reconnection and helicity. Fluid Dyn. Res. 50:1011422
    [Google Scholar]
  45. Kerr RM, Hussain F. 1989. Simulation of vortex reconnection. Physica D 37:1474–84
    [Google Scholar]
  46. Kida S, Takaoka M. 1987. Bridging in vortex reconnection. Phys. Fluids 30:102911–14
    [Google Scholar]
  47. Kida S, Takaoka M. 1988. Reconnection of vortex tubes. Fluid Dyn. Res. 3:1–4257–61
    [Google Scholar]
  48. Kida S, Takaoka M. 1994. Vortex reconnection. Annu. Rev. Fluid Mech. 26:1169–77
    [Google Scholar]
  49. Kida S, Takaoka M, Hussain F. 1991a. Collision of two vortex rings. J. Fluid Mech. 230:583–646
    [Google Scholar]
  50. Kida S, Takaoka M, Hussain F. 1991b. Formation of head–tail structure in a two-dimensional uniform straining flow. Phys. Fluids A 3:112688–97
    [Google Scholar]
  51. Kimura Y, Moffatt HK. 2017. Scaling properties towards vortex reconnection under Biot–Savart evolution. Fluid Dyn. Res. 50:1011409
    [Google Scholar]
  52. Kleckner D, Irvine WT. 2013. Creation and dynamics of knotted vortices. Nat. Phys. 9:4253
    [Google Scholar]
  53. Kolmogorov AN. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30:301–5
    [Google Scholar]
  54. Laing CE, Ricca RL, De Witt LS 2015. Conservation of writhe helicity under anti-parallel reconnection. Sci. Rep. 5:9224
    [Google Scholar]
  55. Leray J. 1934. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63:193–248
    [Google Scholar]
  56. Leweke T, Le Dizes S, Williamson CH 2016. Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48:507–41
    [Google Scholar]
  57. Lim T, Nickels T. 1992. Instability and reconnection in the head-on collision of two vortex rings. Nature 357:6375225–27
    [Google Scholar]
  58. Lundgren T. 1982. Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25:122193–203
    [Google Scholar]
  59. Marshall JS, Brancher P, Giovannini A. 2001. Interaction of unequal anti-parallel vortex tubes. J. Fluid Mech. 446:229–52
    [Google Scholar]
  60. Mayer EW, Powell KG 1992. Viscous and inviscid instabilities of a trailing vortex. J. Fluid Mech. 245:91–114
    [Google Scholar]
  61. McGavin P, Pontin DI. 2018. Vortex line topology during vortex tube reconnection. Phys. Rev. Fluids 3:5054701
    [Google Scholar]
  62. McGavin P, Pontin DI. 2019. Reconnection of vortex tubes with axial flow. Phys. Rev. Fluids 4:2024701
    [Google Scholar]
  63. McKeown R, Ostilla-Mónico R, Pumir A, Brenner MP, Rubinstein SM. 2018. Cascade leading to the emergence of small structures in vortex ring collisions. Phys. Rev. Fluids 3:12124702
    [Google Scholar]
  64. Melander MV, Hussain F. 1988. Cut-and-connect of two antiparallel vortex tubes. Proceedings of the 2nd Summer Program of the Center of Turbulence Research257–86 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  65. Melander MV, Hussain F. 1989. Cross-linking of two antiparallel vortex tubes. Phys. Fluids A 1:4633–36
    [Google Scholar]
  66. Melander MV, Hussain F. 1993a. Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E 48:42669
    [Google Scholar]
  67. Melander MV, Hussain F. 1993b. Polarized vorticity dynamics on a vortex column. Phys. Fluids A 5:81992–2003
    [Google Scholar]
  68. Melander MV, Hussain F. 1994. Core dynamics on a vortex column. Fluid Dyn. Res. 13:11–37
    [Google Scholar]
  69. Moet H, Laporte F, Chevalier G, Poinsot T 2005. Wave propagation in vortices and vortex bursting. Phys. Fluids 17:5054109
    [Google Scholar]
  70. Moffatt HK. 1969. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35:1117–29
    [Google Scholar]
  71. Moffatt HK. 1988. Generalised vortex rings with and without swirl. Fluid Dyn. Res. 3:1–422–30
    [Google Scholar]
  72. Moffatt HK, Kimura Y. 2019a. Towards a finite-time singularity of the Navier–Stokes equations. Part 1. Derivation and analysis of dynamical system. J. Fluid Mech. 861:930–67
    [Google Scholar]
  73. Moffatt HK, Kimura Y. 2019b. Towards a finite-time singularity of the Navier–Stokes equations. Part 2. Vortex reconnection and singularity evasion. J. Fluid Mech. 870:R1
    [Google Scholar]
  74. Moffatt HK, Kimura Y. 2020. Towards a finite-time singularity of the Navier–Stokes equations. Part 2. Vortex reconnection and singularity evasion—corrigendum. J. Fluid Mech. 887:E2
    [Google Scholar]
  75. Moffatt HK, Ricca RL. 1992. Helicity and the Călugăreanu invariant. Proc. R. Soc. Lond. A 439:411–29
    [Google Scholar]
  76. Möhring W. 1978. On vortex sound at low Mach number. J. Fluid Mech. 85:4685–91
    [Google Scholar]
  77. Motoori Y, Goto S. 2019. Generation mechanism of a hierarchy of vortices in a turbulent boundary layer. J. Fluid Mech. 865:1085–109
    [Google Scholar]
  78. Nakashima Y. 2008. Sound generation by head-on and oblique collisions of two vortex rings. Phys. Fluids 20:5056102
    [Google Scholar]
  79. Nazarenko S, West R 2003. Analytical solution for nonlinear Schrödinger vortex reconnection. J. Low Temp. Phys. 132:11–10
    [Google Scholar]
  80. Ni Q, Hussain F, Wang J, Chen S 2012. Analysis of Reynolds number scaling for viscous vortex reconnection. Phys. Fluids 24:10105102
    [Google Scholar]
  81. Oshima Y, Asaka S. 1977. Interaction of two vortex rings along parallel axes in air. J. Phys. Soc. Jpn. 42:2708–13
    [Google Scholar]
  82. Paoletti M, Fisher ME, Lathrop D. 2010. Reconnection dynamics for quantized vortices. Physica D 239:141367–77
    [Google Scholar]
  83. Peng N, Yang Y. 2018. Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor-Green flows. Phys. Rev. Fluids 3:1013401
    [Google Scholar]
  84. Priest E, Forbes T. 2000. Magnetic Reconnection: MHD Theory and Applications Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  85. Pumir A, Kerr RM. 1987. Numerical simulation of interacting vortex tubes. Phys. Rev. Lett. 58:161636
    [Google Scholar]
  86. Pumir A, Siggia ED. 1987. Vortex dynamics and the existence of solutions to the Navier–Stokes equations. Phys. Fluids 30:61606–26
    [Google Scholar]
  87. Pumir A, Siggia ED. 1990. Collapsing solutions to the 3-D Euler equations. Phys. Fluids A 2:2220–41
    [Google Scholar]
  88. Rorai C, Skipper J, Kerr RM, Sreenivasan KR. 2016. Approach and separation of quantised vortices with balanced cores. J. Fluid Mech. 808:641–67
    [Google Scholar]
  89. Saffman P. 1990. A model of vortex reconnection. J. Fluid Mech. 212:395–402
    [Google Scholar]
  90. Scheeler MW, Kleckner D, Proment D, Kindlmann GL, Irvine WT. 2014. Helicity conservation by flow across scales in reconnecting vortex links and knots. PNAS 111:4315350–55
    [Google Scholar]
  91. Scheeler MW, van Rees WM, Kedia H, Kleckner D, Irvine WT 2017. Complete measurement of helicity and its dynamics in vortex tubes. Science 357:6350487–91
    [Google Scholar]
  92. Shelley M, Meiron D, Orszag S 1993. Dynamical aspects of vortex reconnection of perturbed anti-parallel vortex tubes. J. Fluid Mech. 246:613–52
    [Google Scholar]
  93. Shivamoggi BK. 2006. Vortex stretching and reconnection in a compressible fluid. Eur. Phys. J. B 49:4483
    [Google Scholar]
  94. Siggia ED. 1985. Collapse and amplification of a vortex filament. Phys. Fluids 28:3794–805
    [Google Scholar]
  95. Siggia ED, Pumir A. 1985. Incipient singularities in the Navier-Stokes equations. Phys. Rev. Lett. 55:171749–52
    [Google Scholar]
  96. Spalart PR. 1998. Airplane trailing vortices. Annu. Rev. Fluid Mech. 30:107–38
    [Google Scholar]
  97. Sreenivasan KR. 1984. On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27:51048–51
    [Google Scholar]
  98. Stanaway S, Shariff K, Hussain F. 1988. Head-on collision of viscous vortex rings. Proceedings of the 2nd Summer Program of the Center of Turbulence Research287–309 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  99. van Rees WM. 2020. Vortex bursting. Phys. Rev. Fluids 5:11110504
    [Google Scholar]
  100. van Rees WM, Hussain F, Koumoutsakos P. 2012. Vortex tube reconnection at Re = 104. Phys. Fluids 24:7075105
    [Google Scholar]
  101. van Rees WM, Leonard A, Pullin D, Koumoutsakos P 2011. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. J. Comput. Phys. 230:82794–805
    [Google Scholar]
  102. Vazquez M, Sumners DW. 2004. Tangle analysis of Gin site-specific recombination. Math. Proc. Camb. Philos. Soc. 136:565–82
    [Google Scholar]
  103. Villois A, Proment D, Krstulovic G. 2017. Universal and nonuniversal aspects of vortex reconnections in superfluids. Phys. Rev. Fluids 2:4044701
    [Google Scholar]
  104. Villois A, Proment D, Krstulovic G. 2020. Irreversible dynamics of vortex reconnections in quantum fluids. Phys. Rev. Lett. 125:16164501
    [Google Scholar]
  105. Virk D, Hussain F, Kerr R. 1995. Compressible vortex reconnection. J. Fluid Mech. 304:47–86
    [Google Scholar]
  106. Virk D, Melander MV, Hussain F. 1994. Dynamics of a polarized vortex ring. J. Fluid Mech. 260:23–55
    [Google Scholar]
  107. Xiong S, Yang Y. 2019. Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31:4047101
    [Google Scholar]
  108. Yao J, Hussain F. 2020a. A physical model of turbulence cascade via vortex reconnection sequence and avalanche. J. Fluid Mech. 883:A51
    [Google Scholar]
  109. Yao J, Hussain F. 2020b. On singularity formation via viscous vortex reconnection. J. Fluid Mech. 888:R2
    [Google Scholar]
  110. Yao J, Hussain F. 2020c. Separation scaling for viscous vortex reconnection. J. Fluid Mech. 900:R4
    [Google Scholar]
  111. Yao J, Hussain F. 2021. Polarized vortex reconnection. J. Fluid Mech. 922:A19
    [Google Scholar]
  112. Yao J, Yang Y, Hussain F 2021. Dynamics of a trefoil knotted vortex. J. Fluid Mech. 923:A19
    [Google Scholar]
  113. Zabusky N, Melander MV. 1989. Three-dimensional vortex tube reconnection: morphology for orthogonally-offset tubes. Physica D 37:1–3555–62
    [Google Scholar]
  114. Zhao X, Scalo Y. 2021. Helicity dynamics in reconnection events of topologically complex vortex flows. J. Fluid Mech. 920:A30
    [Google Scholar]
  115. Zhao X, Yu Z, Chapelier JB, Scalo C 2021. Direct numerical and large-eddy simulation of trefoil knotted vortices. J. Fluid Mech. 910:A31
    [Google Scholar]
  116. Zhao Y, Yang Y, Chen S 2016. Vortex reconnection in the late transition in channel flow. J. Fluid Mech. 802:R4
    [Google Scholar]
  117. Zuccher S, Caliari M, Baggaley A, Barenghi C. 2012. Quantum vortex reconnections. Phys. Fluids 24:12125108
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030121-125143
Loading
/content/journals/10.1146/annurev-fluid-030121-125143
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error