1932

Abstract

Long-lasting emission from femtosecond excitation of nitrogen-based flows shows promise as a useful mechanism for a molecular tagging velocimetry instrument. The technique, known as femtosecond laser electronic excitation tagging (FLEET), was invented at Princeton a decade ago and has quickly been adopted and used in a variety of high-speed ground test flow facilities. The short temporal scales offered by femtosecond amplifiers permit nonresonant multiphoton excitation, dissociation, and weak ionization of a gaseous medium near the beam's focus without the generation of a laser spark observed with nanosecond systems. Gated, intensified imaging of the resulting emission enables the tracking of tagged molecules, thereby measuring one to three components of velocity. Effects of local heating and acoustic disturbances can be mitigated with the selection of a shorter-wavelength excitation source. This review surveys the development of FLEET over the decade since its inception, as it has been implemented in several test facilities to make accurate, precise, and seedless velocimetry measurements for studying complex high-speed flows.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-032321-025544
2022-01-05
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-032321-025544.html?itemId=/content/journals/10.1146/annurev-fluid-032321-025544&mimeType=html&fmt=ahah

Literature Cited

  1. Adelgren RG, Yan H, Elliott GS, Knight DD, Beutner TJ, Zheltovodov AA. 2005. Control of edney IV interaction by pulsed laser energy deposition. AIAA J. 43:256–69
    [Google Scholar]
  2. Adrian RJ. 1991. Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23:261–304
    [Google Scholar]
  3. Bak MS, Wermer L, Im SK. 2015. Schlieren imaging investigation of successive laser-induced breakdowns in atmospheric-pressure air. J. Phys. D 48:485203
    [Google Scholar]
  4. Balla RJ. 2013. Iodine tagging velocimetry in a Mach 10 wake. AIAA J. 51:1783–85
    [Google Scholar]
  5. Beresh SJ, Casper KM, Wagner JL, Henfling JF, Spillers RW, Pruett BO. 2015. Modernization of Sandia's hypersonic wind tunnel. 53rd AIAA Aerospace Sciences Meeting AIAA Pap2015-1338
    [Google Scholar]
  6. Boguszko M, Elliott GS. 2005. On the use of filtered Rayleigh scattering for measurements in compressible flows and thermal fields. Exp. Fluids 38:33–49
    [Google Scholar]
  7. Brieschenk S, O'Byrne S, Kleine H. 2013. Visualization of jet development in laser-induced plasmas. Opt. Lett. 38:664–66
    [Google Scholar]
  8. Burns RA, Danehy PM. 2017. Unseeded velocity measurements around a transonic airfoil using femtosecond laser tagging. AIAA J. 55:4142–54
    [Google Scholar]
  9. Burns RA, Danehy PM, Halls BR, Jiang N. 2015. Application of FLEET velocimetry in the NASA langley 0.3-meter transonic cryogenic tunnel Paper presented at AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 31st Dallas, TX: AIAA Pap2015-2566
    [Google Scholar]
  10. Burns RA, Danehy PM, Halls BR, Jiang N. 2017. Femtosecond laser electronic excitation tagging velocimetry in a transonic, cryogenic wind tunnel. AIAA J. 55:680–85
    [Google Scholar]
  11. Burns RA, Danehy PM, Jiang N, Slipshenko MN, Felver J, Roy S 2018a. Unseeded velocimetry in nitrogen for high-pressure, cryogenic wind tunnels, part II: picosecond-laser tagging. Meas. Sci. Technol. 29:11115203
    [Google Scholar]
  12. Burns RA, Danehy PM, Peters CJ. 2016. Multiparameter flowfield measurements in high-pressure, cryogenic environments using femtosecond lasers Paper presented at AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 32nd Washington, DC: AIAA Pap.2016-3246
    [Google Scholar]
  13. Burns RA, Peters CJ, Danehy PM. 2018b. Unseeded velocimetry in nitrogen for high-pressure, cryogenic wind tunnels, part I: femtosecond-laser tagging. Meas. Sci. Technol. 29:11115302
    [Google Scholar]
  14. Cadel DR, Lowe KT. 2015. Cross-correlation Doppler global velocimetry (CC-DGV). Opt. Lasers Eng. 71:51–61
    [Google Scholar]
  15. Calvert ND, Dogariu A, Miles RB 2013. FLEET boundary layer velocity profile measurements. Paper presented at AIAA Plasmadynamics and Lasers Conference, 44th San Diego, CA: AIAA Pap.2013-2762
    [Google Scholar]
  16. Calvert ND, Dogariu A, Miles RB 2014. 2-D velocity and vorticity measurements with FLEET Paper presented at AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 30th Atlanta, GA: AIAA Pap.2014-2229
    [Google Scholar]
  17. Calvert ND, Zhang Y, Miles RB. 2016. Characterizing FLEET for aerodynamic measurements in various gas mixtures and non-air environments Paper presented at AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 32nd Washington, DC: AIAA Pap.2016-3206
    [Google Scholar]
  18. Chin SL. 2009. Femtosecond Laser Filamentation New York: Springer-Verlag
    [Google Scholar]
  19. Chin SL, Wang TJ, Marceau C, Wu J, Liu JS et al. 2012. Advances in intense femtosecond laser filamentation in air. Laser Phys. 22:1–53
    [Google Scholar]
  20. Clark AM, Slotnick JP, Taylor N, Rumsey CL 2020. Requirements and challenges for CFD validation within the high-lift common research model ecosystem Paper presented at AIAA Aviation 2020 Forum, online AIAA Pap2020-2772
    [Google Scholar]
  21. Danehy PM, Bathel BF, Calvert N, Dogariu A, Miles RP 2014. Three-component velocity and acceleration measurement using FLEET Paper presented at AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 30th Atlanta, GA: AIAA Pap.2014-2228
    [Google Scholar]
  22. Danehy PM, Mere P, Gaston MJ, O'Byrne S, Palma PC, Houwing AF 2001. Fluorescence velocimetry of the hypersonic, separated flow over a cone. AIAA J. 39:1320–28
    [Google Scholar]
  23. Danehy PM, O'Byrne S, Houwing AFP, Fox JS, Smith DR 2003. Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J. 41:263–71
    [Google Scholar]
  24. Dedic CE, Cutler AD, Danehy PM. 2019. Characterization of supersonic flows using hybrid fs/ps CARS Paper presented at AIAA Scitech 2019 Forum San Diego, CA: AIAA Pap.2019-1085
    [Google Scholar]
  25. DeLuca NJ, Miles RB, Jiang N, Kulatilaka WD, Patnaik AK, Gord JR. 2017. FLEET velocimetry for combustion and flow diagnostics. Appl. Opt. 56:8632–38
    [Google Scholar]
  26. DeLuca NJ, Miles RB, Kulatilakaz WD, Jiang N, Gord JR 2014. Femtosecond laser electronic excitation tagging (FLEET) fundamental pulse energy and spectral response Paper presented at AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 30th Atlanta, GA: AIAA Pap.2014-2227
    [Google Scholar]
  27. Dogariu A, Dogariu LE, Smith MS, McManamen B, Lafferty JF, Miles RB. 2021. Velocity and temperature measurements in Mach 18 nitrogen flow at Tunnel 9 Paper Presented at AIAA Scitech 2021 Forum, online, AIAA Pap 2021-0020
    [Google Scholar]
  28. Dogariu LE, Dogariu A, Miles RB, Smith MS, Marineau EC. 2019. Femtosecond laser electronic excitation tagging velocimetry in a large-scale hypersonic facility. AIAA J. 57:4725–37
    [Google Scholar]
  29. Doll U, Stockhausen G, Willert C. 2017. Pressure, temperature, and three-component velocity fields by filtered Rayleigh scattering velocimetry. Opt. Lett. 42:3773–76
    [Google Scholar]
  30. Edwards MR, Dogariu A, Miles RB. 2015a. Simultaneous temperature and velocity measurements in air with femtosecond laser tagging. AIAA J. 53:2280–88
    [Google Scholar]
  31. Edwards MR, Limbach CM, Miles RB, Tropina AA. 2015b. Limitations on high-spatial-resolution measurements of turbulence using femtosecond laser tagging Paper presented at AIAA Aerospace Sciences Meeting, 53rd Kissimmee, FL: AIAA Pap.2015-1219
    [Google Scholar]
  32. Elias PQ, Severac N, Luyssen JM, Tobeli JP, Lambert F et al. 2018. Experimental investigation of linear energy deposition using femtosecond laser filamentation in a M=3 supersonic flow Paper presented at 2018 Joint Propulsion Conference Cincinnati, OH: AIAA Pap. 2018-4896
    [Google Scholar]
  33. Fisher JM, Braun J, Meyer TR, Paniagua G 2020a. Application of femtosecond laser electronic excitation tagging (FLEET) velocimetry in a bladeless turbine. Meas. Sci. Technol. 31:064005
    [Google Scholar]
  34. Fisher JM, Chynoweth BC, Smyser ME, Webb AM, Slipchenko MN et al. 2021. Femtosecond laser electronic excitation tagging velocimetry in a Mach six quiet tunnel. AIAA J. 59:768–72
    [Google Scholar]
  35. Fisher JM, Smyser ME, Slipchenko MN, Roy S, Meyer TR 2020b. Burst-mode femtosecond laser electronic excitation tagging for kHz–MHz seedless velocimetry. Opt. Lett. 45:335–38
    [Google Scholar]
  36. Forkey JN, Finkelstein ND, Lempert WR, Miles RB. 1996. Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements. AIAA J. 34:442–48
    [Google Scholar]
  37. Gao Q, Zhang D, Li X, Li B, Li Z 2019. Femtosecond-laser electronic-excitation tagging velocimetry using a 267 nm laser. Sens. Actuators A 287:138–42
    [Google Scholar]
  38. Gendrich CP, Koochesfahani MM. 1996. A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry (MTV). Exp. Fluids 22:67–77
    [Google Scholar]
  39. Georgiadis NJ, Yoder DA, Vyas MA, Engblom WA. 2014. Status of turbulence modeling for hypersonic propulsion flowpaths. Theor. Comput. Fluid Dyn. 28:295–318
    [Google Scholar]
  40. Glumac N, Elliott G, Boguszko M 2005. Temporal and spatial evolution of a laser spark in air. AIAA J. 43:1984–94
    [Google Scholar]
  41. Goodyer MJ. 1992. The cryogenic wind tunnel. Prog. Aerosp. Sci. 29:193–220
    [Google Scholar]
  42. Grib SW, Stauffer HU, Roy S, Schumaker SA 2021. Resonance-enhanced, rare-gas-assisted femtosecond-laser electronic-excitation tagging (FLEET) in argon/nitrogen mixture. Appl. Opt. 60:32–37
    [Google Scholar]
  43. Halls BR, Jiang N, Gord JR, Danehy PM, Roy S. 2017. Mixture-fraction measurements with femtosecond-laser electronic-excitation tagging. Appl. Opt. 56:94–98
    [Google Scholar]
  44. Hanson RK. 2011. Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33:1–40
    [Google Scholar]
  45. Hill JL, Su PS, Jiang N, Grib SW, Roy S et al. 2021. Hypersonic N2 boundary-layer flow velocity profile measurements using FLEET. Appl. Opt. 60:38–46
    [Google Scholar]
  46. Hiller B, Booman RA, Hassa C, Hanson RK. 1984. Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl. Rev. Sci. Instrum. 55:1964–67
    [Google Scholar]
  47. Hsu PS, Jiang N, Danehy P, Gord J, Roy S. 2018a. Fiber-coupled ultrashort-pulse-laser-based electronic-excitation tagging velocimetry. Appl. Opt. 57:560–66
    [Google Scholar]
  48. Hsu PS, Jiang N, Jewell J, Felver J, Borg M et al. 2020. 100 kHz PLEET velocimetry in a Mach-6 Ludwieg tube. Opt. Express 28:21982
    [Google Scholar]
  49. Hsu PS, Patnaik AK, Stolt AJ, Estevadeordal J, Roy S, Gord JR 2018b. Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: enhanced stability of spectroscopic signal. Appl. Phys. Lett. 113:214103
    [Google Scholar]
  50. Huffman RE, Elliott GS. 2009. An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets Paper presented at AIAA Aerospace Sciences Meeting, 47th Orlando, FL: AIAA Pap.2009-1265
    [Google Scholar]
  51. Jiang N, Halls BR, Stauffer HU, Danehy PM, Gord JR, Roy S 2016. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry. Opt. Lett. 41:2225–28
    [Google Scholar]
  52. Jiang N, Mance JG, Slipchenko MN, Felver JJ, Stauffer HU et al. 2017. Seedless velocimetry at 100 kHz with picosecond-laser electronic-excitation tagging. Opt. Lett. 42:239–42
    [Google Scholar]
  53. Kandala R, Candled GV. 2004. Numerical studies of laser-induced energy deposition for supersonic flow control. AIAA J. 42:2266–75
    [Google Scholar]
  54. Kearney SP, Richardson DR, Retter JE, Dedic CE, Danehy PM. 2020. Simultaneous temperature/pressure monitoring in compressible flows using hybrid fs/ps pure-rotational CARS Paper presented at AIAA Scitech 2020 Forum Orlando, FL: AIAA Pap.2020-0770
    [Google Scholar]
  55. Klavuhn KG, Gauba G, McDaniel JC. 1994. OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows. J. Propuls. Power 10:787–97
    [Google Scholar]
  56. Knight D. 2008. Survey of aerodynamic drag reduction at high speed by energy deposition. J. Propuls. Power 24:1153–67
    [Google Scholar]
  57. Koochesfahani MM, Nocera DG 2007. Molecular tagging velocimetry. Handbook of Experimenal Fluid Dynamics J Foss, C Tropea, A Yarin 362–82 Berlin: Springer-Verlag
    [Google Scholar]
  58. Laux CO 2002. Radiation and nonequilibrium collisional-radiative models. Physico-Chemical Models of High Enthalpy and Plasma Flows D Fletcher, T Magin, JM Charbonnier, GSR Sarma Rhode-Saint-Genèse, Belg: Von Karman Inst. Fluid Dyn.
    [Google Scholar]
  59. Lempert WR, Jiang N, Sethuram S, Samimy M 2002. Molecular tagging velocimetry measurements in supersonic microjets. AIAA J. 40:1065–70
    [Google Scholar]
  60. Lempert WR, Ronney P, Magee K, Gee KR, Haugland RP. 1995. Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM). Exp. Fluids 18:249–57
    [Google Scholar]
  61. Li B, Tian Y, Gao Q, Zhang D, Li X et al. 2018. Filamentary anemometry using femtosecond laser-extended electric discharge—FALED. Opt. Express 26:21132–40
    [Google Scholar]
  62. Li B, Zhang D, Liu J, Tian Y, Gao Q, Li Z 2019. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics. Appl. Sci. 9:91906
    [Google Scholar]
  63. Limbach C. 2015. Characterization of nanosecond, femtosecond and dual pulse laser energy deposition in air for flow control and diagnostic applications PhD Thesis Princeton Univ. Princeton, NJ:
    [Google Scholar]
  64. Limbach CM, Miles RB. 2017. Rayleigh scattering measurements of heating and gas perturbations accompanying femtosecond laser tagging. AIAA J. 55:112–20
    [Google Scholar]
  65. Loth E. 2008. Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46:2219–28
    [Google Scholar]
  66. Marshall GJ, Zhang Y, Beresh SJ, Richardson DR, Casper KM. 2021. Developing multi-line FLEET using periodic mask design Paper presented at AIAA Scitech 2021 Forum, online, AIAA Pap 2021-0021
    [Google Scholar]
  67. McDaniel JC, Hiller B, Hanson RK. 1983. Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence. Opt. Lett. 8:51–53
    [Google Scholar]
  68. Melling A. 1997. Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8:1406–16
    [Google Scholar]
  69. Michael JB, Edwards MR, Dogariu A, Miles RB 2011. Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air. Appl. Opt. 50:5158–62
    [Google Scholar]
  70. Michael JB, Edwards MR, Dogariu A, Miles RB 2012. Velocimetry by femtosecond laser electronic excitation tagging (FLEET) of air and nitrogen Paper presented at AIAA Aerospace Sciences Meeting, 50th Nashville, TN: AIAA Pap.2021-1053
    [Google Scholar]
  71. Miles RB, Cohen C, Connors J, Howard P, Huang S et al. 1987. Velocity measurements by vibrational tagging and fluorescent probing of oxygen. Opt. Lett. 12:861–63
    [Google Scholar]
  72. Miles RB, Dogariu A, Michael JB, Edwards MR. 2018. Femtosecond laser excitation tagging anemometry US Patent 9,863,975 B2
    [Google Scholar]
  73. Miles RB, Lempert WR. 1997. Quantitative flow visualization in unseeded flows. Annu. Rev. Fluid Mech. 29:285–326
    [Google Scholar]
  74. Miles RB, Michael JB, Limbach CM, McGuire SD, Chng TL et al. 2015. New diagnostic methods for laser plasma- and microwave-enhanced combustion. Philos. Trans. R. Soc. A 373:20140338
    [Google Scholar]
  75. Mills JL, Sukenik CI, Balla RJ. 2011. Hypersonic wake diagnostics using laser induced fluorescence techniques Paper presented at AIAA Plasmadynamics and Lasers Conference, 42nd Honolulu, HI: AIAA Pap.2011-3459
    [Google Scholar]
  76. Nishihara M, Freund JB, Elliott GS. 2020. A study of velocity, temperature, and density in the plasma generated by laser-induced breakdowns. J. Phys. D 53:105203
    [Google Scholar]
  77. Osuka T, Erdem E, Hasegawa N, Majima R, Tamba T et al. 2014. Laser energy deposition effectiveness on shock-wave boundary-layer interactions over cylinder-flare combinations. Phys. Fluids 26:096103
    [Google Scholar]
  78. Parziale NJ, Smith MS, Marineau EC. 2015. Krypton tagging velocimetry of an underexpanded jet. Appl. Opt. 54:5094–101
    [Google Scholar]
  79. Peters CJ. 2019. Considerations for femtosecond laser electronic excitation tagging in high-speed flows PhD Thesis Princeton Univ. Princeton, NJ:
    [Google Scholar]
  80. Peters CJ, Burns RA, Miles RB, Danehy PM. 2020. Effect of low temperatures and pressures on signal, lifetime, accuracy and precision of femtosecond laser tagging velocimetry. Meas. Sci. Technol. 32:035202
    [Google Scholar]
  81. Peters CJ, Danehy PM, Bathel BF, Jiang N, Calvert ND, Miles RB. 2015. Precision of FLEET velocimetry using high-speed CMOS camera systems Paper presented at AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 31st Dallas, TX: AIAA Pap.2015-2565
    [Google Scholar]
  82. Peters CJ, Miles RB, Burns RA, Bathel BF, Jones GS, Danehy PM. 2016. Femtosecond laser tagging characterization of a sweeping jet actuator operating in the compressible regime Paper presented at AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 32nd Washington, DC: AIAA Pap.2016-3248
    [Google Scholar]
  83. Pitz RW, Wehrmeyer JA, Ribarov LA, Oguss DA, Batliwala F et al. 2000. Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry. Meas. Sci. Technol. 11:1259–71
    [Google Scholar]
  84. Pouya S, Van Rhijn A, Dantus M, Koochesfahani M 2014. Multi-photon molecular tagging velocimetry with femtosecond excitation (FemtoMTV). Exp. Fluids 55:1791
    [Google Scholar]
  85. Reese DT, Burns RA, Danehy PM, Walker E, Goad W 2019a. Implementation of a pulsed-laser measurement system in the National Transonic Facility Paper presented at AIAA Aviation 2019 Forum Dallas, TX: AIAA Pap.2019-3380
    [Google Scholar]
  86. Reese DT, Danehy P, Jiang N, Felver J, Richardson D, Gord J. 2019b. Application of resonant femtosecond tagging velocimetry in the 0.3-meter transonic cryogenic tunnel. AIAA J. 57:3851–58
    [Google Scholar]
  87. Reese DT, Jiang N, Danehy P. 2020. Unseeded velocimetry in nitrogen for high-pressure, cryogenic wind tunnels: part III. Resonant femtosecond-laser tagging. Meas. Sci. Technol. 31:075203
    [Google Scholar]
  88. Reese DT, Thompson RJ, Burns RA, Danehy PM. 2021. Application of femtosecond-laser tagging for unseeded velocimetry in a large-scale transonic cryogenic wind tunnel. Exp. Fluids 62:99
    [Google Scholar]
  89. Ribarov LA, Wehrmeyer JA, Pitz RW, Yetter RA. 2002. Hydroxyl tagging velocimetry (HTV) in experimental air flows. Appl. Phys. B 74:175–83
    [Google Scholar]
  90. Ryabtsev A, Pouya S, Koochesfahani M, Dantus M 2014. Vortices in the wake of a femtosecond laser filament. Opt. Express 22:26098–102
    [Google Scholar]
  91. Sánchez-González R, Srinivasan R, Bowersox RDW, North SW. 2011. Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique. Opt. Lett. 36:196–98
    [Google Scholar]
  92. Sijtsema NM, Dam NJ, Klein-Douwel RJ, Ter Meulen JJ. 2002. Air photolysis and recombination tracking: a new molecular tagging velocimetry scheme. AIAA J. 40:1061–64
    [Google Scholar]
  93. Slotnick J, Khodadoust A, Alonso J, Darmofal D 2014. CFD Vision 2030 Study: a path to revolutionary computational aerosciences Contract. Rep. CR-2014-218178 NASA Langley Res. Cent. Hampton, VA:
    [Google Scholar]
  94. Talebpour A, Abdel-Fattah M, Bandrauk AD, Chin SL 2001. Spectroscopy of the gases interacting with intense femtosecond laser pulses. Laser Phys. 11:68–76
    [Google Scholar]
  95. Vassberg JC, DeHaan MA, Rivers SM, Wahls RA. 2008. Development of a common research model for applied CFD validation studies Paper presented at AIAA Applied Aerodynamics Conference, 26th Honolulu, HI: AIAA Pap.2008-6919
    [Google Scholar]
  96. Wahls RA. 2001. The National Transonic Facility: a research retrospective Paper presented at Aerospace Sciences Meeting and Exhibit, 39th Reno, NV: AIAA Pap.2001-0754
    [Google Scholar]
  97. Wang JM, Buchta DA, Freund JB. 2020. Hydrodynamic ejection caused by laser-induced optical breakdown. J. Fluid Mech. 888:A16
    [Google Scholar]
  98. Westerweel J, Elsinga GE, Adrian RJ. 2013. Particle image velocimetry for complex and turbulent flows. Annu. Rev. Fluid Mech. 45:409–36
    [Google Scholar]
  99. Williams OJ, Nguyen T, Schreyer AM, Smits AJ. 2015. Particle response analysis for particle image velocimetry in supersonic flows. Phys. Fluids 27:076101
    [Google Scholar]
  100. Xu HL, Azarm A, Bernhardt J, Kamali Y, Chin SL 2009. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys. 360:171–75
    [Google Scholar]
  101. Yu X, Peng J, Sun R, Yang X, Wang C et al. 2012. Stabilization of a premixed CH4/O2/N2 flame using femtosecond laser-induced plasma. Opt. Lett. 37:2106–8
    [Google Scholar]
  102. Yu X, Peng J, Yang P, Sun R, Yi Y et al. 2010. Enhancement of a laminar premixed methane/oxygen/nitrogen flame speed using femtosecond-laser-induced plasma. Appl. Phys. Lett. 97:2008–11
    [Google Scholar]
  103. Zhang D, Li B, Gao Q, Li Z 2018. Applicability of femtosecond laser electronic excitation tagging in combustion flow field velocity measurements. Appl. Spectrosc. 72:1807–13
    [Google Scholar]
  104. Zhang Y. 2018. The development and characterization of femtosecond laser velocimetry methods PhD Thesis Princeton Univ. Princeton, NJ:
    [Google Scholar]
  105. Zhang Y, Beresh SJ, Casper KM, Richardson DR, Soehnel M, Spillers R. 2020a. Tailoring FLEET for cold hypersonic flows Paper presented at AIAA Scitech 2020 Forum Orlando, FL: AIAA Pap.2020-1020
    [Google Scholar]
  106. Zhang Y, Calvert N, Dogariu A, Miles RB 2016. Towards shear flow measurements using FLEET Paper presented at AIAA Aerospace Sciences Meeting, 54th San Diego, CA: AIAA Pap.2016-0028
    [Google Scholar]
  107. Zhang Y, Danehy PM, Miles RB. 2019a. Femtosecond laser tagging in R134a with small quantities of air. AIAA J. 57:1793–800
    [Google Scholar]
  108. Zhang Y, Marshall G, Beresh S, Richardson D, Casper K. 2020b. Multi-line FLEET by imaging periodic masks. Opt. Lett. 45:3949–52
    [Google Scholar]
  109. Zhang Y, Miles RB. 2017. Characterizing the accuracy of FLEET velocimetry using comparison with hot wire anemometry Paper presented at AIAA Aerospace Sciences Meeting, 55th Grapevine, TX: AIAA Pap.2017-0256
    [Google Scholar]
  110. Zhang Y, Miles RB. 2018a. Femtosecond laser tagging for velocimetry in argon and nitrogen gas mixtures. Opt. Lett. 43:551–54
    [Google Scholar]
  111. Zhang Y, Miles RB. 2018b. Shear layer measurements along curved surfaces using the FLEET method Paper presented at 2018 AIAA Aerospace Sciences Meeting Kissimmee, FL: AIAA Pap.2018-1768
    [Google Scholar]
  112. Zhang Y, Richardson DR, Beresh SJ, Casper KM, Soehnel M et al. 2019b. Hypersonic wake measurements behind a slender cone using FLEET velocimetry Paper presented at AIAA Aviation 2019 Forum Dallas, TX: AIAA Pap.2019-3381
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-032321-025544
Loading
/content/journals/10.1146/annurev-fluid-032321-025544
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error