1932

Abstract

Polar vortices that share many similarities are found in Earth's stratosphere and the atmospheres of Mars and Saturn's moon Titan. These vortices all occur in the winter, and are characterized by high potential vorticity (PV) in polar regions, steep meridional PV gradients and peak zonal winds in middle latitudes, and a cold pole. There are, however, differences in the daily and subseasonal variability, zonal asymmetries, and PV structure among the vortices. These differences are related to differences in the disruption of polar vortices by Rossby waves, the poleward extent of the mean meridional circulation, and condensation of major gases. There are also differences in the transport of gases and particles among the vortices. The range of polar vortex characteristics is likely much larger for terrestrial exoplanets, which include planets with, for example, a wider range of obliquities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-120720-032208
2023-01-19
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-120720-032208.html?itemId=/content/journals/10.1146/annurev-fluid-120720-032208&mimeType=html&fmt=ahah

Literature Cited

  1. Abalos M, Legras B, Shuckburgh E. 2016. Interannual variability in effective diffusivity in the upper troposphere/lower stratosphere from reanalysis data. Q. J. R. Meteorol. Soc. 142:1847–61
    [Google Scholar]
  2. Achterberg RK, Conrath BJ, Gierasch PJ, Flasar FM, Nixon CA. 2008. Titan's middle-atmospheric temperatures and dynamics observed by the Cassini Composite Infrared Spectrometer. Icarus 194:263–77
    [Google Scholar]
  3. Achterberg RK, Gierasch PJ, Conrath BJ, Flasar FM, Nixon CA. 2011. Temporal variations of Titan's middle-atmospheric temperatures from 2004 to 2009 observed by Cassini/CIRS. Icarus 211:686–98
    [Google Scholar]
  4. Adriani A, Mura A, Orton G, Hansen C, Altieri FR et al. 2018. Clusters of cyclones encircling Jupiter's poles. Nature 555:216–19
    [Google Scholar]
  5. Allen DR, Nakamura N. 2001. A seasonal climatology of effective diffusivity in the stratosphere. J. Geophys. Res. 106:7917–35
    [Google Scholar]
  6. Andrews DG, Holton JR, Leovy CB. 1987. Middle Atmosphere Dynamics. San Diego, CA: Academic
    [Google Scholar]
  7. Appenzeller CH, Davies HC, Norton WA. 1996. Fragmentation of stratospheric intrusions. J. Geophys. Res. 101:1435–56
    [Google Scholar]
  8. Ayarzagüena B, Charlton-Perez AJ, Butler AH, Hitchcock P, Simpson IR et al. 2020. Uncertainty in the response of sudden stratospheric warmings and stratosphere-troposphere coupling to quadrupled CO2 concentrations in CMIP6 models. J. Geophys. Res. Atmos. 125:e2019JD032345
    [Google Scholar]
  9. Baldwin MP, Ayarzagüena B, Birner T, Butchart N, Butler AH et al. 2021. Sudden stratospheric warmings. Rev. Geophys. 59:e2020RG000708
    [Google Scholar]
  10. Baldwin MP, Dunkerton TJ. 2001. Stratospheric harbingers of anomalous weather regimes. Science 294:581–84
    [Google Scholar]
  11. Ball ER, Mitchell DM, Seviour WJ, Thomson SI, Vallis GK. 2021. The roles of latent heating and dust in the structure and variability of the northern Martian polar vortex. Planet. Sci. J. 2:203–19
    [Google Scholar]
  12. Banerjee A, Fyfe JC, Polvani LM, Waugh DW, Chang KL. 2020. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579:544–48
    [Google Scholar]
  13. Banfield D, Conrath B, Gierasch P, Wilson JR, Smith M. 2004. Traveling waves in the Martian atmosphere from MGS TES nadir data. Icarus 170:365–403
    [Google Scholar]
  14. Barnes JR, Haberle RM. 1996. The Martian zonal-mean circulation: angular momentum and potential vorticity structure in GCM simulations. J. Atmos. Sci. 53:3143–56
    [Google Scholar]
  15. Boffetta G, Ecke RE. 2012. Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44:427–51
    [Google Scholar]
  16. Bracco A, McWilliams JC, Murante G, Provenzale A, Weiss AJ. 2000. Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids 12:2931–41
    [Google Scholar]
  17. Butler AH, Seidel DJ, Hardiman SC, Butchart N, Birner T, Match A. 2015. Defining sudden stratospheric warmings. Bull. Am. Meteorol. Soc. 96:1913–28
    [Google Scholar]
  18. Butler AH, Sjoberg JP, Seidel DJ, Rosenlof KH. 2017. A sudden stratospheric warming compendium. Earth Syst. Sci. Data 9:63–76
    [Google Scholar]
  19. Cavallo S, Hakim GJ. 2009. Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Weather Rev. 137:1358–71
    [Google Scholar]
  20. Charlton AJ, Polvani LM. 2007. A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J. Clim. 20:449–69
    [Google Scholar]
  21. Charney J, Drazin GPG. 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66:83–109
    [Google Scholar]
  22. Christiansen B. 2001. Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: model and reanalysis. J. Geophys. Res. 106:27307–22
    [Google Scholar]
  23. Domeisen DI, Butler AH. 2020. Stratospheric drivers of extreme events at the Earth's surface. Commun. Earth Environ. 1:59
    [Google Scholar]
  24. Dowling TE, Bradley ME, Du J, Lewis SR, Read PL. 2017. Ertel potential vorticity versus Bernoulli streamfunction on Mars. Q. J. R. Meteorol. Soc. 143:37–52
    [Google Scholar]
  25. Dritschel DG. 1986. The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech. 172:157–82
    [Google Scholar]
  26. Dritschel DG. 1988. The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid Mech. 194:511–47
    [Google Scholar]
  27. Dritschel DG. 1989. On the stabilization of a two-dimensional vortex strip by adverse shear. J. Fluid Mech. 206:193–221
    [Google Scholar]
  28. Dritschel DG. 1990. The stability of elliptical vortices in an external straining flow. J. Fluid Mech. 210:223–61
    [Google Scholar]
  29. Dritschel DG. 1995. A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293:269–303
    [Google Scholar]
  30. Dritschel DG, Haynes PH, Juckes MN, Shepherd TG. 1991. The stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech. 230:647–65
    [Google Scholar]
  31. Dritschel DG, Polvani LM. 1992. The roll-up of vorticity strips on the surface of a sphere. J. Fluid Mech. 234:47–62
    [Google Scholar]
  32. Dritschel DG, Saravanan R. 1994. Three-dimensional quasi-geostrophic contour dynamics, with an application to stratospheric dynamics. Q. J. R. Meteorol. Soc. 120:1267–98
    [Google Scholar]
  33. Dyudina UA, Ingersoll AP, Ewald SP, Vasavada AR, West RA et al. 2008. Dynamics of Saturn's south polar vortex. Science 319:1801
    [Google Scholar]
  34. Esler JG, Polvani LM, Scott RK. 2006. The Antarctic stratospheric sudden warming of 2002: a self-tuned resonance?. Geophys. Res. Lett. 33:L12804
    [Google Scholar]
  35. Esler JG, Scott RK. 2005. Excitation of transient Rossby waves on the stratospheric polar vortex and the barotropic sudden warming. J. Atmos. Sci. 62:3661–82
    [Google Scholar]
  36. Flasar FM, Achterberg RK. 2009. The structure and dynamics of Titan's middle atmosphere. Philos. Trans. R. Soc. London A 367:649–64
    [Google Scholar]
  37. Fletcher LN, Orton GS, Sinclair JA, Guerlet S, Read PL et al. 2018. A hexagon in Saturn's northern stratosphere surrounding the emerging summertime polar vortex. Nat. Commun. 9:3564
    [Google Scholar]
  38. Garate-Lopez I, Hueso R, Sánchez-Lavega A, Peralta J, Piccioni G et al. 2013. A chaotic long-lived vortex at the southern pole of Venus. Nat. Geosci. 6:254–57
    [Google Scholar]
  39. Garfinkel CI, Waugh DW, Gerber EP. 2013. The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J. Climate 26:2077–95
    [Google Scholar]
  40. Garfinkel CI, Waugh DW, Polvani LM. 2015. Recent Hadley cell expansion: the role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett. 42:810–24
    [Google Scholar]
  41. Guendelman I, Waugh DW, Kaspi Y. 2021. The emergence of a summer hemisphere jet in planetary atmospheres. J. Atmos. Sci. 78:3337–48
    [Google Scholar]
  42. Guendelman I, Waugh DW, Kaspi Y. 2022. Dynamics of polar vortices on terrestrial planets with a seasonal cycle. Planet. Sci. J. 3:94
    [Google Scholar]
  43. Gutenberg B. 1949. New data on the lower stratosphere. Bull Amer. Meterol. Soc. 30:62–64
    [Google Scholar]
  44. Guzewich SD, Toigo AD, Waugh DW. 2016. The effect of dust on the Martian polar vortices. Icarus 278:100–18
    [Google Scholar]
  45. Harvey VL, Randall CE, Hitchman MH. 2009. Breakdown of potential vorticity–based equivalent latitude as a vortex-centered coordinate in the polar winter mesosphere. J. Geophys. Res. 114:D22105
    [Google Scholar]
  46. Haynes PH 1990. High-resolution three-dimensional modelling of stratospheric flows: quasi-2D turbulence dominated by a single vortex. Topological Fluid Mechanics HK Moffatt, A Tsinober 345–54 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  47. Haynes PH, Shuckburgh E. 2000. Effective diffusivity as a diagnostic of atmospheric transport: 1. Stratosphere. J. Geophys. Res. 105:22777–94
    [Google Scholar]
  48. Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A et al. 2019. ERA5 monthly averaged data on pressure levels from 1959 to present Clim. Data Store, Copernic. Clim. Change Serv. accessed May 2022. https://doi.org/10.24381/cds.6860a573
    [Crossref] [Google Scholar]
  49. Holmes JA, Lewis SR, Patel MR. 2017. On the link between Martian total ozone and potential vorticity. Icarus 282:104–17
    [Google Scholar]
  50. Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L. 1995. Stratosphere–troposphere exchange. Rev. Geophys. 33:403–39
    [Google Scholar]
  51. Holton JR, Mass C. 1976. Stratospheric vacillation cycles. J. Atmos. Sci. 33:2218–25
    [Google Scholar]
  52. Hoskins BJ, McIntyre ME, Robertson AW. 1985. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteor. Soc. 111:877–946
    [Google Scholar]
  53. Jucker MN, Reichler T, Waugh DW. 2021. How frequent are Antarctic sudden stratospheric warmings in present and future climate?. Geophys. Res. Lett. 48:e2021GL093215
    [Google Scholar]
  54. Juckes MN. 1989. A shallow water model of the winter stratosphere. J. Atmos. Sci. 46:2934–54
    [Google Scholar]
  55. Juckes MN, McIntyre ME. 1987. A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature 328:590–96
    [Google Scholar]
  56. Kida S. 1981. Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Jpn. 50:3517–20
    [Google Scholar]
  57. Kirchhoff G 1876. Vorlesungen über mathematische Physik, Vol. 1: Mechanik Leipzig, Ger.: Teubner-Verlag
    [Google Scholar]
  58. Kolstad EW, Breiteig T, Scaife AA. 2010. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. R. Meteorol. Soc. 136:886–93
    [Google Scholar]
  59. Kretschmer M, Coumou D, Agel L, Barlow M, Tziperman E, Cohen J. 2018. More-persistent weak stratospheric polar vortex States linked to cold extremes. Bull. Amer. Meteorol. Soc. 99:49–60
    [Google Scholar]
  60. Lamb H. 1945. Hydrodynamics New York: Dover
    [Google Scholar]
  61. Lawrence ZD, Manney GL, Wargan K. 2018. Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmos. Chem. Phys. 118:13547–79
    [Google Scholar]
  62. Le Mouélic S, Rodriguez S, Robidel R, Rousseau B, Seignovert B et al. 2018. Mapping polar atmospheric features on Titan with VIMS: from the dissipation of the northern cloud to the onset of a southern polar vortex. Icarus 311:371–83
    [Google Scholar]
  63. Legras B, Dritschel DG, Caillol P. 2001. The erosion of a distributed two-dimensional vortex in a background straining flow. J. Fluid Mech. 44:369–98
    [Google Scholar]
  64. Lim EP, Hendon HH, Butler AH, Thompson DW, Lawrence ZD, Scaife AA et al. 2021. The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. Bull. Amer. Meteorol. Soc. 102:E1150–71
    [Google Scholar]
  65. Luz D, Berry DL, Piccioni G, Drossart P, Politi R et al. 2011. Venus's southern polar vortex reveals precessing circulation. Science 332:577–80
    [Google Scholar]
  66. Love AEH. 1893. On the stability of certain vortex motions. Proc. London Math. Soc. 25:18–42
    [Google Scholar]
  67. Manney GL, Butler AH, Lawrence ZD, Wargan K, Santee ML. 2022. What's in a name? On the use and significance of the term “polar vortex. .” Geophys. Res. Lett. 49:10e2021GL097617
    [Google Scholar]
  68. Matsuno T. 1970. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci. 27:871–83
    [Google Scholar]
  69. Matsuno T. 1971. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 28:1479–94
    [Google Scholar]
  70. Matthewman NJ, Esler JG. 2011. Stratospheric sudden warmings as self-tuning resonances. Part I: vortex splitting events. J. Atmos. Sci. 68:2481–504
    [Google Scholar]
  71. McIntyre ME. 1982. How well do we understand the dynamics of stratospheric warmings?. J. Meteorol. Soc. Jpn. 60:37–65
    [Google Scholar]
  72. McIntyre ME. 1995. The stratospheric polar vortex and sub-vortex: fluid dynamics and midlatitude ozone loss. Philos. Trans. R. Soc. Lond. A 352:227–40
    [Google Scholar]
  73. McIntyre ME, Palmer TN. 1983. Breaking planetary waves in the stratosphere. Nature 305:593–600
    [Google Scholar]
  74. McIntyre ME, Palmer TN. 1984. The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys. 46:825–49
    [Google Scholar]
  75. Mitchell DM, Montabone L, Thomson S, Read PL. 2015. Polar vortices on Earth and Mars: a comparative study of the climatology and variability from reanalyses. Q. J. R. Meteorol. Soc. 141:550–62
    [Google Scholar]
  76. Mitchell DM, Scott RK, Seviour WJM, Thomson SI, Waugh DW et al. 2021. Polar vortices in planetary atmospheres. Rev. Geophy. 59:e2020RG000723
    [Google Scholar]
  77. Moore DW, Saffman PG 1971. Structure of a line vortex in an imposed strain. Aircraft Turbulence Wakes JH Olsen, A Goldburg, M Rogers 339–54 New York: Plenum
    [Google Scholar]
  78. Newman PA, Nash ER, Rosenfield J. 2001. What controls the temperature of the Arctic stratosphere during the spring?. J. Geophys. Res. 106:19999–20010
    [Google Scholar]
  79. Norton WA. 1994. Breaking Rossby waves in a model stratosphere diagnosed by a vortex-following coordinate system and a contour advection technique. J. Atmos. Sci. 51:654–73
    [Google Scholar]
  80. O'Neill A, Oatley CL, Charlton-Perez AJ, Mitchell DM, Jung T. 2017. Vortex splitting on a planetary scale in the stratosphere by cyclogenesis on a subplanetary scale in the troposphere. Q. J. R. Meteorol. Soc. 143:691–705
    [Google Scholar]
  81. O'Neill A, Pope VD. 1988. Simulations of linear and nonlinear disturbances in the stratosphere. Q. J. R. Meteorol. Soc. 114:1063–110
    [Google Scholar]
  82. Piccioni G, Drossart P, Sanchez-Lavega A, Hueso R, Taylor FW et al. 2007. South-polar features on Venus similar to those near the north pole. Nature 450:637–40
    [Google Scholar]
  83. Pierrehumbert RT, Hammond M. 2019. Atmospheric circulation of tide-locked exoplanets. Annu. Rev. Fluid Mech. 51:275–303
    [Google Scholar]
  84. Płotka H, Dritschel DG. 2012. Quasi-geostrophic shallow-water vortex-patch equilibria and their stability. Geophys. Astrophys. Fluid Dyn. 106:574–95
    [Google Scholar]
  85. Plumb RA. 1981. Instability of the distorted polar night vortex: a theory of stratospheric warmings. J. Atmos. Sci. 38:2514–31
    [Google Scholar]
  86. Plumb RA, Waugh DW, Atkinson RJ, Newman PA, Lait LR et al. 1994. Intrusions into the lower stratospheric Arctic vortex during the winter of 1991–1992. J. Geophys. Res. 99:1089–105
    [Google Scholar]
  87. Polvani LM, Dritschel DG. 1993. Wave and vortex dynamics on the surface of a sphere. J. Fluid Mech. 255:35–64
    [Google Scholar]
  88. Polvani LM, Plumb RA. 1992. Rossby wave breaking, filamentation and secondary vortex formation: the dynamics of a perturbed vortex. J. Atmos. Sci. 49:462–76
    [Google Scholar]
  89. Polvani LM, Saravanan R. 2000. The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere. J. Atmos. Sci. 57:3663–85
    [Google Scholar]
  90. Polvani LM, Waugh DW. 2004. Upward wave activity flux as precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Clim. 17:3548–54
    [Google Scholar]
  91. Polvani LM, Waugh DW, Plumb RA. 1995. On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci. 52:1288–309
    [Google Scholar]
  92. Polvani LM, Zabusky NJ, Flierl GR. 1989. Two-layer geostrophic vortex dynamics. Part 1. Upper-layer V-states and merger. J. Fluid Mech. 205:215–42
    [Google Scholar]
  93. Rayleigh L. 1880. On the stability, or instability, of certain fluid motions. Proc. London Math. Soc. 11:57–72
    [Google Scholar]
  94. Reinaud JN, Dritschel DG. 2019. The stability and nonlinear evolution of quasi-geostrophic toroidal vortices. J. Fluid Mech. 863:60–78
    [Google Scholar]
  95. Richardson MI, Wilson RJ. 2002. A topographically forced asymmetry in the Martian circulation and climate. Nature 416:298–301
    [Google Scholar]
  96. Rong PP, Waugh DW. 2004. Vacillations in a shallow-water model of the stratosphere. J. Atmos. Sci. 61:1174–85
    [Google Scholar]
  97. Rostami M, Zeitlin V, Montabone L. 2018. On the role of spatially inhomogeneous diabatic effects upon the evolution of Mars' annular polar vortex. Icarus 314:376–88
    [Google Scholar]
  98. Saffman PG. 1992. Vortex Dynamics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  99. Safieddine S, Bouillon M, Paracho AC, Jumelet J, Tence F et al. 2020. Antarctic ozone enhancement during the 2019 sudden stratospheric warming event. Geophys. Res. Lett. 47:e2020GL087810
    [Google Scholar]
  100. Sánchez-Lavega A, Lebonnois S, Imamura T, Read P, Luz D. 2017. The atmospheric dynamics of Venus. Space Sci. Rev. 212:1541–616
    [Google Scholar]
  101. Scaife AA, Baldwin MP, Butler AH, Charlton-Perez AJ, Domeisen DI et al. 2022. Long-range prediction and the stratosphere. Atmos. Chem. Physics 22:2601–23
    [Google Scholar]
  102. Scherhag R. 1948. Neue Methoden der Wetteranalyse und Wetterprognose Berlin: Springer-Verlag
    [Google Scholar]
  103. Schoeberl MR, Hartmann DL. 1991. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251:46–52
    [Google Scholar]
  104. Scott RK, Dritschel DG. 2006. Vortex–vortex interactions in the winter stratosphere. J. Atmos. Sci. 63:726–40
    [Google Scholar]
  105. Scott RK, Haynes PH. 2000. Internal vacillations in stratospheric-only models. J. Atmos. Sci. 57:3233–50
    [Google Scholar]
  106. Scott RK, Polvani LM 2004. Stratospheric control of upward wave flux near the tropopause. Geophys. Res. Lett. 31:L02115
    [Google Scholar]
  107. Scott RK, Seviour WJM, Waugh DW. 2020. Forcing of the Martian polar annulus by Hadley cell transport and latent heating. Q. J. R. Meteorol. Soc. 146:2174–90
    [Google Scholar]
  108. Seviour WJM. 2017. Weakening and shift of the Arctic stratospheric polar vortex: internal variability or forced response?. Geophys. Res. Lett. 47:3365–73
    [Google Scholar]
  109. Seviour WJM, Gray LJ, Mitchell DM. 2016. Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res. Atmos. 121:1400–13
    [Google Scholar]
  110. Seviour WJM, Waugh DW, Scott RK. 2017. The stability of Mars's annular polar vortex. J. Atmos. Sci. 74:1533–47
    [Google Scholar]
  111. Sharkey J, Teanby NA, Sylvestre M, Mitchell DM, Seviour WJ et al. 2020. Mapping the zonal structure of Titan's northern polar vortex. Icarus 337:113441
    [Google Scholar]
  112. Sharkey J, Teanby NA, Sylvestre M, Mitchell DM, Seviour WJ et al. 2021. Potential vorticity structure of Titan's polar vortices from Cassini CIRS observations. Icarus 354:114030
    [Google Scholar]
  113. Showman AP, Cho JY, Menou K. 2010. Atmospheric circulation of exoplanets. Exoplanets 526:471–516
    [Google Scholar]
  114. Shultis J, Waugh DW, Toigo AD, Newman CE, Teanby NA, Sharkey J. 2022. Winter weakening of Titan's stratospheric polar vortices. Planet. Sci. J. 3:73
    [Google Scholar]
  115. Solomon S. 1999. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37:275–316
    [Google Scholar]
  116. Streeter PM, Lewis SR, Patel MR, Holmes JA, Fedorova AA et al. 2021. Asymmetric impacts on Mars’ polar vortices from an equinoctial global dust storm. J. Geophys. Res. Planets 126:e2020JE006774
    [Google Scholar]
  117. Tabataba-Vakili F, Rogers JH, Eichstädt, Orton GS, Hansen CJ et al. 2020. Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam. Icarus 335:13405
    [Google Scholar]
  118. Teanby NA, Bézard B, Vinatier S, Sylvestre M, Nixon CA et al. 2017. The formation and evolution of Titan's winter polar vortex. Nature Commun 8:1586
    [Google Scholar]
  119. Teanby NA, de Kok R, Irwin PGJ, Osprey S, Vinatier S et al. 2008. Titan's winter polar vortex structure revealed by chemical tracers. J. Geophys. Res. 113:E12003
    [Google Scholar]
  120. Thompson DW, Baldwin MP, Wallace JM. 2002. Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J. Clim. 15:1421–28
    [Google Scholar]
  121. Thompson DW, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ. 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci 4:741–49
    [Google Scholar]
  122. Thomson W. 1869. On vortex atoms. Proc. R. Soc. Edinburgh 6:94–105
    [Google Scholar]
  123. Toigo A, Waugh DW, Guzewich S. 2017. What causes Mars' annular polar vortices?. Geophys. Res. Lett. 44:71–78
    [Google Scholar]
  124. Toigo A, Waugh DW, Guzewich S. 2020. Atmospheric transport into polar regions on Mars in different orbital epochs. Icarus 347:113816
    [Google Scholar]
  125. Tung KK, Lindzen RS. 1979. A theory of stationary long waves. Part I: a simple theory of blocking. Mon. Weather Rev. 107:714–34
    [Google Scholar]
  126. Vallis GK. 2017. Atmospheric and Oceanic Fluid Dynamics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  127. Vinatier S, Bézard B, Nixon CA, Mamoutkine A, Carlson RC et al. 2010. Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission: I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus 205:559–70
    [Google Scholar]
  128. Von Helmholtz H. 1858. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55:25–55
    [Google Scholar]
  129. Wang L, Hardiman SC, Bett PE, Comer RE, Kent C et al. 2020. What chance of a sudden stratospheric warming in the southern hemisphere?. Env. Res. Lett. 15:104038
    [Google Scholar]
  130. Waugh DW, Dritschel DG. 1991. The stability of filamentary vorticity in two-dimensional geophysical vortex-dynamics models. J. Fluid Mech. 231:575–98
    [Google Scholar]
  131. Waugh DW, Dritschel DG. 1999. The dependence of Rossby wave breaking on the vertical structure of the polar vortex. J. Atmos. Sci. 56:2359–75
    [Google Scholar]
  132. Waugh DW, Plumb RA, Atkinson RJ, Schoeberl MR, Lait LR et al. 1994. Transport out of the stratospheric Arctic vortex by Rossby wave breaking. J. Geophys. Res. 99:1071–88
    [Google Scholar]
  133. Waugh DW, Polvani LM 2010. Stratospheric polar vortices. The Stratosphere: Dynamics, Transport, and Chemistry LM Polvani, AH Sobel, DW Waugh 43–57 Geophys. Monogr. Ser. 190 Washington, DC: Am. Geophys. Union.
    [Google Scholar]
  134. Waugh DW, Randel WJ, Pawson S, Newman PA, Nash ER. 1999. Persistence of the lower stratospheric polar vortices. J. Geophys. Res. 104:27191–201
    [Google Scholar]
  135. Waugh DW, Sobel AH, Polvani LM. 2017. What is the polar vortex and how does it influence weather?. Bull. Amer. Meteor. Soc. 98:37–44
    [Google Scholar]
  136. Waugh DW, Toigo AD, Guzewich SD. 2019. Age of Martian air: time scales for Martian atmospheric transport. Icarus 317:148–57
    [Google Scholar]
  137. Waugh DW, Toigo AD, Guzewich SD, Greybush SJ, Wilson RJ, Montabone L. 2016. Martian polar vortices: comparison of reanalyses. J. Geophys. Res. 121:1770–85
    [Google Scholar]
  138. West RA, Del Genio AD, Barbara JM, Toledo D, Lavvas P et al. 2016. Cassini Imaging Science Subsystem observations of Titan's south polar cloud. Icarus 270:399–408
    [Google Scholar]
  139. Zalucha AM, Plumb RA, Wilson RJ. 2010. An analysis of the effect of topography on the Martian Hadley cells. J. Atmos. Sci. 67:673–93
    [Google Scholar]
  140. Zhang J, Tian W, Chipperfield MP, Xie F, Huang J. 2016. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change 6:1094–99
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-120720-032208
Loading
/content/journals/10.1146/annurev-fluid-120720-032208
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error