Avian influenza (AI) is a disease or asymptomatic infection caused by A. AI viruses are species specific and rarely cross the species barrier. However, subtypes H5, H7, and H9 have caused sporadic infections in humans, mostly as a result of direct contact with infected birds. H5N1 high pathogenicity avian influenza (HPAI) virus causes a rapid onset of severe viral pneumonia and is highly fatal (60% mortality). Outbreaks of AI could have a severe economic and social impact on the poultry industry, trade, and public health. Surveillance data revealed that H5N1 HPAI has been detected in imported frozen duck meat from Asia, and on the surface and in contaminated eggs. However, there is no direct evidence that AI viruses can be transmitted to humans via the consumption of contaminated poultry products. Implementing management practices that incorporate biosecurity principles, personal hygiene, and cleaning and disinfection protocols, as well as cooking and processing standards, are effective means of controlling the spread of the AI viruses.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akey ŠBL. 2009. Low-pathogenicity H7N2 avian influenza outbreak in Virginia during 2002. Avian Dis. 47:1099–103 [Google Scholar]
  2. Alexander DJ. 2000. A review of avian influenza in different bird species. Vet. Microbiol. 74:3–13 [Google Scholar]
  3. Beato MS, Capua I, Alexander DJ. 2009. Avian influenza viruses in poultry products: a review. Avian Pathol. 38:193–200 [Google Scholar]
  4. Belser JA, Bridges CB, Katz JM, Tumpey TM. 2009. Past, present, and possible future human infection with influenza virus A subtype H7. Emerg. Infect. Dis. 15:860–65 [Google Scholar]
  5. Biswas PK, Christensen JP, Ahmed SSU, Das A, Rahman MH. et al. 2009. Risk for infection with highly pathogenic avian influenza virus (H5N1) in backyard chickens, Bangladesh. Emerg. Infect. Dis. 15:1931–36 [Google Scholar]
  6. Branckaert RDS, Guèye EF. 1997. Poultry as a tool in poverty eradication and promotion of gender equality. FAO's Programme for Support to Family Poultry Production Proc. Workshop1–9 Rome: FAO [Google Scholar]
  7. Brglez B, Hahn J. 2008. Methods for disposal of poultry carcasses. See Swayne 2008a 333–52
  8. Bridges CB, Katz JM, Seto WH, Chan PKS, Tsang D. et al. 2000. Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1), Hong Kong. J. Infect. Dis. 181:344–48 [Google Scholar]
  9. Brown JD, Swayne DE, Cooper RJ, Burns RE, Stallknecht DE. 2007. Persistence of H5 and H7 avian influenza viruses in water. Avian Dis. 51:285–89 [Google Scholar]
  10. Burns A, van der Mensbrugghe D, Timmer H. 2008. Evaluating the economic consequences of avian influenza. Global Development Finance1–6 http://siteresources.worldbank.org/EXTAVIANFLU/Resources/EvaluatingAHIeconomics_2008.pdf [Google Scholar]
  11. Cappucci DT, Johnson DC, Brugh M, Smith TM, Jackson CF. et al. 1985. Isolation of avian influenza virus (subtype H5N2) from chicken eggs during a natural outbreak. Avian Dis. 29:1195–2000 [Google Scholar]
  12. Capua I, Alexander DJ. 2004. Avian influenza: recent developments. Avian Pathol. 33:393–404 [Google Scholar]
  13. CDC 2005. Avian influenza (bird flu). Influenza Viruses1–3 http://www.cdc.gov/flu/avian/gen-info/pdf/flu_viruses.pdf [Google Scholar]
  14. CDC 2006. Avian influenza (flu). Avian Influenza A Virus Infections of Humans1–3 http://www.cdc.gov/flu/avian/gen-info/avian-flu-humans.htm [Google Scholar]
  15. CDC 2007. Avian influenza: current H5N1 situation. Avian Influenza (Bird Flu)1–4 http://www.cdc.gov/flu/avian/outbreaks/current.htm [Google Scholar]
  16. Chen H, Smith GJD, Li KS, Wang J, Fan XH. et al. 2006. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc. Natl. Acad. Sci. USA 103:2845–50 [Google Scholar]
  17. Chmielewski R, Swayne DE. 2010. Thermal inactivation of Newcastle virus in imitation egg product. Res. Prog. Rep. Am. Egg Board. 3 June 2010 1–9 [Google Scholar]
  18. Cox N, Uyeki TM. 2008. Public health implications of avian influenza viruses. See Swayne 2008a 453–84
  19. de Wit JJ, Fabri THF, Hoogkamer A. 2004. Survival of Avian Influenza Virus on Eggs Gezondheidsdienst voor Dieren, Res. Dev. Poult. Health, Deventer, the Netherlands [Google Scholar]
  20. Domanska-Blicharz K, Minta Z, Smietanka K, March S, van den Berg T. 2010. H5N1 high pathogenicity avian influenza virus survival in different types of water. Avian Dis. 54:734–37 [Google Scholar]
  21. Donatelli I, Campitelli L, Trani LD, Puzelli S, Selli L. et al. 2001. Characterization of H5N2 influenza viruses from Italian poultry. J. Gen. Virol. 82:623–30 [Google Scholar]
  22. Duan L, Campitelli L, Fan XH, Leung YH, Vijaykrishna D. et al. 2007. Characterization of low-pathogenic H5 subtype influenza viruses from Eurasia: implications for the origin of highly pathogenic H5N1 viruses. J. Virol. 81:7529–39 [Google Scholar]
  23. Dunham EJ, Dugan VG, Kaser EK, Perkins SE, Brown IH. et al. 2009. Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses. J. Virol. 83:5485–94 [Google Scholar]
  24. Dusek RJ, Bortnerb JB, DeLibertoc TJ, Hoskinsb J, Fransona JC. et al. 2009. Surveillance for high pathogenicity avian influenza virus in wild birds in the pacific flyway of the United States, 2006–2007. Avian Dis. 53:222–30 [Google Scholar]
  25. Influenza team (ECDC) 2007. Low Pathogenicity Avian Influenzas and human health. Euro. Surveill. 125E070531.3 http://www.eurosurveillance.org/ew/2007/070531.asp#3 [Google Scholar]
  26. Escorcia M, Vázquez L, Méndez ST, Rodríguez-Ropón A, Lucio E, Nava GM. 2008. Avian influenza: genetic evolution under vaccination pressure. Virology 5:1–5 [Google Scholar]
  27. FAO 2007. Food Outlook Global Market Analysis. Meat and Meat Product Prices30–31 Rome: FAO http://www.fao.org/giews/english/fo/index.htm#2007 [Google Scholar]
  28. FAO 2010. Despite many successes, avian influenza still threatens: FAO calls for sustained action on H5N1 and emerging infections. FAO Media Centre Rome: http://www.fao.org/news/story/en/item/41276(icode/FAO) [Google Scholar]
  29. Fouchier RAM, Schneeberger PM, Rozendaal FW, Broekman JM, Kemin SAG. et al. 2004. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc. Natl. Acad. Sci. USA 101:1356–61 [Google Scholar]
  30. Gambaryan A, Webster R, Matrosovich M. 2002. Differences between influenza virus receptors on target cells of duck and chicken. Arch. Virol. 147:1197–208 [Google Scholar]
  31. Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y. et al. 2009. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog. 5:e1000709 [Google Scholar]
  32. Gilsdorf A, Boxall N, Gasimov V, Agayev I, Mammadzade F. et al. 2006. Two clusters of human infection with influenza A/H5N1 virus in the Republic of Azerbaijan, February–March. Eurosurveillance 11:122–26 [Google Scholar]
  33. Guan J, Chan M, Grenier C, Wilkie DC, Brooks BW, Spencer JL. 2009. Survival of avian influenza and Newcastle disease viruses in compost and at ambient temperatures based on virus isolation and real-time reverse transcriptase PCR. Avian Dis. 53:26–33 [Google Scholar]
  34. Guan Y, Peiris JSM, Lipatov AS, Ellis TM, Dyrting KC. et al. 2002a. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc. Natl. Acad. Sci. USA 99:8950–55 [Google Scholar]
  35. Guan Y, Peiris M, Kong KF, Dyrting KC, Ellis TM. et al. 2002b. H5N1 influenza viruses isolated from geese in Southeastern China: evidence for genetic reassortment and interspecies transmission to ducks. Virology 292:16–23 [Google Scholar]
  36. Harder TC, Teuffert J, Starick E, Gethmann J, Grund C. et al. 2009. Highly pathogenic avian influenza virus (H5N1) in frozen duck carcasses, Germany, 2007. Emerg. Infect. Dis. 15:1–8 [Google Scholar]
  37. Hatta M, Gao P, Halfmann P, Kawaoka Y. 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–42 [Google Scholar]
  38. Hinshaw VS. 1985. The nature of avian influenza in migratory waterfowl, including interspecies transmission. 1986 Proc. 2nd Int. Symp. Avian Influenza133–41 Athens, GA: Am. Assoc. Avian Pathol. [Google Scholar]
  39. Horimoto T, Rivera E, Pearson J, Senne D, Krauss S. et al. 1995. Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 213:223–30 [Google Scholar]
  40. Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, Seiler P, Govorkova EA. et al. 2005. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia. Proc. Natl. Acad. Sci. USA 102:10682–87 [Google Scholar]
  41. INFOSAN IFSAN- 2004. Avian influenza. INFOSAN Inf. Note No. 2/043 [Google Scholar]
  42. Ito T, Suzuki Y, Suzuki T, Takada A, Horimoto T. et al. 2000. Recognition of N-glycolylneuraminic acid linked to galactose by the alpha 2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J. Virol. 74:9300–5 [Google Scholar]
  43. Katz JM, Veguilla V, Belser JA, Maines TR, Hoeven NV. et al. 2008. The public health impact of avian influenza viruses. Poult. Sci. 88:872–79 [Google Scholar]
  44. Kawaoka Y, Naeve CW, Webster RG. 1984. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?. Virology 139:303–16 [Google Scholar]
  45. Kim J-K, Negovetich NJ, Forrest HL, Webster RG. 2009. Ducks: the “Trojan horses” of H5N1 influenza. Influenza Respir. Viruses 3:121–28 [Google Scholar]
  46. Koopmans M, Duizer E. 2004. Foodborne viruses: an emerging problem. Int. J. Food Microbiol. 90:23–41 [Google Scholar]
  47. Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H. et al. 2004. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363:587–93 [Google Scholar]
  48. Kuchipudi SV, Nelli R, White GA, Bain M, Chang KC, Dunham S. 2009. Differences in influenza virus receptors in chickens and ducks: Implications for interspecies transmission. J. Mol. Genet. Med. 3:143–51 [Google Scholar]
  49. Lee C-W, Saif YM. 2009. Avian influenza virus. Comp. Immunol. Microbiol. Infect. Dis. 32:301–10 [Google Scholar]
  50. Li KS, Xu KM, Peiris JSM, Poon LLM, Yu KZ. et al. 2003. Characterization of H9 subtype influenza viruses from the ducks of Southern China: a candidate for the next influenza pandemic in humans?. J. Virol. 77:6988–94 [Google Scholar]
  51. Liu J, Bi Y, Qin K, Fu G, Yang J. et al. 2009. Emergence of European avian influenza virus-like H1N1 swine influenza A viruses in China. J. Clin. Microbiol. 48:2643–46 [Google Scholar]
  52. Lokuge B. 2005. Avian influenza, world food trade and WTO rules: The economics of transboundary disease control. Rep Work. Pap. Jan. The Aust. Natl. Univ. Canberra: [Google Scholar]
  53. Lu H, Castro AE, Pennick K, Liu J, Yang Q. et al. 2003. Survival of avian influenza virus H7N2 in SPF chickens and their environment. Avian Dis. 47:1015–21 [Google Scholar]
  54. Mase M, Eto M, Tanimura N, Imai K, Tsukamoto K. et al. 2005. Isolation of a genotypically unique H5N1 influenza virus from duck meat imported into Japan from China. Virology 339:101–9 [Google Scholar]
  55. Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk H-D. 2004. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. USA 101:4620–24 [Google Scholar]
  56. McLeod A, Morgan N, Prakash A, Hinrichs J. 2005. Economic and Social Impact of Avian Influenza Rome: FAO Emerg. Cent. Transbound. Anim. Dis. Oper. (ECTAD) [Google Scholar]
  57. Munier S, Larcher T, Cormier-Aline F, Soubieux D, Su B. et al. 2010. A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J. Virol. 84:940–52 [Google Scholar]
  58. Nguyen-Van-Tam JSN, Nair P, Acheson P, Baker A, Barker M. et al. 2006. Outbreak of low pathogenicity H7N3 avian influenza in UK, including associated case of human conjunctivitis. Eurosurveillance 11:1–2 [Google Scholar]
  59. OIE 2009. OIE Terr. Anim. Health Code: Avian influenza, Article 10.4.1. Health Standards Paris, Fr.: OIE http://www.oie.int/eng/normes/mcode/en_chapitre_1.10.4.htm [Google Scholar]
  60. Oner AF, Bay A, Arslan S, Akdeniz H, Sahin HA. et al. 2006. Avian influenza A (H5N1) infection in eastern Turkey in 2006. N. Engl. J. Med. 355:2179–85 [Google Scholar]
  61. Otte J, Hinrichs J, Rushton J, Roland-Holst D, Zilberman D. 2008. Impacts of avian influenza virus on animal production in developing countries. CAB Rev.: Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 3:1–18 [Google Scholar]
  62. Pantin-Jackwood M, Wasilenko JL, Spackman E, Suarez DL, Swayne DE. 2010. Susceptibility of turkeys to pandemic-H1N1 virus by reproductive tract insemination. Virol. J. 7:27 [Google Scholar]
  63. Pappas C, Matsuoka Y, Swayne DE, Donis RO. 2007. Development and evaluation of an influenza virus subtype H7N2 vaccine candidate for pandemic preparedness. Clin. Vaccine Immunol. 14:1425–32 [Google Scholar]
  64. Perdue ML, Garcia M, Beck J, Brugh M, Swayne DE. 1996. An Arg-Lys insertion at the hemagglutinin cleavage site of an H5N2 avian influenza isolate. Virus Genes 12:77–84 [Google Scholar]
  65. Pillai SPS, Pantin-Jackwood M, Yassine HM, Saif YM, Lee CW. 2010. The high susceptibility of turkeys to influenza viruses of different origins implies their importance as potential intermediate hosts. Avian Dis. 54:522–26 [Google Scholar]
  66. Promkuntod N, Antarasena C, Prommuang P, Prommuang P. 2006. Isolation of avian influenza virus A subtype H5N1 from internal contents (albumen and allantoic fluid) of Japanese quail (Coturnix coturnix japonica) eggs and oviduct during a natural outbreak. Ann. NY Acad. Sci. 1081:171–73 [Google Scholar]
  67. Ramirez-Nieto G, Shivaprasad HL, Kim C-H, Lillehoj HS, Song H. et al. 2010. Adaptation of a mallard H5N2 low pathogenicity influenza virus in chickens with prior history of infection with infectious bursal disease virus. Avian Dis. 54:513–21 [Google Scholar]
  68. Senne DA. 2010. Avian influenza in North and South America, the Caribbean, and Australia, 2006–2008. Avian Dis. 54:179–86 [Google Scholar]
  69. Senne DA, Suarez DL, Pedersen JC, Panigrahy B. 2003. Molecular and biological characteristics of H5 and H7 avian influenza viruses found in live-bird markets of northeastern United States during 1994–2001. Avian Dis. 47:898–904 [Google Scholar]
  70. Sinha NK, Roy A, Das B, Das S, Basak S. 2009. Evolutionary complexities of swine flu H1N1 gene sequences of 2009. Biochem. Biophys. Res. Commun. 390:349–51 [Google Scholar]
  71. Spackman E, Senne DA, Davison S, Suarez DL. 2003. Sequence analysis of recent H7 avian influenza viruses associated with three different outbreaks in commercial poultry in the United States. J. Virol. 77:13399–402 [Google Scholar]
  72. Stallknecht DE, Brown JD. 2007. Wild birds and the epidemiology of avian influenza. J. Wildl. Dis. 43:S15–20 [Google Scholar]
  73. Stallknecht DE, Goekjian VH, Wilcox BR, Poulson RL, Brown JD. 2010. Avian influenza virus in aquatic habitats: What do we need to learn?. Avian Dis. 54:461–65 [Google Scholar]
  74. Suarez D. 2008. Influenza A virus. See Swayne 2008a 3–22
  75. Suarez DL, Spackman E, Senne DA. 2009. Update on molecular epidemiology of H1, H5, and H7 influenza virus infections in poultry in North America. Avian Dis. 47:888–97 [Google Scholar]
  76. Suarez DL, Woolcock PR, Bermudez AJ, Senne DA. 2002. Isolation from turkey breeder hens of a reassortant H1N2 influenza virus with swine, human, and avian lineage genes. Avian Dis. 46:111–21 [Google Scholar]
  77. Swayne DE. 2005. Occupational and consumer risks from avian influenza viruses. Dev. Biol. 124:85–90 [Google Scholar]
  78. Swayne DE. 2006. Microassay for measuring thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat. Int. J. Food Microbiol. 108:268–71 [Google Scholar]
  79. Swayne DE. 2008a. Avian Influenza Ames, IA: Blackwell [Google Scholar]
  80. Swayne DE. 2008b. Epidemiology of avian influenza in agricultural and other man-made systems. See Swayne 2008a 59–85
  81. Swayne DE. 2008c. The global nature of avian influenza. See Swayne 2008a 123–43
  82. Swayne DE, Beck JR. 2004. Heat inactivation of avian influenza and Newcastle disease viruses in egg products. Avian Pathol. 33:512–18 [Google Scholar]
  83. Swayne DE, Halvorson DA. 2008. Influenza. Diseases of Poultry YM Saif, JR Glisson, AM Fadly, LR McDougald, L Nolan 153–84 Ames, IA: Blackwell [Google Scholar]
  84. Swayne DE, Suarez DL. 2007. Current developments in avian influenza vaccines, including safety of vaccinated birds as food. Dev. Biol. 130:123–33 [Google Scholar]
  85. Tam JS. 2002. Influenza A (H5N1) in Hong Kong: an overview. Vaccine 20:S77–81 [Google Scholar]
  86. Thanawongnuwech R, Amonsin A, Tantilertcharoen R, Damrongwatanapokin S, Theamboonlers A. et al. 2005. Probable tiger-to-tiger transmission of avian influenza H5N1. Emerg. Infect. Dis. 11:699–701 [Google Scholar]
  87. Thomas C, King DJ, Swayne DE. 2008. Thermal inactivation of avian influenza and Newcastle disease viruses in chicken meat. J. Food Prot. 71:1214–22 [Google Scholar]
  88. Thomas C, Swayne DE. 2007. Thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat. J. Food Prot. 70:674–80 [Google Scholar]
  89. Tiwari A, Patnayak DP, Chander Y, Parsad M, Goyal SM. 2006. Survival of two avian respiratory viruses on porous and nonporous surfaces. Avian Dis. 50:284–87 [Google Scholar]
  90. Tumpey TM, Suarez DL, Perkins LEL, Senne DA, Lee J-G. et al. 2002. Characterization of a highly pathogenic H5N1 avian influenza A virus isolated from duck meat. J. Virol. 76:6344–55 [Google Scholar]
  91. Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W. et al. 2005. Probable person-to-person transmission of avian influenza A (H5N1). N. Engl. J. Med. 352:333–40 [Google Scholar]
  92. Walker JA, Kawaoka Y. 1993. Importance of conserved amino acids at the cleavage site of the haemagglutinin of a virulent avian influenza A virus. J. Gen. Virol. 74:311–14 [Google Scholar]
  93. Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G. et al. 2008. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS ONE 3:e2923 [Google Scholar]
  94. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56:152–79 [Google Scholar]
  95. Webster RG, Krauss S, Hulse-Post D, Sturm-Ramirez K. 2007. Evolution of influenza A virus in wild birds. J. Wildl. Dis. 43:S1–6 [Google Scholar]
  96. Whiting RC, Buchanan RL. 1997. Development of a quantitative risk assessment model for Salmonella enteritidis in pasteurized liquid eggs. Int. J. Food Microbiol. 36:111–25 [Google Scholar]
  97. WHO 2004. Avian influenza A(H5N1) in humans and in poultry in Asia: food safety considerations. Food Safety1–2 http://www.who.int/foodsafety/micro/avian1/en/print.html [Google Scholar]
  98. WHO 2005. Avian influenza frequently asked questions. Communicable Disease Surveillance and Response1–6 http://www.who.int/csr/disease/avian_influenza/avian_faqs/en/print.html [Google Scholar]
  99. WHO 2005a. Evolution of H5N1 avian influenza viruses in Asia. Emerg. Infect. Dis. 111515–21 [Google Scholar]
  100. WHO 2005b. Highly pathogenic H5N1 avian influenza outbreaks in poultry and in humans: food safety implications. International Food Safety Authorities Network-Avian Influenza1–5 www.who.int/foodsafety [Google Scholar]
  101. WHO 2006. H5N1 avian influenza: timeline of major events. Global Alert and Response10 http://www.who.int/csr/disease/avian_influenza/ai_timeline/en/index.html [Google Scholar]
  102. WHO 2007. Questions and answers on avian influenza in relation to animal, food and water. Food Safety1–14 http://www.who.int/foodsafety/micro/AI_QandA_Apr07_EN.pdf [Google Scholar]
  103. WHO 2008. Update: WHO-confirmed human cases of avian influenza A(H5N1) infection, November 2003–May 2008. Wkly Epidemiol. Rec. 83415–20 [Google Scholar]
  104. WHO 2010. Avian influenza: cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. Global Alert and Response http://www.who.int/csr/disease/avian_influenza/country/cases_table_20WHO [Google Scholar]
  105. World Bank 2010. Health, nutrition and population: economic impact of avian flu. Global Program for Avian Influenza and Human Pandemic1–4 Washington, DC: World Bank [Google Scholar]
  106. Writ. Comm. Second WHO Consult. Clin. Aspects Hum. Infect. Avian Influenza A Virus 2008. Update on avian influenza A (H5N1) virus infection in humans. N. Engl. J. Med. 358261–73 [Google Scholar]
  107. Xu X, Subbarao K, Cox NJ, Guo Y. 1999. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261:15–19 [Google Scholar]
  108. Yalcin C. 2006. Market impact of HPAI outbreaks: a rapid appraisal process-turkey. The Market and Trade Dimensions of Avian Influenza1–28 Rome: FAO [Google Scholar]
  109. Yamamoto Y, Nakamura K, Okamatsu M, Yamada M, Mase M. 2008. Avian influenza virus (H5N1) replication in feathers of domestic waterfowl. Emerg. Infect. Dis. 14:149–51 [Google Scholar]
  110. Yamamoto Y, Nakamura K, Yamada M, Ito T. 2009. Zoonotic risk for influenza A (H5N1) infection in wild swan feathers. J. Vet. Med. Sci. 71:1549–51 [Google Scholar]
  111. Yuen KY, Chan PKS, Peiris M, Tsang DNC, Que TL. et al. 1998. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351:467–71 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error