1932

Abstract

Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-031414-111800
2015-04-10
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/food/6/1/annurev-food-031414-111800.html?itemId=/content/journals/10.1146/annurev-food-031414-111800&mimeType=html&fmt=ahah

Literature Cited

  1. Aito-Inoue M, Lackeyram D, Fan MZ, Sato K, Mine Y. 2007. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush-border membrane. J. Pept. Sci. 13:468–74 [Google Scholar]
  2. Aito-Inoue M, Ohtsuki K, Nakamura Y, Park EY, Iwai K. et al. 2006. Improvement in isolation and identification of food-derived peptides in human plasma based on precolumn derivatization of peptides with phenyl isothiocyanate. J. Agric. Food Chem. 54:5261–66 [Google Scholar]
  3. Alemán A, Giménez B, Pérez-Santin E, Gómez-Guillén MC, Montero P. 2011a. Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chem. 125:334–41 [Google Scholar]
  4. Alemán A, Pérez-Santín E, Bordenave-Juchereau S, Arnaudin I, Gómez-Guillén MC, Montero P. 2011b. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res. Int. 44:1044–51 [Google Scholar]
  5. Alves PMA, Carvalho RA, Moraes ICF, Luciano CG, Bittante AMQB, Sobral PJA. 2011. Development of films based on blends of gelatin and poly(vinyl alcohol) cross linked with glutaraldehyde. Food Hydrocolloids 25:1751–57 [Google Scholar]
  6. Andreuccetti C, Carvalho RA, Grosso CRF. 2009. Effect of hydrophobic plasticizers on functional properties of gelatin-based films. Food Res. Int. 42:1113–21 [Google Scholar]
  7. Arvanitoyannis IS, Nakayama A, Aiba S. 1998. Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohyd. Polym. 37:371–82 [Google Scholar]
  8. Ashmarin IP. 2007. Glyprolines in regulatory tripeptides. Neurochem. J. 1:173–75 [Google Scholar]
  9. Bae I, Osatomi K, Yoshida A, Osako K, Yamaguchi A, Hara K. 2008. Biochemical properties of acid-soluble collagens extracted from the skins of underutilised fishes. Food Chem. 108:49–54 [Google Scholar]
  10. Baines ZV, Morris ER. 1987. Flavour/taste perception in thickened systems: the effect of guar gum above and below C*. Food Hydrocoll. 1:197–205 [Google Scholar]
  11. Bak JB, Singh A, Shekarriz B. 2004. Use of gelatin matrix thrombin tissue sealant as an effective hemostatic agent during laparoscopic partial nephrectomy. J. Urol. 171:780–82 [Google Scholar]
  12. Bauza E, Oberto G, Berghi A, Dal CF, Domloge N. 2004. Collagen-like peptide exhibits a remarkable antiwrinkle effect on the skin when topically applied: in vivo study. Int. J. Tissue React. 26:105–11 [Google Scholar]
  13. Benjakul S, Thiansilakul Y, Visessanguan W, Roytrakul S, Kishimura H. et al. 2010. Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). J. Sci. Food Agric. 90:132–38 [Google Scholar]
  14. Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. 2001. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22:763–68 [Google Scholar]
  15. Boran G. 2013. Gelatin: Production, Applications and Health Implications. New York: Nova Sci. Publ.
  16. Buraczewska I, Berne B, Lindberg M, Torma H, Loden M. 2007. Changes in skin barrier function following long-term treatment with moisturizers: a randomized controlled trial. Br. J. Dermatol. 156:492–98 [Google Scholar]
  17. Cao N, Fu YH, He JH. 2007. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocoll. 21:575–84 [Google Scholar]
  18. Cao N, Yang XM, Fu YH. 2009. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll. 23:729–35 [Google Scholar]
  19. Chen WY, Abatangelo G. 1999. Functions of hyaluronan in wound repair. Wound Repair Regen. 7:79–89 [Google Scholar]
  20. Cheng H, Leblond CP. 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am. J. Anat. 141:461–80 [Google Scholar]
  21. Damodaran S. 2007. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate. J. Agric. Food Chem. 55:10918–23 [Google Scholar]
  22. Daniel H. 2004. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 66:361–84 [Google Scholar]
  23. Darnell JE Jr. 1997. STATs and gene regulation. Science 277:1630–35 [Google Scholar]
  24. Druml W, Lochs H, Roth E, Hubl W, Balcke P, Lenz K. 1991. Utilization of tyrosine dipeptides and acetyltyrosine in normal and uremic humans. Am. J. Physiol. 260:E280–85 [Google Scholar]
  25. Du M, McCormick RJ. 2009. Applied Muscle Biology and Meat Science. Boca Raton, Fla.: CRC Press
  26. Duan R, Konno K, Zhang JJ, Wang SJ, Yuan CH. 2010. Different thermostability of collagens from scale of carp (Cyprinus carpio) in winter and summer. J. Food Biochem. 34:1275–87 [Google Scholar]
  27. Duan R, Zhang JJ, Li J, Zhong XH, Konno K, Wen HB. 2012. The effect of the subunit composition on the thermostability of collagens from the scales of freshwater fish. Food Chem. 135:127–32 [Google Scholar]
  28. Flores-Fernández GM, Solá RJ, Griebenow K. 2009. The relation between moisture-induced aggregation and structural changes in lyophilized insulin. J. Pharm. Pharmacol. 61:1555–61 [Google Scholar]
  29. Gazzeri R, Galarza M, Alfieri A. 2013. Use of gelatin sponge and matrix hemostatics sealent in neurosurgery. See Boran 2013 123–36
  30. George A, Malone JP, Veis A. 1999. The secondary structure of type I collagen N-telopeptide as demonstrated by Fourier transform IR spectroscopy and molecular modeling. Proc. Indian Acad. Sci. Chem. Sci. 111:121–31 [Google Scholar]
  31. Giménez B, Gómez-Guillén MC, López-Caballero ME, Gómez-Estaca J, Montero P. 2012. Role of sepiolite in the release of active compounds from gelatin-egg white films. Food Hydrocoll. 27:475–86 [Google Scholar]
  32. Giri A, Ohshima T. 2012. Bioactive marine peptides: nutraceutical value and novel approaches. Adv. Food Nutr. Res. 65:73–105 [Google Scholar]
  33. Glattstein B, Shor Y, Levin N, Zeichner A. 1996. pH indicators as chemical reagents for the enhancement of footwear marks. J. Forensic Sci. 41:23–26 [Google Scholar]
  34. Glattstein B, Vinokurov A, Levin N, Zeichner A. 2000. Improved method for shooting distance estimation. Part 1. Bullet holes in clothing items. J. Forensic Sci. 45:801–6 [Google Scholar]
  35. Goi T, Shipitsin M, Lu Z, Foster DA, Klinz SG, Feig LA. 2000. An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J. 19:623–30 [Google Scholar]
  36. Gómez-Estaca J, Bravo L, Gómez-Guillén MC, Alemán A, Montero P. 2009a. Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chem. 112:18–25 [Google Scholar]
  37. Gómez-Estaca J, Giménez B, Montero P, Gómez-Guillén MC. 2009b. Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. J. Food Eng. 92:78–85 [Google Scholar]
  38. Gómez-Estaca J, López de Lacey A, López-Caballero ME, Gómez-Guillén MC, Montero P. 2010. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 27:889–96 [Google Scholar]
  39. Guo L, Hou H, Li B, Zhang Z, Wang S. et al. 2013. Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochem. 48:988–93 [Google Scholar]
  40. Harnedy PA, FitzGerald RJ. 2012. Bioactive peptides from marine processing waste and shellfish: a review. J. Funct. Foods 4:6–24 [Google Scholar]
  41. Haug IJ, Draget KI. 2009. Gelatin. Handbook of Hydrocolloids GO Phillips, PA Williams 142–63 Cambridge: Woodhead Publ. [Google Scholar]
  42. Heu MS, Lee JH, Kim HJ, Jee SJ, Lee JS. et al. 2010. Characterization of acid- and pepsin-soluble collagens from flatfish skin. Food Sci. Biotechnol. 10:27–33 [Google Scholar]
  43. Hidalgo IJ, Brochardt TJ. 1989. Characterization of the human colon carcinoma cell cline (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–49 [Google Scholar]
  44. Himaya SWA, Ngo DH, Ryu B, Kim SK. 2012a. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-I converting enzyme (ACE) activity and cellular oxidative stress. Food Chem. 132:1872–82 [Google Scholar]
  45. Himaya SWA, Ryu B, Ngo DH, Kim SK. 2012b. Peptide isolated from Japanese flounder skin gelatin protects against cellular oxidative damage. J. Agric. Food Chem. 60:9112–19 [Google Scholar]
  46. Hubl W, Druml W, Langer K, Lochs H. 1989. Influence of molecular structure and plasma hydrolysis on the metabolism of glutamine-containing dipeptides in humans. Metabolism 38:59–62 [Google Scholar]
  47. Hulmes DJS, Killer A, Parrv AD, Piez KA, Woodhead-Galloway J. 1973. Analysis of the primary structure of collagen for the origin of molecular packing. J. Mol. Biol. 79:137–48 [Google Scholar]
  48. Ichikawa S, Morifuji M, Ohara H, Matsumoto H, Takeuchi Y, Sato K. 2010. Hydroxyproline-containing dipeptides and tripeptides quantified at high concentration in human blood after oral administration of gelatin hydrolysate. Int. J. Food Sci. Nutr. 61:52–60 [Google Scholar]
  49. Ichimura T, Yamanaka A, Otsuka T, Yamashita E, Maruyama S. 2009. Antihypertensive effect of enzymatic hydrolysate of collagen and gly-pro in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 73:2317–19 [Google Scholar]
  50. Itano N, Kimata K. 2002. Mammalian hyaluronan synthase. IUBMB Life 54:195–99 [Google Scholar]
  51. Iwai K, Hasegawa T, Taguchi Y, Morimatsu F, Sato K. et al. 2005. Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. J. Agric. Food Chem. 53:6531–36 [Google Scholar]
  52. Jaime I, Mela DJ, Bratchell N. 1993. A study of texture–flavor interactions using free-choice profiling. J. Sens. Stud. 8:177–88 [Google Scholar]
  53. Khantaphant S, Benjakul S. 2008. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comp. Biochem. Physiol. B 151:410–19 [Google Scholar]
  54. Kim S, Wijesekara I. 2010. Development and biological activities of marine derived bioactive peptides: a review. J. Funct. Foods 2:1–9 [Google Scholar]
  55. Kim SK, Kim YT, Byun HG, Nam KS, Joo DS, Shahidi F. 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food Chem. 49:1984–89 [Google Scholar]
  56. Kittiphattanabawon P, Benjakul S, Visessanguan W, Shahidi F. 2012a. Cryoprotective effect of gelatin hydrolysate from blacktip shark skin on surimi subjected to different freeze-thaw cycles. LWT - Food Sci. Technol. 47:437–42 [Google Scholar]
  57. Kittiphattanabawon P, Benjakul S, Visessanguan W, Shahidi F. 2012b. Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: antioxidant activity and its potential in model systems. Food Chem. 135:1118–26 [Google Scholar]
  58. Kittiphattanabawon P, Benjakul S, Visessanguan W, Shahidi F. 2013. Inhibition of angiotensin converting enzyme, human LDL cholesterol and DNA oxidation by hydrolysates from blacktip shark gelatin. LWT - Food Sci. Technol. 51:177–82 [Google Scholar]
  59. Klompong V, Benjakul S, Kantachote D, Hayes KD, Shahidi F. 2008. Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from alcalase and flavourzyme. Int. J. Food Sci. Tech. 43:1019–26 [Google Scholar]
  60. Kono T, Tanii T, Furukawa M, Mizuno N, Kitajima J. et al. 1990. Cell cycle analysis of human dermal fibroblasts cultured on or in hydrated type I collagen lattices. Arch. Dermatol. Res. 282:258–62 [Google Scholar]
  61. Krochta JM, Baldwin EA, Nisperos-Carriedo MO. 1994. Edible Coatings and Films to Improve Food Quality. Boca Raton, Fla.: CRC Press
  62. Laskin DL, Kimura T, Sakakibara S, Riley DJ, Berg RA. 1986. Chemotactic activity of collagen-like polypeptides for human peripheral blood neutrophils. J. Leukocyte Biol. 39:255–66 [Google Scholar]
  63. Li W, Fan J, Chen M, Guan S, Sawcer D. et al. 2004. Mechanism for human dermal fibroblast migration driven by type I collagen and platelet-derived growth factor-BB. Mol. Biol. Cell 15:294–309 [Google Scholar]
  64. Li-Chan ECY, Huang SL, Jao CL, Ho KP, Hsu KC. 2012. Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agric. Food Chem. 60:973–78 [Google Scholar]
  65. Lima SLT, Jesus MB, Sousa RRR, Okamoto AK, Lima R, Fraceto LF. 2008. Estudo da atividade proteolítica de enzimas presentes em frutos. Química Nova na Escola 28:47–49 [Google Scholar]
  66. Lin L, Lv S, Li B. 2012. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chem. 131:225–30 [Google Scholar]
  67. Liu DS, Liang L, Regenstein JM, Zhou P. 2012. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chem. 133:1441–48 [Google Scholar]
  68. Liu WT, Li GY, Miao YQ, Wu XH. 2009. Preparation and characterization of pepsin-solubilized type I collagen from the scales of snakehead (Ophiocephalus argus). J. Food Biochem. 33:20–37 [Google Scholar]
  69. Liu ZY, Oliveira ACM, Su YC. 2010. Characterization of pepsin-solubilized collagen from skin and connective tissue of giant red sea cucumber (Parastichopus californicus). J. Agric. Food Chem. 58:1270–74 [Google Scholar]
  70. Lobo V, Patil A, Phatak A, Chandra N. 2010. Free radicals, antioxidants and functional foods: impact on human health. Pharma. Rev. 4:118–26 [Google Scholar]
  71. Madene A, Jacquot M, Scher J, Desobry S. 2006. Flavour encapsulation and controlled release: a review. Int. J. Food Sci. Technol. 41:1–21 [Google Scholar]
  72. Martucci JF, Accareddu AEM, Ruseckaite RA. 2012. Preparation and characterization of plasticized gelatin films cross-linked with low concentrations of glutaraldehyde. J. Mater. Sci. 47:2382–3292 [Google Scholar]
  73. Martucci JF, Ruseckaite RA, Vázquez A. 2006. Creep of glutaraldehyde-crosslinked gelatin films. Mat. Sci. Eng. A 435–36:681–86 [Google Scholar]
  74. Matsuda N, Koyama Y, Hosaka Y, Ueda H, Watanabe T. et al. 2006. Effects of ingestion of collagen peptide on collagen fibrils and glycosaminoglycans in the dermis. J. Nutr. Sci. Vitaminol. 52:211–15 [Google Scholar]
  75. Matsumoto H, Ohara H, Itoh K, Nakamura Y, Takahashi S. 2006. Clinical effect of fish type I collagen hydrolysate on skin properties. ITE Lett. 7:386–90 [Google Scholar]
  76. McCormick RJ. 2009. Collagen. See Du & McCormick 2009 127–46
  77. Mendis E, Rajapakse N, Byun HG, Kim SK. 2005a. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 77:2166–78 [Google Scholar]
  78. Mendis E, Rajapakse N, Kim SK. 2005b. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 53:581–87 [Google Scholar]
  79. Mills S, Stanton C, Hill C, Ross RP. 2011. New developments and applications of bacteriocins and peptides in foods. Annu. Rev. Food Sci. Technol. 2:299–329 [Google Scholar]
  80. Minaguchi J, Koyama Y, Meguri N, Hosaka Y, Ueda H. et al. 2005. Effects of ingestion of collagen peptide on collagen fibrils and glycosaminoglycans in Achilles tendon. J. Nutr. Sci. Vitaminol. 51:169–74 [Google Scholar]
  81. Mizuta S, Hwang JH, Yoshinaka R. 2003. Molecular species of collagen in pectoral fin cartilage of skate (Raja kenojei). Food Chem. 80:1–7 [Google Scholar]
  82. Muyonga JH, Cole CGB, Duodu KG. 2004a. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chem. 85:81–89 [Google Scholar]
  83. Muyonga JH, Cole CGB, Duodu KG. 2004b. Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocoll. 18:581–92 [Google Scholar]
  84. Nagai T, Suzuki N, Nagashima T. 2008. Collagen from common minke whale (Balaenoptera acutorostrata) unesu. Food Chem. 111:296–301 [Google Scholar]
  85. Nakaba M, Koikeda T, Saitou Y. 2007. Effect of the elastin peptide derived from fish species for human skin. J. New Rem. Clin. 56:109–15 [Google Scholar]
  86. Ngo DH, Qian ZJ, Ryu BM, Partk JW, Kim SK. 2010. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J. Funct. Foods 2:107–17 [Google Scholar]
  87. Ngo DH, Ryu B, Vo TS, Himaya SWA, Wijesekara I, Kim SK. 2011. Free radical scavenging and angiotensin-I converting enzyme inhibitory peptides from Pacific cod (Gadus macrocephalus) skin gelatin. Int. J. Biol. Macromol. 49:1110–16 [Google Scholar]
  88. Nikoo M, Benjakul S, Ehsani A, Jing L, Fengfeng W. et al. 2014. Antioxidant and cryoprotective effects of a tetrapeptide isolated from Amur sturgeon skin gelatin. J. Funct. Foods 7:609–20 [Google Scholar]
  89. Nikoo M, Regenstein JM, Ghomi MR, Benjakul S, Yang N, Xu X. 2015. Study of the combined effects of a gelatin-derived cryoprotective peptide and a non-peptide antioxidant in a fish mince model system. LWT - Food Sci. Technol. 60:358–64 [Google Scholar]
  90. Nimni ME, Harkness RD. 1988. Molecular structures and functions of collagen. Collagen ME Nimni 1–78 Boca Raton, Fla.: CRC Press [Google Scholar]
  91. Nishimoto M, Sakamoto R, Mizuta S, Yoshinaka R. 2005. Identification and characterization of molecular species of collagen in ordinary muscle and skin of the Japanese flounder Paralichthys olivaceus. Food Chem. 90:151–56 [Google Scholar]
  92. Obara Y, Yamai S, Nikkawa T, Shimoda Y, Miyamoto Y. 1981. Preservation and transportation of bacteria by a simple gelatin disk method. J. Clin. Microbiol. 14:61–66 [Google Scholar]
  93. Oesser S, Adam M, Babel W, Seifert J. 1999. Oral administration of 14C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). J. Nutr. 129:1891–95 [Google Scholar]
  94. Ogawa M, Portier R, Moody MW, Bell J, Schexnayder MA, Losso JN. 2004. Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonia cromis) and sheepshead seabream (Archosargus probatocephalus). Food Chem. 88:495–501 [Google Scholar]
  95. Ohara H, Ichikawa S, Matsumoto H, Akiyama M, Fujimoto N. et al. 2010. Collagen-derived dipeptide, proline-hydroxyproline, stimulates cell proliferation and hyaluronic acid synthesis in cultured human derma fibroblasts. J. Dermatol. 37:330–38 [Google Scholar]
  96. Ohara H, Matsumoto H, Ito K, Iwai K, Sato K. 2007. Comparison of quantity and structures of hydroxyproline containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. J. Agric. Food Chem. 55:1532–35 [Google Scholar]
  97. Oz MC, Cosgrove DM III, Badduke BR, Hill JD, Flannery MR. et al. 2000. Controlled clinical trial of a novel hemostatic agent in cardiac surgery. Ann. Thorac. Surg. 69:1376–82 [Google Scholar]
  98. Pangborn RM, Szczesniak AS. 1974. Effect of hydrocolloids and viscosity on flavor and odor intensities of aromatic flavor compounds. J. Texture Stud. 4:467–82 [Google Scholar]
  99. Peña C, De La Caba K, Eceiza A, Ruseckaite R, Mondragon I. 2010. Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technol. 101:6836–42 [Google Scholar]
  100. Phanturat P, Benjakul S, Visessanguan W, Roytrakul S. 2010. Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT - Food Sci. Technol. 43:86–97 [Google Scholar]
  101. Postlethwaite AE, Kang A. 1976. Collagen and collagen peptide induced chemotaxis of human blood monocytes. J. Exp. Med. 143:1299–307 [Google Scholar]
  102. Postlethwaite AE, Seyer JM, Kang AH. 1978. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc. Natl. Acad. Sci. USA 75:871–75 [Google Scholar]
  103. Proksch E, Segger D, Degwert J, Schunck M, Zague V, Oesser S. 2014. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: a double-blind, placebo-controlled study. Skin Pharmacol. Physiol. 27:47–55 [Google Scholar]
  104. Regenstein JM, Chaudry MM, Regenstein CE. 2003. The kosher and halal food laws. Comp. Rev. Food Sci. F 2:111–17 [Google Scholar]
  105. Regenstein JM, Zhou P. 2007. Collagen and gelatin from marine by-product. Maximising the Value of Marine By-Products F Shahidi 279–303 Boca Raton, Fla.: CRC Press [Google Scholar]
  106. Rivero S, García MA, Pinotti A. 2010. Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innov. Food Sci. Emerg. 11:369–75 [Google Scholar]
  107. Saavalainen K, Pasonen-Seppanen S, Dunlop TW, Tammi R, Tammi MI, Carlberg C. 2005. The human hyaluronan synthase 2 gene is a primary retinoic acid and epidermal growth factor responding gene. J. Biol. Chem. 280:14636–44 [Google Scholar]
  108. Saito M, Takenouchi Y, Kunisaki N, Kimura S. 2001. Complete primary structure of rainbow trout type I collagen consisting of α1(I)α2(I)α3(I) heterotrimers. Eur. J. Biochem. 268:2817–27 [Google Scholar]
  109. Samaranayaka AGP, Li-Chan ECY. 2011. Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J. Funct. Foods 3:229–54 [Google Scholar]
  110. Sarmadi B, Ismail A. 2010. Antioxidative peptides from food proteins: a review. Peptides 31:1949–56 [Google Scholar]
  111. Sato K, Iwai K, Aito-Inoue M. 2008. Identification of food-derived bioactive peptides in blood and other biological samples. J. AOAC Int. 91:995–1001 [Google Scholar]
  112. Sato K, Yoshinaka R, Sato M, Itoh Y, Shimizu Y. 1988. Isolation of type I and V collagens from carp muscle. Comp. Biochem. Physiol. 90:155–58 [Google Scholar]
  113. Sato K, Yoshinaka R, Sato M, Tomita J. 1989. Biochemical characterization of collagen in myocommata and endomysium fractions of carp and spotted mackerel muscle. J. Food Sci. 54:1511–14 [Google Scholar]
  114. Secouard S, Malhiac C, Grisel M, Decroix B. 2003. Release of limonene from polysaccharide matrices: viscosity and synergy effect. Food Chem. 82:227–34 [Google Scholar]
  115. Senphan T, Benjakul S. 2014. Antioxidative activities of hydrolysates from seabass skin prepared using protease from hepatopancreas of Pacific white shrimp. J. Funct. Foods 6:147–56 [Google Scholar]
  116. Shahidi F, Zhong Y. 2010. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol. 112:930–40 [Google Scholar]
  117. Shigemura Y, Akaba S, Kawashima E, Park EY, Nakamura Y, Sato K. 2011. Identification of a novel food-derived collagen peptide, hydroxyprolyl-glycine, in human peripheral blood by pre-column derivatisation with phenyl isothiocyanate. Food Chem. 129:1019–24 [Google Scholar]
  118. Shigemura Y, Iwai K, Morimatsu F, Iwamoto T, Mori T. et al. 2009. Effect of prolyl-hydroxyproline (Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J. Agric. Food Chem. 57:444–49 [Google Scholar]
  119. Shigemura Y, Nakaba M, Shiratsuchi E, Suyama M, Yamada M. et al. 2012. Identification of food-derived elastin peptide, prolyl-glycine (Pro-Gly), in human blood after ingestion of elastin hydrolysate. J. Agric. Food Chem. 60:5128–33 [Google Scholar]
  120. Shubhra QTH. 2013. Gelatin film and fiber reinforced gelatin composites. See Boran 2013 87–110
  121. Silva Neves KC, Porto ALF, Teixeira MFS. 2006. Selecao de leveduras da regiao amazonica para producao de protease extracellular. Acta Amazonica 36:299–306 [Google Scholar]
  122. Stamp L. 1947. The preservation of bacteria by drying. J. Gen. Microbiol. 1:251–65 [Google Scholar]
  123. Sugihara F, Inoue N, Kuwamori M, Taniguchi M. 2012. Quantification of hydroxyprolyl-glycine (Hyp-Gly) in human blood after ingestion of collagen hydrolysate. J. Biosci. Bioeng. 113:202–3 [Google Scholar]
  124. Sun L, Zhang Y, Zhuang Y. 2013. Antiphotoaging effect and purification of an antioxidant peptide from tilapia (Oreochromis niloticus) gelatin peptides. J. Funct. Foods 5:154–62 [Google Scholar]
  125. Tanaka M, Koyama Y-I, Nomura Y. 2009. Effects of collagen peptide ingestion on UVB-induced skin damage. Biosci. Biotechnol. Biochem. 73:930–32 [Google Scholar]
  126. Terta M, Blekas G, Paraskevopoulou A. 2006. Retention of selected aroma compounds by polysaccharide solutions: a thermodynamic and kinetic approach. Food Hydrocoll. 20:863–71 [Google Scholar]
  127. Vanin FM, Sobral PJA, Menegalli FC, Carvalho RA, Habitante AMQB. 2005. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll. 19:899–907 [Google Scholar]
  128. Velasco J, Dobarganes C, Márquez-Ruiz G. 2010. Oxidative rancidity in foods and food quality. Chemical Deterioration and Physical Instability of Food and Beverages LF Skibested, J Risbo, ML Andersen 3–32 Cambridge, UK: Woodhead Publ. [Google Scholar]
  129. Vermelho AB, Meirelles MNL, Lopes A, Petinate SDG, Chaia AA, Branquinha MH. 1996. Detection of extracellular proteases from microorganisms on agar plates. Mem. Inst. Oswaldo Cruz 91:755–60 [Google Scholar]
  130. Vinokurov A, Glattstein B, Shor Y. 1998. The use of an adhesive lifter and pH indicator for the removal and enhancement of shoeprints in dust. J. Forensic Sci. 43:182–84 [Google Scholar]
  131. Wang L, An XX, Yang FM, Xin ZH, Zhao LY, Hu QH. 2008. Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella). Food Chem. 108:616–23 [Google Scholar]
  132. Wang S, Agyare K, Damodaran S. 2009. Optimisation of hydrolysis conditions and fractionation of peptide cryoprotectants from gelatin hydrolysate. Food Chem. 115:620–30 [Google Scholar]
  133. Watanabe-Kamiyama M, Shimizu M, Kamiyama S, Taguchi Y, Sone H. et al. 2010. Absorption and effectiveness of orally administered low molecular weight collagen hydrolysate in rats. J. Agric. Food Chem. 58:835–41 [Google Scholar]
  134. Xhauflaire-Uhoda E, Fontaine K, Pierard GE. 2008. Kinetics of moisturizing and firming effects of cosmetic formulations. Int. J. Cosmet. Sci. 30:131–38 [Google Scholar]
  135. Yaar M, Gilchrest BA. 2007. Photoageing: mechanism, prevention and therapy. Br. J. Dermatol. 157:874–87 [Google Scholar]
  136. Zague V. 2008. A new view concerning the effects of collagen hydrolysate intake on skin properties. Arch. Dermatol. Res. 300:479–83 [Google Scholar]
  137. Zague V, de Freitas V, da Costa Rosa M, de Castro GA, Jaeger RG, Machado-Santelli GM. 2011. Collagen hydrolysate intake increases skin collagen expression and suppresses matrix metalloproteinase 2 activity. J. Med. Food 14:618–24 [Google Scholar]
  138. Zhang Y, Duan X, Zhuang Y. 2012. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides 38:13–21 [Google Scholar]
  139. Zhou P, Mulvaney SJ, Regenstein JM. 2006. Properties of Alaska pollock skin gelatin: a comparison with tilapia and pork skin gelatins. J. Food Sci. 71:C313–21 [Google Scholar]
  140. Zhou P, Regenstein JM. 2004. Optimization of extraction conditions for pollock skin gelatin. J. Food Sci. 69:C393–98 [Google Scholar]
  141. Zhou P, Regenstein JM. 2005. Effects of alkaline and acid pretreatments on Alaska pollock skin gelatin extraction. J. Food Sci. 70:C392–96 [Google Scholar]
  142. Zhou P, Regenstein JM. 2009. Fish muscle. See Du & McCormick 2009 279–303
  143. Zivanovic S, Chi S, Draughon AF. 2005. Antimicrobial activity of chitosan films enriched with essential oils. J. Food Sci. 70:M45–51 [Google Scholar]
/content/journals/10.1146/annurev-food-031414-111800
Loading
/content/journals/10.1146/annurev-food-031414-111800
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error