1932

Abstract

Emerging technologies in antimicrobial coatings can help improve the quality and safety of our food supply. The goal of this review is to survey the major classes of antimicrobial agents explored for use in coatings and to describe the principles behind coating processes. Technologies from a range of fields, including biomedical and textiles research, as well as current applications in food contact materials, are addressed, and the technical hurdles that must be overcome to enable commercial adaptation to food processing equipment are critically evaluated.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-022814-015453
2015-04-10
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/food/6/1/annurev-food-022814-015453.html?itemId=/content/journals/10.1146/annurev-food-022814-015453&mimeType=html&fmt=ahah

Literature Cited

  1. Agion Antimicrob. 2014. Agion Antimicrobial Wakefield, MA: Agion Antimicrob http://www.agion-tech.com
  2. Ahmed A, Cavalli G, Bushell ME, Wardell JN, Pedley S. et al. 2011. New approach to produce water free of bacteria, viruses, and halogens in a recyclable system. Appl. Environ. Microbiol. 77:847–53 [Google Scholar]
  3. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H. et al. 2010. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22:1993–2027 [Google Scholar]
  4. Asri LATW, Crismaru M, Roest S, Chen Y, Ivashenko O. et al. 2014. A shape-adaptive, antibacterial-coating of immobilized quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action. Adv. Funct. Mater. 24:346–55 [Google Scholar]
  5. Avila-Sosa R, Hernández-Zamoran E, López-Mendoza I, Palou E, Munguía MTJ. et al. 2010. Fungal inactivation by Mexican oregano (Lippia berlandieri Schauer) essential oil added to amaranth, chitosan, or starch edible films. J. Food Sci. 75:M127–33 [Google Scholar]
  6. Avila-Sosa R, Palou E, Munguía MTJ, Nevárez-Moorillón GV, Cruz ARN, López-Malo A. 2012. Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int. J. Food Microbiol. 153:66–72 [Google Scholar]
  7. Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils – a review. Food Chem. Toxicol. 46:446–75 [Google Scholar]
  8. Barish JA, Goddard JM. 2013. Anti-fouling surface modified stainless steel for food processing. Food Bioprod. Process. 91:352–61 [Google Scholar]
  9. Bastarrachea L, Dhawan S, Sablani SS, Mah J, Kang D. et al. 2010. Biodegradable poly(butylene adipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against Listeria innocua. J. Food Sci. 75:E215–24 [Google Scholar]
  10. Bastarrachea LJ, Goddard JM. 2013. Development of antimicrobial stainless steel via surface modification with N-halamines: characterization of surface chemistry and N-halamine chlorination. J. Appl. Polym. Sci. 127:821–31 [Google Scholar]
  11. Bastarrachea LJ, McLandsborough L, Peleg M, Goddard JM. 2014. Antimicrobial N-halamine modified polyethylene: characterization, biocidal efficacy, regeneration and stability. J. Food Sci. 79:E887–97 [Google Scholar]
  12. Bastarrachea LJ, Peleg M, McLandsborough LA, Goddard JM. 2013. Inactivation of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer deposition of the antimicrobial N-halamine. J. Food Eng. 117:52–58 [Google Scholar]
  13. Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI. 2010. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. PNAS 107:22038–43 [Google Scholar]
  14. Bhattacharya A, Rawlins JW, Ray P. 2009. Polymer Grafting and Crosslinking Hoboken, NJ: John Wiley
  15. Bratskaya S, Marinin D, Simon F, Synytska A, Zschoche S. et al. 2007. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/κ-carrageenan multilayers. Biomacromolecules 8:2960–68 [Google Scholar]
  16. Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A. 2012. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int. J. Antimicrob. Agents 39:381–89 [Google Scholar]
  17. Cao Z, Sun Y. 2009. Polymeric N-halamine latex emulsions for use in antimicrobial paints. ACS Appl. Mater. Interfaces 1:494–504 [Google Scholar]
  18. Cerkez I, Kocer HB, Worley SD, Broughton RM, Huang TS. 2011. N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 27:4091–97 [Google Scholar]
  19. Chan CM. 1993. Polymer Surface Modification and Characterization New York: Carl Hanser
  20. Chen NH, Chung CJ, Chiang CC, Chen KC, He JL. 2013. Antimicrobial and decorative ion-plated copper-containing ceramic coatings. Surf. Coat. Technol. 236:29–35 [Google Scholar]
  21. Chen R, Willcox MDP, Cole N, Ho KKK, Rasul R. et al. 2012. Characterization of chemoselective surface attachment of the cationic peptide melimine and its effects on antimicrobial activity. Acta Biomater. 8:4371–79 [Google Scholar]
  22. Chrzanowski W, Valappil SP, Dunnill CW, Neel EAA, Lee K. et al. 2010. Impaired bacterial attachment to light activated Ni-Ti alloy. Mater. Sci. Eng. C. 30:225–34 [Google Scholar]
  23. Chua PH, Neoh KG, Shi Z, Kang ET. 2008. Structural stability and bioapplicability assessment of hyaluronic acid–chitosan polyelectrolyte multilayers on titanium substrates. J. Biomed. Mater. Res. Part A 87A:1061–74 [Google Scholar]
  24. Chung CJ, Chiang CC, Chen CH, Hsiao CH, Lin HI. et al. 2008. Photocatalytic TiO2 on copper alloy for antimicrobial purposes. Appl. Catal. B Environ. 85:103–8 [Google Scholar]
  25. Cleland M, Singh A, Silverman J. 1992. Radiation Processing of Polymers Munich: Hanser
  26. Cools I, Uyttendaele M, Cerpentier J, D'Haese E, Nelis HJ, Debevere J. 2005. Persistence of Campylobacter jejuni on surfaces in a processing environment and on cutting boards. Lett. Appl. Microbiol. 40:418–23 [Google Scholar]
  27. Cowan MM, Abshire KZ, Houk SL, Evans SM. 2003. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J. Ind. Microbiol. Biotechnol. 30:102–6 [Google Scholar]
  28. Cutter CN. 1999. The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces. J. Food Prot. 62:474–79 [Google Scholar]
  29. Dargaville TR, George GA, Hill DJ, Whittaker AK. 2003. High energy radiation grafting of fluoropolymers. Prog. Polym. Sci. 28:1355–76 [Google Scholar]
  30. da Rocha M, Loiko MR, Tondo EC, Prentice C. 2014. Physical, mechanical and antimicrobial properties of Argentine anchovy (Engraulis anchoita) protein films incorporated with organic acids. Food Hydrocoll. 37:213–20 [Google Scholar]
  31. Das M, Saxena N, Dwivedi PD. 2009. Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicology 3:10–18 [Google Scholar]
  32. Decher G, Eckle M, Schmitt J, Struth B. 1998. Layer-by-layer assembled multicomposite films. Curr. Opin. Colloid Interface Sci. 3:32–39 [Google Scholar]
  33. Decraene V, Pratten J, Wilson M. 2008. Novel light-activated antimicrobial coatings are effective against surface-deposited Staphylococcus aureus. Curr. Microbiol. 57:269–73 [Google Scholar]
  34. Dong A, Huang J, Lan S, Wang T, Xiao L. et al. 2011. Synthesis of N-halamine-functionalized silica–polymer core–shell nanoparticles and their enhanced antibacterial activity. Nanotechnology 22:295602 [Google Scholar]
  35. Dubas ST, Kumlangdudsana P, Potiyaraj P. 2006. Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf. Physicochem. Eng. Asp. 289:105–9 [Google Scholar]
  36. Dvoracek CM, Sukhonosova G, Benedik MJ, Grunlan JC. 2009. Antimicrobial behavior of polyelectrolyte-surfactant thin film assemblies. Langmuir 25:10322–28 [Google Scholar]
  37. Eknoian MW, Worley SD, Harris JM. 1998. New biocidal N-halamine-PEG polymers. J. Bioact. Compat. Polym. 13:136–45 [Google Scholar]
  38. Elsabee MZ, Abdou ES, Nagy KSA, Eweis M. 2008. Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohydr. Polym. 71:187–95 [Google Scholar]
  39. Fang B, Jiang Y, Rotello VM, Nuesslein K, Santore MM. 2014. Easy come easy go: surfaces containing immobilized nanoparticles or isolated polycation chains facilitate removal of captured Staphylococcus aureus by retarding bacterial bond maturation. ACS Nano 8:1180–90 [Google Scholar]
  40. FDA (U.S. Food Drug Admin.) 2014. Inventory of effective food contact substance (FCS) notifications Silver Spring, MD: US Food Drug Admin http://www.accessdata.fda.gov/scripts/fdcc/?set=FCN [Google Scholar]
  41. Feng Y, Han Z, Peng J, Lu J, Xue B. et al. 2006. Fabrication and characterization of multilayer films based on Keggin-type polyoxometalate and chitosan. Mater. Lett. 60:1588–93 [Google Scholar]
  42. Gao G, Yu K, Kindrachuk J, Brooks DE, Hancock REW, Kizhakkedathu JN. 2011. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Biomacromolecules 12:3715–27 [Google Scholar]
  43. Ghodssi R, Lin P. 2011. MEMS Materials and Processes Handbook New York: Springer
  44. Gilbert P, Moore L. 2005. Cationic antiseptics: diversity of action under a common epithet. J. Appl. Microbiol. 99:703–15 [Google Scholar]
  45. Glinel K, Thebault P, Humblot V, Pradier CM, Jouenne T. 2012. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 8:1670–84 [Google Scholar]
  46. Goddard JM, Hotchkiss JH. 2008. Rechargeable antimicrobial surface modification of polyethylene. J. Food Prot. 71:2042–47 [Google Scholar]
  47. Goldschmidt A, Streitberger HJ. 2003. BASF Handbook on Basics of Coating Technology Hannover, Ger: Vincentz
  48. Gomes AP, Mano JF, Queiroz JA, Gouveia IC. 2013. Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: a new strategy to develop bioactive textiles. Polym. Adv. Technol. 24:1005–10 [Google Scholar]
  49. Gray J, Norton P, Alnouno R, Marolda C, Valvano M, Griffiths K. 2003. Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials 24:2759–65 [Google Scholar]
  50. Grunlan J, Choi J, Lin A. 2005. Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromolecules 6:1149–53 [Google Scholar]
  51. Guarda A, Rubilar JF, Miltz J, Galotto MJ. 2011. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 146:144–50 [Google Scholar]
  52. Han X, Soblosky L, Slutsky M, Mello CM, Chen Z. 2011. Solvent effect and time-dependent behavior of C-terminus-cysteine-modified cecropin P1 chemically immobilized on a polymer surface. Langmuir 27:7042–51 [Google Scholar]
  53. He T, Chan V. 2010. Covalent layer-by-layer assembly of polyethyleneimine multilayer for antibacterial applications. J. Biomed. Mater. Res. Part A 95A:454–64 [Google Scholar]
  54. Héquet A, Humblot V, Berjeaud J, Pradier C. 2011. Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloids Surf. B 84:301–9 [Google Scholar]
  55. Huang Z. 2005. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 4:283–93 [Google Scholar]
  56. Hui F, Debiemme-Chouvy C. 2013. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules 14:585–601 [Google Scholar]
  57. Humblot V, Yala J, Thebault P, Boukerma K, Héquet A. et al. 2009. The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30:3503–12 [Google Scholar]
  58. Ikeda T, Hirayama H, Yamaguchi H, Tazuke S, Watanabe M. 1986. Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother. 30:132–36 [Google Scholar]
  59. Irikura H, Hasegawa Y, Takahashi Y. 2003. Preparation of antibacterial polyimide film by vapor deposition polymerization. J. Photopolym. Sci. Technol. 16:273–76 [Google Scholar]
  60. Ismail S, Perni S, Pratten J, Parkin I, Wilson M. 2011. Efficacy of a novel light-activated antimicrobial coating for disinfecting hospital surfaces. Infect. Control Hosp. Epidemiol. 32:1130–32 [Google Scholar]
  61. Izquierdo A, Ono S, Voegel J, Schaaf P, Decher G. 2005. Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21:7558–67 [Google Scholar]
  62. Jampala SN, Sarmadi M, Somers EB, Wong ACL, Denes FS. 2008. Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Langmuir 24:8583–91 [Google Scholar]
  63. Jiang H, Manolache S, Wong A, Denes F. 2004. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 93:1411–22 [Google Scholar]
  64. Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y. 2003. Polymer surface with graft chains. Prog. Polym. Sci. 28:209–59 [Google Scholar]
  65. Kenawy E, Worley SD, Broughton R. 2007. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–84 [Google Scholar]
  66. Khalil RKS. 2013. Selective removal and inactivation of bacteria by nanoparticle composites prepared by surface modification of montmorillonite with quaternary ammonium compounds. World J. Microbiol. Biotechnol. 29:1839–50 [Google Scholar]
  67. Kim B, Park S. 2008. Antibacterial behavior of transition-metals-decorated activated carbon fibers. J. Colloid Interface Sci. 325:297–99 [Google Scholar]
  68. Kocer HB. 2012. Residual disinfection with N-halamine based antimicrobial paints. Prog. Org. Coat. 74:100–5 [Google Scholar]
  69. Kocer HB, Akdag A, Worley SD, Acevedo O, Broughton RM, Wu Y. 2010. Mechanism of photolytic decomposition of N-halamine antimicrobial siloxane coatings. ACS Appl. Mater. Interfaces 2:2456–64 [Google Scholar]
  70. Kocer HB, Worley SD, Broughton RM, Huang TS. 2011. A novel N-halamine acrylamide monomer and its copolymers for antimicrobial coatings. React. Funct. Polym. 71:561–68 [Google Scholar]
  71. Kou L, Liang J, Ren X, Kocer HB, Worley SD. et al. 2009. Novel N-halamine silanes. Colloids Surf. A 345:88–94 [Google Scholar]
  72. Kugler R, Bouloussa O, Rondelez F. 2005. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–48 [Google Scholar]
  73. Lauten SD, Sarvis H, Wheatley WB, Williams DE, Mora EC, Worley SD. 1992. Efficacies of novel N-halamine disinfectants against Salmonella and Pseudomonas species. Appl. Environ. Microbiol. 58:1240–43 [Google Scholar]
  74. Lee HJ, Lee SG, Oh EJ, Chung HY, Han SI. et al. 2011. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion. Colloids Surf. B 88:505–11 [Google Scholar]
  75. Lee J, Whang HS. 2011. Poly(vinyl alcohol) blend film with m-aramid as an N-halamine precursor for antimicrobial activity. J. Appl. Polym. Sci. 122:2345–50 [Google Scholar]
  76. Lemire JA, Harrison JJ, Turner RJ. 2013. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11:371–84 [Google Scholar]
  77. Liang J, Wu R, Wang JW, Barnes K, Worley SD. et al. 2007. N-halamine biocidal coatings. J. Ind. Microbiol. Biotechnol. 34:157–63 [Google Scholar]
  78. Lichter JA, Van Vliet KJ, Rubner MF. 2009. Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–86 [Google Scholar]
  79. Liu Y, Zheng Z, Zara JN, Hsu C, Soofer DE. et al. 2012. The antimicrobial and osteoinductive properties of silver nanoparticle/poly(DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 33:8745–56 [Google Scholar]
  80. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A. 2012. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci. Technol. 24:19–29 [Google Scholar]
  81. Maillard J, Hartemann P. 2013. Silver as an antimicrobial: facts and gaps in knowledge. Crit. Rev. Microbiol. 39:373–83 [Google Scholar]
  82. Mallory GO, Hajdu JB. 1990. Electroless Plating: Fundamentals and Applications New York: William Andrew
  83. Mansilla AY, Albertengo L, Rodríguez MS, Debbaudt A, Zúñiga A, Casalongué CA. 2013. Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl. Microbiol. Biotechnol. 97:6957–66 [Google Scholar]
  84. Marambio-Jones C, Hoek EMV. 2010. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12:1531–51 [Google Scholar]
  85. Martin J. 2014. EPA takes action to protect public from an illegal nano silver pesticide in food containers; cites NJ company for selling food containers with an unregistered pesticide warns large retailers not to sell these products. News Release, Mar. 31. http://yosemite.epa.gov/opa/admpress.nsf/0/6469952CDBC19A4585257CAC0053E637
  86. Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. 2007. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials 28:909–15 [Google Scholar]
  87. Mauter MS, Wang Y, Okemgbo KC, Osuji CO, Giannelis EP, Elimelech M. 2011. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl. Mater. Interfaces 3:2861–68 [Google Scholar]
  88. Møretrø T, Langsrud S. 2011. Effects of materials containing antimicrobial compounds on food hygiene. J. Food Prot. 74:1200–11 [Google Scholar]
  89. Munro IC, Haighton LA, Lynch BS, Tafazoli S. 2009. Technological challenges of addressing new and more complex migrating products from novel food packaging materials. Food Addit. Contam. A 26:1534–46 [Google Scholar]
  90. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. 2007. Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials 28:4870–79 [Google Scholar]
  91. Noimark S, Bovis M, MacRobert AJ, Correia A, Allan E. et al. 2013. Photobactericidal polymers; the incorporation of crystal violet and nanogold into medical grade silicone. RSC Adv. 3:18383–94 [Google Scholar]
  92. Noimark S, Dunnill CW, Kay CWM, Perni S, Prokopovich P. et al. 2012. Incorporation of methylene blue and nanogold into polyvinyl chloride catheters; a new approach for light-activated disinfection of surfaces. J. Mater. Chem. 22:15388–96 [Google Scholar]
  93. Noyce JO, Michels H, Keevil CW. 2006. Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol. 72:4239–44 [Google Scholar]
  94. Onnis-Hayden A, Hsu BB, Klibanov AM, Gu AZ. 2011. An antimicrobial polycationic sand filter for water disinfection. Water Sci. Technol. 63:1997–2003 [Google Scholar]
  95. Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M. 2004. Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. J. Agric. Food Chem. 52:5598–605 [Google Scholar]
  96. Park JH, Sudarshan TS. 2001. Chemical Vapor Deposition Materials Park, OH: ASM Int.
  97. Perez Espitia PJ, Ferreira Soares NDF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Alves Medeiros EA. 2012. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess. Tech. 5:1447–64 [Google Scholar]
  98. Periolatto M, Ferrero F, Vineis C. 2012. Antimicrobial chitosan finish of cotton and silk fabrics by UV-curing with 2-hydroxy-2-methylphenylpropane-1-one. Carbohydr. Polym. 88:201–5 [Google Scholar]
  99. Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W. et al. 2009. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93 [Google Scholar]
  100. Pierson HO. 1999. Handbook of Chemical Vapor Deposition: Principles, Technology and Applications New York: William Andrew
  101. Qian L, Sun G. 2003. Durable and regenerable antimicrobial textiles: synthesis and applications of 3-methylol-2,2,5,5-tetramethylimidazolidin-4-one (MTMIO). J. Appl. Polym. Sci. 89:2418–25 [Google Scholar]
  102. Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27:76–83 [Google Scholar]
  103. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. 2012. Biomaterials Science: An Introduction to Materials in Medicine Saint Louis, MO: Academic
  104. Raynor JE, Capadona JR, Collard DM, Petrie TA, García AJ. 2009. Polymer brushes and self-assembled monolayers: versatile platforms to control cell adhesion to biomaterials (review). Biointerphases 4FA3–16
  105. Ren X, Kocer HB, Worley SD, Broughton RM, Huang TS. 2013. Biocidal nanofibers via electrospinning. J. Appl. Polym. Sci. 127:3192–97 [Google Scholar]
  106. Rodriguez A, Autio WR, McLandsborough LA. 2007. Effect of biofilm dryness on the transfer of Listeria monocytogenes biofilms grown on stainless steel to bologna and hard salami. J. Food Prot. 70:2480–84 [Google Scholar]
  107. Roman MJ, Tian F, Decker EA, Goddard JM. 2014. Iron chelating polypropylene films: manipulating photoinitiated graft polymerization to tailor chelating activity. J. Appl. Polym. Sci. 131:39948 [Google Scholar]
  108. Saad NY, Muller CD, Lobstein A. 2013. Major bioactivities and mechanism of action of essential oils and their components. Flavour Frag. J. 28:269–79 [Google Scholar]
  109. Seow YX, Yeo CR, Chung HL, Yuk H. 2014. Plant essential oils as active antimicrobial agents. Crit. Rev. Food Sci. Nutr. 54:625–44 [Google Scholar]
  110. Sgolastra F, Deronde BM, Sarapas JM, Som A, Tew GN. 2013. Designing mimics of membrane active proteins. Acc. Chem. Res. 46:2977–87 [Google Scholar]
  111. Stranak V, Wulff H, Ksirova P, Zietz C, Drache S. et al. 2014. Ionized vapor deposition of antimicrobial Ti-Cu films with controlled copper release. Thin Solid Films. 550:389–94 [Google Scholar]
  112. Sun G, Hong KH. 2013. Photo-induced antimicrobial and decontaminating agents: recent progresses in polymer and textile applications. Text. Res. J. 83:532–42 [Google Scholar]
  113. Sun YY, Sun G. 2003. Novel refreshable N-halamine polymeric biocides: grafting hydantoin-containing monomers onto high performance fibers by a continuous process. J. Appl. Polym. Sci. 88:1032–39 [Google Scholar]
  114. Sun YY, Sun G. 2001. Novel regenerable N-halamine polymeric biocides. III. Grafting hydantoin-containing monomers onto synthetic fabrics. J. Appl. Polym. Sci. 81:1517–25 [Google Scholar]
  115. Suppakul P, Sonneveld K, Bigger SW, Miltz J. 2011. Loss of AM additives from antimicrobial films during storage. J. Food Eng. 105:270–76 [Google Scholar]
  116. Tam LT, Phan VN, Lan H, Thuy NT, Hien TM. et al. 2013. Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique. Appl. Phys. A: Mater. Sci. Process. 113:613–21 [Google Scholar]
  117. Tan KT, Obendorf SK. 2007. Development of an antimicrobial microporous polyurethane membrane. J. Membr. Sci. 289:199–209 [Google Scholar]
  118. Tiller JC, Liao CJ, Lewis K, Klibanov AM. 2001. Designing surfaces that kill bacteria on contact. PNAS 98:5981–85 [Google Scholar]
  119. Vignesh G, Arunachalam S, Vignesh S, James RA. 2012. BSA binding and antimicrobial studies of branched polyethyleneimine–copper(II)bipyridine/phenanthroline complexes. Spectrochim. Acta Part A 96:108–16 [Google Scholar]
  120. Vorst KL, Todd ECD, Ryser ET. 2006. Transfer of Listeria monocytogenes during mechanical slicing of turkey breast, bologna, and salami. J. Food Prot. 69:619–26 [Google Scholar]
  121. Wang B, Navath RS, Menjoge AR, Balakrishnan B, Bellair R. et al. 2010. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int. J. Pharm. 395:298–308 [Google Scholar]
  122. Wang L, Chen J, Shi L, Shi Z, Ren L, Wang Y. 2014. The promotion of antimicrobial activity on silicon substrates using a click immobilized short peptide. Chem. Commun. 50:975–77 [Google Scholar]
  123. Wang Q, Uzunoglu E, Wu Y, Libera M. 2012. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces. ACS Appl. Mater. Interfaces 4:2498–506 [Google Scholar]
  124. Wang Z, von dem Bussche A, Kabadi PK, Kane AB, Hurt RH. 2013. Biological and environmental transformations of copper-based nanomaterials. ACS Nano 7:8715–27 [Google Scholar]
  125. Wilks SA, Michels HT, Keevil CW. 2006. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int. J. Food Microbiol. 111:93–98 [Google Scholar]
  126. Williams DE, Swango LJ, Wilt GR, Worley SD. 1991. Effect of organic N-halamines on selected membrane functions in intact Staphylococcus aureus cells. Appl. Environ. Microbiol. 57:1121–27 [Google Scholar]
  127. Williams DE, Worley SD, Barnela SB, Swango LJ. 1987. Bactericidal activities of selected organic N-halamines. Appl. Environ. Microbiol. 53:2082–89 [Google Scholar]
  128. Williams JF, Suess J, Santiago J, Chen Y, Wang J. et al. 2005. Antimicrobial properties of novel n-halamine siloxane coatings. Surf. Coat. Int. Pt. B Coat. Trans. 88:35–39 [Google Scholar]
  129. Worley BS, Wheatley WB, Lauten SD, Williams DE, Mora EC, Worley SD. 1992. Inactivation of Salmonella enteritidis on shell eggs by novel N-halamine biocidal compounds. J. Ind. Microbiol. 11:37–42 [Google Scholar]
  130. Worley SD, Williams DE. 1988. Halamine water disinfectants. CRC Crit. Rev. Env. Contr. 18:133–75 [Google Scholar]
  131. Worley SD, Sun G. 1996. Biocidal polymers. Trends Polym. Sci. 4:364–70 [Google Scholar]
  132. Xia B, Dong C, Lu Y, Rong M, Lv YZ, Shi J. 2011. Preparation and characterization of chemically-crosslinked polyethyleneimine films on hydroxylated surfaces for stable bactericidal coatings. Thin Solid Films. 520:1120–24 [Google Scholar]
  133. Yang M, Lin W. 2002. The grafting of chitosan oligomer to polysulfone membrane via ozone-treatment and its effect on anti-bacterial activity. J. Polym. Res. 9:135–40 [Google Scholar]
  134. Yu J, Ho W, Lin J, Yip K, Wong P. 2003. Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37:2296–301 [Google Scholar]
  135. Yu K, Huang Y, Yang S. 2013. The antifungal efficacy of nano-metals supported TiO2 and ozone on the resistant Aspergillus niger spore. J. Hazard. Mater. 261:155–62 [Google Scholar]
  136. Yudovin-Farber I, Golenser J, Beyth N, Weiss EI, Domb AJ. 2010. Quaternary ammonium polyethyleneimine: antibacterial activity. J. Nanomater. 2010:826343 [Google Scholar]
  137. Yun H, Kim JD, Choi HC, Lee CW. 2013. Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull. Korean Chem. Soc. 34:3261–64 [Google Scholar]
  138. Zasadzinski JA, Viswanathan R, Madsen L, Garnaes J, Schwartz DK. 1994. Langmuir-Blodgett films. Science 263:1726–38 [Google Scholar]
  139. Zhang W, Shi X, Huang J, Zhang Y, Wu Z, Xian Y. 2012. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity. ChemPhysChem 13:3388–96 [Google Scholar]
  140. Zhao B, Brittain WJ. 2000. Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25:677–710 [Google Scholar]
  141. Zhao Z, Sakagami Y, Osaka T. 1998. Toxicity of hydrogen peroxide produced by electroplated coatings to pathogenic bacteria. Can. J. Microbiol. 44:441–47 [Google Scholar]
/content/journals/10.1146/annurev-food-022814-015453
Loading
/content/journals/10.1146/annurev-food-022814-015453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error