Because, in general, native starches do not have properties that make them ideally suited for applications in food products, most starch is modified by dervatization to improve its functionality before use in processed food formulations, and because food processors would prefer not to have to use the modified food starch label designation required when chemically modified starches are used, there is considerable interest in providing starches with desired functionalities that have not been chemically modified. One investigated approach is property modification via physical treatments, that is, modifications of starches imparted by physical treatments that do not result in any chemical modification of the starch. Physical treatments are divided into thermal and nonthermal treatments. Thermal treatments include those that produce pregelatinized and granular cold-water-swelling starches, heat-moisture treatments, annealing, microwave heating, so-called osmotic pressure treatment, and heating of dry starch. Nonthermal treatments include ultrahigh-pressure treatments, instantaneous controlled pressure drop, use of high-pressure homogenizers, dynamic pulsed pressure, pulsed electric field, and freezing and thawing.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abraham TE. 1993. Stabilization of paste viscosity of cassava starch by heat moisture treatment. Starch - Stärke 45:131–35 [Google Scholar]
  2. Adebowale KO, Henle T, Schwarzenbolz W, Doert T. 2009. Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch I: heat moisture treatments and annealing. Food Hydrocoll. 23:1947–57 [Google Scholar]
  3. Adebowale KO, Lawal OS. 2003. Microstructure, physicochemical properties and retrogradation behaviour of Mucuna bean (Mucuna pruriens) starch on heat moisture treatments. Food Hydrocoll. 17:265–72 [Google Scholar]
  4. Alsberg CL, Griffing EP. 1925. Effect of fine grinding upon flour. Cereal Chem. 2:325–44 [Google Scholar]
  5. Alvani K, Qi X, Tester RF. 2012. Gelatinisation properties of native and annealed potato starches. Starch - Stärke 64:297–303 [Google Scholar]
  6. Alvani K, Tester RF, Lin CL, Qi X. 2014. Amylolysis of native and annealed potato starches following progressive gelatinization. Food Hydrocoll. 36:273–77 [Google Scholar]
  7. Am. Assoc. Cereal Chem. 2000. Method 76-31: Determination of damaged starch—spectrophotometric method. Approved Methods of the AACC St. Paul, MN: AACC Int., 10th ed.. [Google Scholar]
  8. Amadou I, Gounga ME, Shi YH, Le GW. 2014. Fermentation and heat-moisture treatment induced changes on the physicochemical properties of foxtail millet (Setaria italica) flour. Food Bioprod. Process. 92:38–45 [Google Scholar]
  9. Ambigaipalan P, Hoover R, Donner E, Liu Q. 2014. Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chem. 143:175–84 [Google Scholar]
  10. Amelia I, BeMiller JN. 2009. Preparation of nonfragmented, completely amorphous, pregelatinized maize starches and determination of the effects of fragmentation on the adhesiveness of their pastes. Starch - Stärke 61:696–701 [Google Scholar]
  11. Anderson AK, Guraya HS. 2006. Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches. Food Chem. 97:318–23 [Google Scholar]
  12. Anderson AK, Guraya HS, James C, Salvaggio L. 2002. Digestibility and pasting properties of rice starch heat-moisture treated at the melting temperature (Tm). Starch - Stärke 54:401–9 [Google Scholar]
  13. Andrade MMP, de Oliveira CS, Colman TAD, da Costa FJOG, Schnitzler E. 2014. Effects of heat–moisture treatment on organic cassava starch: thermal, rheological, and structural study. J. Therm. Anal. Calorim. 115:2115–22 [Google Scholar]
  14. Apar DK, Turhan M, Ozbek B. 2006. Enzymatic hydrolysis of starch by using a sonifier. Chem. Eng. Commun. 193:1117–26 [Google Scholar]
  15. Arai S, Oosawa J, Sakamoto K. 1989. Manufacture of gelatinized starch particles. JP Patent No. 01174501 (Abstr.)
  16. Azhar A, Hamdy MK. 1979. Sonication effect on potato starch and sweet potato powder. J. Food Sci. 44:801–4 [Google Scholar]
  17. Bahrani SA, Loisel C, Maache-Rezzoug Z, Valle DD, Rezzoug S-A. 2013. Rheological and viscoelastic properties of corn starch suspension modified by hydrothermal process: impacts of process intensification. Chem. Eng. Process. 64:10–16 [Google Scholar]
  18. Bahrani SA, Loisel C, Rezzoug S-A, Doublier J-L, Maache-Rezzoug Z. 2012. Role of vacuum step added before and after steaming treatment of maize starch. Impact on pasting, morphological and rheological properties. Carbohydr. Polym. 89:810–20 [Google Scholar]
  19. Balasubramanian S, Sharma R, Kaur J, Bhardwaj N. 2014. Characterization of modified pearl millet (Pennisetum typhoides) starch. J. Food Sci. Technol. 51:294–300 [Google Scholar]
  20. Barth HG, Carlin FJ. 1984. A review of polymer shear degradation in size-exclusion chromatography. J. Liq. Chromatogr. 7:1717–38 [Google Scholar]
  21. Bauer BA, Hartmann M, Sommer K, Knorr D. 2004. Optical in situ analysis of starch granules under high pressure with a high pressure cell. Innov. Food Sci. Emerg. Technol. 5:293–98 [Google Scholar]
  22. Bauer BA, Knorr D. 2004. Electrical conductivity: a new tool for the determination of high hydrostatic pressure-induced starch gelatinization. Innov. Food Sci. Emerg. Technol. 5:437–42 [Google Scholar]
  23. Bauer BA, Knorr D. 2005. The impact of pressure, temperature and treatment time on starches: pressure-induced starch gelatinization as pressure time temperature indicator for high hydrostatic pressure processing. J. Food Eng. 68:329–34 [Google Scholar]
  24. Bauer BA, Wiehle T, Knorr D. 2005. Impact of high hydrostatic pressure treatment on the resistant starch content of wheat starch. Starch - Stärke 57:124–33 [Google Scholar]
  25. Bel Haaj S, Magnin A, Pétrier C, Boufi S. 2013. Starch nanoparticles formation via high power ultrasonication. Carbohydr. Polym. 92:1625–32 [Google Scholar]
  26. Berckmans M, Coppin JVJ-M, Debon SJJ. 2013. Process for modifying starches. US Patent No. 20130029026
  27. Bertoft E, Koch K, Åman P. 2012. Building blocks of clusters in amylopectin from different structural types. Int. J. Biol. Macromol. 50:1212–23 [Google Scholar]
  28. Bertolini AC, Mestres C, Colonna P, Raffi J. 2001. Free radical formation in UV- and gamma-irradiated cassava starch. Carbohydr. Polym. 44:269–71 [Google Scholar]
  29. Bi L-Z, Liu Z-D, Yang Y-M, Gong B-Q, Guo P-P. 2012. Study on ultrasonic-enzyme technology for production of slowly digestible starch. Zhongguo Shipin Tianjiaji 2012:177 (Abstr.) [Google Scholar]
  30. Biliaderis CG. 2009. Structural transitions and related physical properties of starch. Starch: Chemistry and Technology J BeMiller, RL Whistler 293–372 Burlington, MA: Acad., 3rd ed.. [Google Scholar]
  31. Błaszczak W, Fornal J, Valverde S, Garrido L. 2005a. Pressure-induced changes in the structure of corn starches with different amylose content. Carbohydr. Polym. 61:132–40 [Google Scholar]
  32. Błaszczak W, Valverde S, Fornal J. 2005b. Effect of high pressure on the structure of potato starch. Carbohydr. Polym. 59:377–83 [Google Scholar]
  33. Brown HT, Heron J. 1879. Contributions to the history of starch and its transformations. J. Chem. Soc. 1879:596–654 [Google Scholar]
  34. Brumovsky JO, Thompson DB. 2001. Production of boiling-stable granular resistant starch by partial acid hydrolysis and hydrothermal treatments of high-amylose maize starch. Cereal Chem. 78:680–89 [Google Scholar]
  35. Cameron DK, Wang Y-J. 2006. Application of protease and high-intensity ultrasound in corn starch isolation from degermed corn flour. Cereal Chem. 83:505–9 [Google Scholar]
  36. Cham S, Suwannaporn P. 2010. Effect of hydrothermal treatment of rice flour on various rice noodles quality. J. Cereal Sci. 51:285–91 [Google Scholar]
  37. Chan H-T, Bhat R, Karim AA. 2010. Effects of sodium dodecyl sulphate and sonication treatment on physicochemical properties of starch. Food Chem. 120:703–9 [Google Scholar]
  38. Chandrapala J, Oliver C, Kentish S, Ashokkumar M. 2012. Ultrasonics in food processing. Ultrason. Sonochem. 19:975–83 [Google Scholar]
  39. Che L, Li D, Wang L, Özkam N, Chen XD, Mao Z. 2007. Effect of high-pressure homogenization on the structure of cassava starch. Int. J. Food Prop. 10:911–22 [Google Scholar]
  40. Chemat F, Huma Z-E, Khan MK. 2011. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason. Sonochem. 18:813–35 [Google Scholar]
  41. Chen J, Jane J. 1994. Preparation of granular cold-water-soluble starches by alcoholic-alkaline treatment. Cereal Chem. 71:618–22 [Google Scholar]
  42. Chen J, Zhang H, Lui X. 2005. Enzyme-resistant corn starch prepared by microwave heating. Shipin Gongye Keji 26:86 (Abstr.) [Google Scholar]
  43. Chen X, He X, Huang Q. 2014. Effects of hydrothermal pretreatment on subsequent octenylsuccinic anhydride (OSA) modification of cornstarch. Carbohydr. Polym. 101:493–98 [Google Scholar]
  44. Cheng W, Chen J, Liu D, Ye X, Ke F. 2010. Impact of ultrasonic treatment on properties of starch film-forming dispersion and the resulting films. Carbohydr. Polym. 81:707–11 [Google Scholar]
  45. Chiu C-W, Schiermeyer E, Thomas DJ, Shah MB. 1998. Thermally inhibited starches and flours and process for their production. US Patent No. 5725676
  46. Choi JH, Kim SB. 1994. Effect of ultrasound on sulfuric acid-catalyzed hydrolysis of starch. Korean J. Chem. Eng. 11:178–84 [Google Scholar]
  47. Chung HJ, Cho A, Lim ST. 2012a. Effect of heat-moisture treatment for utilization of germinated brown rice in wheat noodle. LWT - Food Sci. Technol. 47:342–47 [Google Scholar]
  48. Chung HJ, Cho A, Lim ST. 2014. Utilization of germinated and heat-moisture treated brown rices in sugar-snap cookies. LWT - Food Sci. Technol. 57:260–66 [Google Scholar]
  49. Chung HJ, Cho DW, Park JD, Kweon DK, Lim ST. 2012b. In vitro digestibility and pasting properties of germinated brown rice after hydrothermal treatments. J. Cereal Sci. 56:451–56 [Google Scholar]
  50. Chung HJ, Hoover R, Liu Q. 2009a. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. Int. J. Biol. Macromol. 44:203–10 [Google Scholar]
  51. Chung HJ, Liu Q, Hoover R. 2009b. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible, and resistant starch levels in native and gelatinized corn, pea, and lentil starches. Carbohydr. Polym. 74:436–47 [Google Scholar]
  52. Chung HJ, Liu Q, Hoover R. 2010. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Food Res. Int. 43:501–8 [Google Scholar]
  53. Chung KM, Moon TW, Kim H, Chun JK. 2000. Influence of annealing on gel properties of mung bean starch. Cereal Chem. 77:567–71 [Google Scholar]
  54. Chung KM, Moon TW, Kim H, Chun JK. 2002. Physicochemical properties of sonicated mung bean, potato, and rice starches. Cereal Chem. 79:631–33 [Google Scholar]
  55. Clerici MTPS, Lambert CS, Chang YK. 2011. Process for modification of starch by cold plasma treatment. BR Patent No. 2009003002
  56. Colonna P, Buleon A. 2010. Thermal transitions of starches. Starches AC Bertolini 71–102 Boca Raton, FL: Taylor & Francis [Google Scholar]
  57. Colonna P, Doublier JL, Melcion JP, Demonredon F, Mercier C. 1984. Extrusion cooking and drum drying of wheat starch. 1. Physical and macromolecular modifications. Cereal Chem. 61:538–43 [Google Scholar]
  58. Cooke D, Gidley MJ. 1992. Loss of crystalline and molecular order during starch gelatinization: origin of the enthalpic transition. Carbohydr. Res. 227:103–12 [Google Scholar]
  59. Craig SAS, Stark JR. 1984a. Molecular properties of physically-damaged sorghum starch granules. J. Cereal Sci. 2:203–11 [Google Scholar]
  60. Craig SAS, Stark JR. 1984b. The effect of physical damage on the molecular structure of wheat starch. Carbohydr. Res. 125:117–25 [Google Scholar]
  61. Czechowska-Biskup R, Rokita B, Lofty S, Ulanski P, Rosiak JM. 2005. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr. Polym. 60:175–84 [Google Scholar]
  62. Davis WA, Coppock PD. 1936. Starch. GB Patent No. 442,757
  63. Debon SJJ, Tester RF, Millam S, Davies HV. 1998. Effect of temperature on the synthesis, composition and physical properties of potato microtuber starch. J. Sci. Food Agric. 76:599–607 [Google Scholar]
  64. Degrois M, Gallant D, Baldo P, Guilbot A. 1974. Effects of ultrasound on starch grains. Ultrasonics 12:129–31 [Google Scholar]
  65. Demirdöven A, Baysal T. 2009. The use of ultrasound and combined technologies in food preservation. Food Rev. Int. 25:1–11 [Google Scholar]
  66. Dias ARG, Zavareze EdR, Spier F, de Castro LAS, Gutkoski LC. 2010. Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents. Food Chem. 123:711–19 [Google Scholar]
  67. Dixit O, Treppe K, Mollekopf N. 2011. Energy consumption during vacuum microwave treatment of potato starch: a phenomenological model. Chem. Eng. Technol. 34:1245–51 [Google Scholar]
  68. Dodds NJH. 1971. Damaged starch determination in wheat flour in relation to dough water absorption. Starch - Stärke 23:23–27 [Google Scholar]
  69. Doona CJ, Feeharry FE, Baik M-Y. 2006. Water dynamics and retrogradation of ultrahigh pressurized wheat starch. J. Agric. Food Chem. 54:6719–24 [Google Scholar]
  70. Doublier JL, Colonna P, Mercier C. 1986. Extrusion cooking and drum drying of wheat starch. 2. Rheological characterization of starch pastes. Cereal Chem. 63:240–46 [Google Scholar]
  71. Douzals JP, Marechal PA, Coquille JC, Gervais P. 1996. Microscopic study of starch gelatinization under high hydrostatic pressure. J. Agric. Food Chem. 44:1403–8 [Google Scholar]
  72. Douzals JP, Perrier-Cornet JM, Coquille JC, Gervais P. 2001. Pressure-temperature phase transition diagram for wheat starch. J. Agric. Food Chem. 49:873–76 [Google Scholar]
  73. Douzals JP, Perrier-Cornet JM, Gervais P, Coquille JC. 1998. High-pressure gelatinization of wheat starch and properties of pressure-induced gels. J. Agric. Food Chem. 46:4824–29 [Google Scholar]
  74. Dumitrash PG, Savnei PA, Bologa MK, Gimza AV. 2005. Effect of ultrasonic cavitation on properties of starch size. Elektronn. Obrab. Mater. 2005:85 (Abstr.) [Google Scholar]
  75. Dyrek K, Bidzińska E, Łabanowska M, Fortuna M, Przetaczek I, Pietrzyk S. 2007. EPR study of radicals generated in starch by microwaves or by conventional heating. Starch - Stärke 59:318–25 [Google Scholar]
  76. Eastman JE. 1987. Cold water swelling starch composition. US Patent No. 4634596
  77. Eastman JE, Moore CO. 1984. Cold water-soluble granular starch for gelled food compositions. US Patent No. 4465702
  78. Eerlingen RC, Jacobs H, Block K, Delcour JA. 1997. Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohydr. Res. 297:347–56 [Google Scholar]
  79. Evers AD, Baker GJ, Stevens DJ. 1984a. Production and measurement of starch damage in flour. Part 1. Damage due to rollermilling of semolina. Starch - Stärke 36:309–12 [Google Scholar]
  80. Evers AD, Baker GJ, Stevens DJ. 1984b. Production and measurement of starch damage in flour. Part 2. Damage produced by unconventional means. Starch - Stärke 36:350–55 [Google Scholar]
  81. Evers AD, Stevens DJ. 1985. Starch damage. Adv. Cereal Sci. Technol. 7:321–49 [Google Scholar]
  82. Evers AD, Stevens DJ. 1988. Production and measurement of starch damage in flour. Part 4. Effect of starch damage on hot pasting properties. Starch - Stärke 40:297–99 [Google Scholar]
  83. Feng H, Yang W, Hielscher T. 2008. Power ultrasound. Food Sci. Technol. Int. 14:433–36 [Google Scholar]
  84. Fiedorowicz M, Tomasik P, You S, Lim S-T. 1999. Molecular distribution and pasting properties of UV-irradiated corn starches. Starch - Stärke 51:126–31 [Google Scholar]
  85. Figueroa JdD, Véles-Medina JJ, Landaverde MAHL, Aragón-Cuevas F, Martínez MG. et al. 2013a. Effect of annealing from traditional nixtamalisation process on the microstructural, thermal, and rheological properties of starch and quality of pozole. J. Cereal Sci. 58:457–64 [Google Scholar]
  86. Figueroa JdD, Véles-Medina JJ, Tollentino-López EM, Gaytán-Martínez M, Aragón-Cuevas F. et al. 2013b. Effect of traditional nixtamalization process on starch annealing and the relation to pozole quality. J. Food Process Eng. 36:704–14 [Google Scholar]
  87. Franco CML, Ciacco CF, Tavares DQ. 1995. Effect of heat-moisture treatment on the enzymatic susceptibility of corn starch granules. Starch - Stärke 47:223–28 [Google Scholar]
  88. Gallant D, Degrois M, Sterling C, Guilbot A. 1972. Microscopic effects of ultrasound on the structure of potato starch. Starch - Stärke 24:116–23 [Google Scholar]
  89. Gao Q, Cai L, Chen H, Gong H. 2007. Preparation and properties of cold-water-soluble potato starch. Shipin Gongye Keji 28:117 (Abstr.) [Google Scholar]
  90. Genkina NK, Wasserman LA, Noda T, Tester RF, Yuryev VP. 2004. Effects of annealing on the polymorphic structure of starches from sweet potatoes (Ayamurasaki and Sunnyred cultivars) grown at various soil temperatures. Carbohydr. Res. 339:1093–98 [Google Scholar]
  91. Gholap AV, Marondeze LH, Tomasik P. 1993. Dextrinization of starch with nitrogen laser. Starch - Stärke 45:430–32 [Google Scholar]
  92. Gidley MJ. 1987. Factors affecting the crystalline type (A-C) of native starches and model compounds: a rationalization of observed effects in terms of polymorphic structures. Carbohydr. Res. 161:301–4 [Google Scholar]
  93. Gomand SV, Lamberts L, Gommes CJ, Visser RGF, Delcour JA. 2012. Molecular and morphological aspects of annealing-induced stabilization of starch crystallites. Biomacromol. 13:1361–70 [Google Scholar]
  94. Gomes AMM, da Silva CEM, da Silva PL, Ricardo NMPS, Gallão MI. 2010. Annealing of unfermented (polvilho doce) and fermented (polvilho azedo) cassava starches. Bol. Cent. Pesqui. Process. Aliment. 28:223–32 [Google Scholar]
  95. Gomes AMM, da Silva CEM, Ricardo NMPS, Sasaki JM, Germani R. 2004. Impact of annealing on the physicochemical properties of unfermented cassava starch (“polvilho doce”). Starch - Stärke 56:419–23 [Google Scholar]
  96. González R, Carrara C, Tosi E, Añón MC, Pilosof A. 2007a. Amaranth starch-rich fraction properties modified by extrusion and fluidized bed heating. LWT - Food Sci. Technol. 40:136–43 [Google Scholar]
  97. González R, Tosi E, E, Añón MC, Pilosof AMR, Martinez K. 2007b. Amaranth starch-rich fraction properties modified by high-temperature heating. Food Chem. 103:927–34 [Google Scholar]
  98. González Parada ZM, Pérez Sira EE. 2003. Physicochemical and functional evaluation of pregelatinized and microwaved cassava (Manihot esculenta Cranz) starches. Acta Cien. Venez. 54:127 (Abstr.) [Google Scholar]
  99. Goos H, Maurer HW. 1965. Continuous manufacture of starch hydrolyzates. DE Patent No. 1190890 (Abstr.)
  100. Gough BM, Pybus JN. 1971. Effect on gelatinization temperature of wheat starch granules of prolonged treatment with water at 50°C. Starch - Stärke 23:210–12 [Google Scholar]
  101. Grohn H, Augustat S. 1958. The mechanicochemical depolymerization of potato starch in a vibration mill. J. Polym. Sci. 29:647–61 [Google Scholar]
  102. Gunaratne A, Corke H. 2007. Effect of hydroxypropylation and alkaline treatment in hydroxypropylation on some structural and physicochemical properties of heat-moisture treated wheat, potato and waxy maize starches. Carbohydr. Polym. 68:305–13 [Google Scholar]
  103. Gunaratne A, Hoover R. 2002. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr. Polym. 49:425–37 [Google Scholar]
  104. Guo Z-B, Liu W-T, Zeng S-X, Zheng B-D. 2013. Effect of ultrahigh pressure processing on the particle characteristics of lotus-seed starch. Chin. J. Struct. Chem. 32:525 (Abstr.) [Google Scholar]
  105. Gupta M, Gill BS, Bawa AS. 2008. Gelatinization and X-ray crystallography of buckwheat starch: effect of microwave and annealing treatments. Int. J. Food Prop. 11:173–85 [Google Scholar]
  106. Güzel D, Sayar S. 2010. Digestion profiles and some physicochemical properties of native and modified borlotti bean, chickpea, and white kidney bean starches. Food Res. Int. 43:2132–37 [Google Scholar]
  107. Hagiwara S, Esaki K, Nishiyama K, Kitamura S, Kuge T. 1986. Effect of microwave irradiation on potato starch granules. Denpun Kagaku 33:1 (Abstr.) [Google Scholar]
  108. Hagiwara S, Nishiyama K, Fujino H, Kitamura S, Kuge T. 1984. Effect of ultrasonic irradiation on the structure of potato starch granules. J. Jpn. Soc. Starch Sci. 31:127–33 (as cited in Seguchi et al. 1994) [Google Scholar]
  109. Han J-A, BeMiller JN, Lim S-T. 2003. Structural changes of debranched corn starch by aqueous heating and stirring. Cereal Chem. 80:323–28 [Google Scholar]
  110. Han J-A, Lim S-T. 2004. Structural changes in corn starches during alkaline dissolution by vortexing. Carbohydr. Polym. 55:193–99 [Google Scholar]
  111. Han X-Z, Campanella OH, Mix NC, Hamaker BR. 2002. Consequence of starch damage on rheological properties of maize pastes. Cereal Chem. 79:897–901 [Google Scholar]
  112. Han Z, Zeng XA, Fu N, Yu SJ, Chen XD, Kennedy JF. 2012. Effects of pulsed electric field treatments on some properties of tapioca starch. Carbohydr. Polym. 89:1012–17 [Google Scholar]
  113. Han Z, Zeng XA, Yu SJ, Zhang BS, Chen XD. 2009a. Effects of pulsed electric fields (PEF) treatment on physicochemical properties of potato starch. Innov. Food Sci. Emerg. Technol. 10:481–85 [Google Scholar]
  114. Han Z, Zeng X-A, Zhang B-S, Yu S-J. 2009b. Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food. Eng. 93:318–23 [Google Scholar]
  115. He R-H, Xie B, Zhong H-S, Zhai Q-J, Huang F-J, Ma H-L. 2012. Extraction of starch from Arrowhead corn by frequency sweeping pulsed ultrasound. Shipin Gongye Keji 33:274 (Abstr.) [Google Scholar]
  116. Henderson AM, Rudin A. 1981. ESR study of the effects of water, methanol, and ethanol on gamma-irradiation of starch. J. Polym. Sci. Polym. Chem. Ed. 19:1721–32 [Google Scholar]
  117. Hendrickx MEG, Knorr D. 2002. Ultra High Pressure Treatments of Foods New York: Kluwer Acad. [Google Scholar]
  118. Herceg IL, Jambrak AR, Šubarić D, Brnčić M, Brnčić SR. et al. 2010. Texture and pasting properties of ultrasonically treated corn starch. Czech J. Food Sci. 28:83–93 [Google Scholar]
  119. Hernoux-Villière A, Lassi U, Hu T, Paquet A, Rinaldi L. et al. 2013. Simultaneous, microwave/ultrasound-assisted hydrolysis of starch-based industrial waste into reducing sugars. ACS Sustainable Chem. Eng. 1:995–1002 [Google Scholar]
  120. Hibi Y, Matsumoto T, Hagiwara S. 1993. Effect of high pressure on the crystalline structure of various starch granules. Cereal Chem. 70:671–76 [Google Scholar]
  121. Hoover R. 2000. Acid-treated starches. Food Rev. Int. 16:369–92 [Google Scholar]
  122. Hoover R. 2010. The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Crit. Rev. Food Sci. 50:835–47 [Google Scholar]
  123. Hoover R, Manuel H. 1996a. Effect of heat-moisture treatment on the structure and physicochemical properties of legume starches. Food Res. Int. 29:731–50 [Google Scholar]
  124. Hoover R, Manuel H. 1996b. The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. J. Cereal Sci. 23:153–62 [Google Scholar]
  125. Hoover R, Swamidas G, Vasanthan T. 1993. Studies on the physicochemical properties of native, defatted, and heat-moisture treated pigeon pea (Cajanus cajan L) starch. Carbohydr. Res. 246:185–203 [Google Scholar]
  126. Hoover R, Vasanthan T. 1994. The flow properties of native, heat-moisture treated, and annealed starches from wheat, oat, potato and lentil. J. Food Biochem. 18:67–82 [Google Scholar]
  127. Hormdok R, Noomhorm A. 2007. Hydrothermal treatments of rice starch for improvement of rice noodle quality. LWT - Food Sci. Technol. 40:1723–31 [Google Scholar]
  128. Hu A, Lu J, Zheng J, Sun J, Li L. et al. 2013a. Processing method of porous starch by dual-frequency ultrasound-assisted hydrochloric acid hydrolysis. CN Patent No. 10320497 (Abstr.)
  129. Hu A, Lu J, Zheng J, Sun J, Yang L. et al. 2013b. Ultrasonically aided enzymatical effects on the properties and structure of mung bean starch. Innov. Food Sci. Emerg. Technol. 20:146–51 [Google Scholar]
  130. Huang Q, Li L, Fu X. 2007. Ultrasound effects on the structure and chemical reactivity of cornstarch granules. Starch - Stärke 59:371–78 [Google Scholar]
  131. Huang Z, Hu H, Tong Z, Li X, Qin X. 2005. Study on preparing technology of cold-water-soluble maize starch by mechanical activation. Shipin Yu Fajiao Gongye 31:1 (Abstr.) [Google Scholar]
  132. Huang Z-Q, Tong Z-F, Li X-H, Ye S-F, Pan L-P, Qin X-J. 2006a. Effects of mechanical activation on cold-water-solubility and rheological properties of cassava starch. Gaoxiao Huaxue Gongcheng Xuebao 20:449 (Abstr.) [Google Scholar]
  133. Huang Z-Q, Tong Z-F, Li X-H, Ye S-F, Pan L-P, Qin X-J. 2006b. Investigation of preparation processing of cold-water-soluble cassava starch with mechanical activation. Lanzhou Ligong Daxue Xuebao 32:76 (Abstr.) [Google Scholar]
  134. Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T. 2008. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov. Food Sci. Emerg. Technol. 9:140–46 [Google Scholar]
  135. Isono Y, Kumagi T, Watanabe T. 1994. Ultrasonic degradation of waxy rice starch. Biosci. Biotech. Biochem. 58:1799–802 [Google Scholar]
  136. Izidoro DR, Sierakowski M-R, Haminiuk CWI, Fernandes de Souza C, Scheer AdP. 2011. Physical and chemical properties of ultrasonically, spray-dried green banana (Musa cavendish) starch. J. Food Eng. 104:639–48 [Google Scholar]
  137. Jackson DS, Choto-Owen C, Waniska RD, Rooney LW. 1988. Characterization of starch cooked in alkali by aqueous size-exclusion chromatography. Cereal Chem. 65:493–96 [Google Scholar]
  138. Jackson DS, Waniska RD, Rooney LW. 1989. Differential water solubility of corn and sorghum starches as characterized by aqueous high-performance size-exclusion chromatography. Cereal Chem. 66:228–32 [Google Scholar]
  139. Jacobs H, Delcour JA. 1998. Hydrothermal modifications of granular starch, with retention of the granular structure: a review. J. Agric. Food Chem. 46:2895–905 [Google Scholar]
  140. Jacobs H, Mischenko N, Koch MHJ, Eerlingen RC, Delcour JA, Reynaers H. 1998. Evaluation of the impact of annealing on gelatinisation at intermediate water content of wheat and potato starches: a differential scanning calorimetry and small angle X-ray scattering study. Carbohydr. Res. 306:1–10 [Google Scholar]
  141. Jambrak AR, Herceg Z, Šubarić D, Babić J, Brnčić M. et al. 2010. Ultrasound effect on physical properties of corn starch. Carbohydr. Polym. 79:91–100 [Google Scholar]
  142. Jane J, Craig SAS, Seib PA, Hoseney RC. 1986. Characterization of granular cold water-soluble starch. Starch - Stärke 38:258–63 [Google Scholar]
  143. Jane J-l, Seib PA. 1991. Preparation of granular cold water swelling/soluble starches by alcoholic-alkali treatments. US Patent No. 5057157
  144. Jane J, Shen L, Wang L, Maningat CC. 1992. Preparation and properties of small-particle corn starch. Cereal Chem. 69:280–83 [Google Scholar]
  145. Jayakody L, Hoover R. 2008. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins—a review. Carbohydr. Polym. 74:691–703 [Google Scholar]
  146. Jayakody L, Hoover R, Liu Q, Donner E. 2009. Studies on tuber starches III. Impact of annealing on the molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydr. Polym. 76:145–53 [Google Scholar]
  147. Jeyamkondan S, Jayas DS, Holley RA. 1999. Pulsed electric field processing of foods: a review. J. Food Protect. 62:1088–96 [Google Scholar]
  148. Jiang Q, Tian Y, Xu X, Jin Z. 2011a. Influence of microwave heating and ultrasonic-microwave synergistic heating on retrogradation of rice starch. Shipin Yu Fajiao Gongye 37:56 (Abstr.) [Google Scholar]
  149. Jiang Q, Xu X, Jin Z, Tian Y, Hu X, Bai Y. 2011b. Physico-chemical properties of rice starch gels: effect of different heat treatments. J. Food Eng. 107:353–57 [Google Scholar]
  150. Jiranuntakul W, Sugiyama S, Tsukamoto K, Puttanlek C, Rungsardthong V. et al. 2013. Nano-structure of heat-moisture treated waxy and normal starches. Carbohydr. Polym. 97:1–8 [Google Scholar]
  151. Jiranuntakul W, Puttanlek C, Rungsardthong V, Puncha-arnon S, Uttapap D. 2011. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng. 104:246–58 [Google Scholar]
  152. Jiranuntakul W, Puttanlek C, Rungsardthong V, Puncha-arnon S, Uttapap D. 2012. Amylopectin structure of heat-moisture treated starches. Starch - Stärke 64:470–80 [Google Scholar]
  153. Jones CR. 1940. The production of mechanically damaged starch in milling as a governing factor in diastatic activity of flour. Cereal Chem. 17:133–69 [Google Scholar]
  154. Juansang J, Puttanlek C, Rungsardthong V, Puncha-arnon S, Uttapap D. 2012. Effect of gelatinization on slowly digestible starch and resistant starch of heat-moisture treated and chemically modified canna starches. Food Chem. 131:500–7 [Google Scholar]
  155. Jyothi AN, Sajeev MS, Sreekumar JN. 2010. Hydrothermal modifications of tropical tuber starches 1. Effect of heat-moisture treatment on the physicochemical, rheological, and gelatinization characteristics. Starch - Stärke 62:28–40 [Google Scholar]
  156. Jyothi AN, Sajeev MS, Sreekumar J. 2011. Hydrothermal modifications of tropical tuber starches—effect of ANN on the physicochemical, rheological and gelatinization characteristics. Starch - Stärke 63:536–49 [Google Scholar]
  157. Kainuma K. 1994. Determination of the degree of gelatinization and retrogradation of starch. Methods Carbohydr. Chem. 10:137–41 [Google Scholar]
  158. Kasemwong K, Ruktanonchai UR, Srinuanchai W, Itthisoponkul T, Sriroth K. 2011. Effect of high-pressure microfluidization on the structure of cassava starch granule. Starch - Stärke 63:160–70 [Google Scholar]
  159. Katopo H, Song Y, Jane J-l. 2002. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr. Polym. 47:233–44 [Google Scholar]
  160. Kawabata A, Takase N, Miyoshi E, Sawayama S, Kimura T, Kudo K. 1994. Microscopic observation and X-ray diffractometry of heat/moisture-treated starch granules. Starch - Stärke 46:463–69 [Google Scholar]
  161. Kawai K, Fukami K, Yamamoto K. 2007. State diagram of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydr. Polym. 67:530–35 [Google Scholar]
  162. Khamthong P, Lumdubwong N. 2012. Effects of heat-moisture treatment on normal and waxy rice flours and production of thermoplastic flour materials. Carbohydr. Polym. 90:340–47 [Google Scholar]
  163. Kim H-S, Kim B-Y, Baik M-Y. 2012. Application of ultra high pressure (UHP) in starch chemistry. Crit. Rev. Food Sci. Nutr. 52:123–41 [Google Scholar]
  164. Kim JY, Huber KC. 2013. Heat-moisture treatment under mildly acidic conditions alters potato starch physicochemical properties and digestibility. Carbohydr. Polym. 98:1245–55 [Google Scholar]
  165. Kim KS, Cho SH. 2000. Process for preparing low molecular polysaccharide and oligosaccharide thereof by photochemical or ultrasonic degradation of polysaccharides. KR Patent No. 2000012173 (Abstr.)
  166. Kiseleva VI, Genkina NK, Tester R, Wasserman LA, Popov AA, Yuryev VP. 2004. Annealing of normal, low and high amylose starches extracted from barley cultivars grown under different environmental conditions. Carbohydr. Polym. 56:157–68 [Google Scholar]
  167. Kiseleva VI, Krivandin AV, Fornal J, Blaszczak W, Jelinski T, Yuryev VP. 2005. Annealing of normal and mutant wheat starches. LM, SEM, DSC, and SAXS studies. Carbohydr. Res. 340:75–83 [Google Scholar]
  168. Klein B, Pinto VZ, Vanier NL, Zavareze EdR, Colussi R. et al. 2013. Effect of single and dual heat-moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydr. Polym. 98:1578–84 [Google Scholar]
  169. Knorr D, Geulen W, Grahl T, Sitzmann W. 1994. Food application of high electric pulses. Trends Food Sci. Technol. 5:71–75 [Google Scholar]
  170. Knorr D, Zenker M, Heinz V, Lee D-U. 2004. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 15:261–66 [Google Scholar]
  171. Knutson CA. 1990. Annealing of maize starches at elevated temperatures. Cereal Chem. 67:376–84 [Google Scholar]
  172. Kobayashi S, Nakamura T. 2013. Effect of high-moisture heat-treatment, a model of pasta drying, on the gelatinization and pasting properties of durum wheat starch. Nippon Shokuhlin Kagaku Kogaku Kashi 60:412 (Abstr.) [Google Scholar]
  173. Kohyama N, Soga N, Ohashi S, Hattori M, Yoshida T. et al. 2013. Improved properties of potato starch through simultaneous heat-moisture treatment and conjugation with lysine and fatty acylated saccharide by the Maillard reaction. J. Appl. Glycosci. 60:147–53 [Google Scholar]
  174. Komoto M, Fuji S, Kishihara S, Yoshinaga K. 1982. Improvement of quality of sago starch. I. Effect on the quality of some chemical and/or ultrasonic treatments. Koke Daigaku Nogakubu Kenkyu Hokoku 15:141 (Abstr.) [Google Scholar]
  175. Krutova YUN. 1969. Infrared spectra of carbonyl compounds isolated from products of γ-irradiation of starch. Sbornik Nauchnykh Trudov-Moskovskii Tekhnologicheskii Institut Pishchevoi Promyshlennosti No. 20:72 (Abstr.) [Google Scholar]
  176. Kudta E, Tomasik P. 1992a. The modification of starch by high pressure. Part I: Air- and oven-dried potato starch. Starch - Stärke 44:167–73 [Google Scholar]
  177. Kudta E, Tomasik P. 1992b. The modification of starch by high pressure. Part II: Compression of starch with additives. Starch - Stärke 44:253–59 [Google Scholar]
  178. Kurakake M, Noguchi M, Fujioka K, Komaki T. 1997. Effects on maize starch properties of heat-treatments with water-ethanol mixtures. J. Cereal Sci. 25:253–60 [Google Scholar]
  179. Kweon M, Haynes L, Slade L, Levine H. 2000. The effect of heat and moisture treatments on enzyme digestibility of AeWx, Aewx and aeWx corn starches. J. Therm. Anal. Calorim. 59:571–86 [Google Scholar]
  180. Lampitt LH, Fuller CHF, Goldenberg N. 1941. The fractionation of wheat starch. Part I. The process of grinding. J. Soc. Chem. Ind. 60:1–6 [Google Scholar]
  181. Lan P, Chen A, Feng Y, Qiao L, Lan L, Liao A. 2013. Effect of ultrasonic wave on the physical properties of cassava starch. Adv. Mater. Res. 634–38:1469–73 [Google Scholar]
  182. Lawal OS, Adebowale KO. 2005. An assessment of changes in thermal and physico-chemical parameters of jack bean (Canavalia ensiformis) starch following hydrothermal modifications. Eur. Food Res. Technol. 221:631–38 [Google Scholar]
  183. Lee JL, Kim Y, Choi SJ, Moon TW. 2012. Slowly digestible starch from heat-moisture treated waxy potato starch: preparation, structural characteristics, and glucose response in mice. Food Chem. 133:1222–29 [Google Scholar]
  184. Lee JL, Shin SI, Kim Y, Choi HJ, Moon TW. 2011. Structural characteristics and glucose response in mice of potato starch modified by hydrothermal treatments. Carbohydr. Polym. 83:1879–86 [Google Scholar]
  185. Lee S-J, Sandhu KS, Lim S-T. 2007. Effect of microwave irradiation on crystallinity and pasting viscosity of corn starches different in amylose content. Food Sci. Biotechnol. 16:832–35 [Google Scholar]
  186. Lelievre J. 1974. Starch damage. Stärke 26:85–88 [Google Scholar]
  187. Lewandowicz G, Fornal J, Walkowski A. 1997. Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydr. Polym. 34:213–20 [Google Scholar]
  188. Lewandowicz G, Jankowski T, Fornal J. 2000. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydr. Polym. 42:193–99 [Google Scholar]
  189. Li J-B, Li L, Chen L, Li B, Fu X-Q. 2006. Rheological properties of potato starch pastes treated with ultrasound. Huanan Ligong Daxue Xuebao, Ziran Kexueban 34:90 (Abstr.) [Google Scholar]
  190. Li L, Lin J-Y, Li J-B, Chen L, Li B, Li X-X. 2008. Effect of ultrasonic treatment on gel properties of potato starch paste. Huanan Ligong Daxue Xuebao, Ziran Kexueban 36:63 (Abstr.) [Google Scholar]
  191. Li S, Ward R, Gao Q. 2011. Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (Phaseolus radiatus) starch. Food Hydrocoll. 25:1702–9 [Google Scholar]
  192. Li Y, Shoemaker CF, Shen X, Ma J, Ibáñez-Carranza AM, Zhong F. 2008. The isolation of rice starch with food grade proteases combined with other treatments. Food Sci. Technol. Int. 14:215–24 [Google Scholar]
  193. Lin J, Li L, Li J, Chen L, Li B, Li X. 2007. Gel texture properties of potato starch paste in ultrasonic field. Shipin Kexue 28:120 (Abstr.) [Google Scholar]
  194. Lin JH, Wang SW, Chang YH. 2009. Impacts of acid-methanol treatment and annealing on the enzymatic resistance of corn starches. Food Hydrocoll. 23:1465–72 [Google Scholar]
  195. Lipatova IM, Losev NV, Yusova AA. 2006. Mechanical degradation of gelatinized starch upon hydroacoustic treatment. Russ. J. Appl. Chem. 79:1532–37 [Google Scholar]
  196. Liu H, Corke H, Ramsden L. 2000. The effect of autoclaving on the acetylation of ae, wx, and normal maize starches. Starch - Stärke 52:353–60 [Google Scholar]
  197. Liu H, Yu L, Simon G, Dean K, Chen L. 2009. Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios. Carbohydr. Polym. 77:662–69 [Google Scholar]
  198. Liu P-L, Hu X-S, Shen Q. 2010. Effect of high hydrostatic pressure on starches: a review. Starch - Stärke 62:615–28 [Google Scholar]
  199. Liu T, Ma Y, Li Q. 2010. Optimum technology and properties of granular cold water-soluble maize starch. Nongye Jixie Xuebao 41:99 (Abstr.) [Google Scholar]
  200. Liu W, Guo Z, Zeng S, Zheng B. 2013. The influence of ultra-high pressure treatment on the physicochemical properties of areca taro starch. Zhongguo Liangyou Xuebao 28:80 (Abstr.) [Google Scholar]
  201. Liu W-C, Halley PJ, Gilbert RG. 2010. Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 43:2855–64 [Google Scholar]
  202. Liu Y, Selomulyo VO, Zhou W. 2008. Effect of high pressure on some physicochemical properties of several native starches. J. Food Eng. 88:126–36 [Google Scholar]
  203. Liu Y, Zhou J, Zhao G, Zhang W, Wang Q. et al. 2007. Effect of ultra high pressure processing on crystal structure of defatted potato starch. Zhongguo Liangyou Xuebao 22:86 (Abstr.) [Google Scholar]
  204. Liu Y-Q, Liu Y-N, Li H, Shen R-L, Li X-H, Yang L-Z. 2011. The study on gelatinization pressure of starch by ultra-high processing. Adv. Mater. Res. 295–97:131–34 [Google Scholar]
  205. Liu Z, Yang Y, Liang H, Bi L, Gong B. 2012. Study on technology of ultrasound-microwave assisted preparation of porous starch. Adv. Mater. Res.476–78744–50 [Google Scholar]
  206. Liute D, Liute D. 1997. Effect of ultrasound on rheological properties of starch-based sizes. Ind. Textila 48:100 (Abstr.) [Google Scholar]
  207. Loisel C, Maache-Rezzoug Z, Esneault C, Doublier JL. 2006. Effect of hydrothermal treatment on the physical and rheological properties of maize starches. J. Food Eng. 73:45–54 [Google Scholar]
  208. Lorenz K, Kulp K. 1982. Cereal and root starch modification by heat-moisture treatment. Starch - Stärke 34:50–54 [Google Scholar]
  209. Lu S, Chen CY, Lii CY. 1996. Gel-chromatography fractionation and thermal characterization of rice starch affected by hydrothermal treatment. Cereal Chem. 73:5–11 [Google Scholar]
  210. Lu S, Li JD, Lii CY. 1995. Studies on the relationship between water and gelatinization-retrogradation of heat-moisture treated rice flour. J. Chin. Agric. Chem. Soc. 33:756 (Abstr.) [Google Scholar]
  211. Lu X, Zhang H, Yao H. 2007. Application of ultrasound and surfactants in starch isolation. Shipin Gongye Keij 28:73 (Abstr.) [Google Scholar]
  212. Lu Z-H, Ran L-Q, Lu G-Q. 2013. Preparation and properties of cold-water-soluble sweet potato starch. Shipin Gongye Keji 34:262 (Abstr.) [Google Scholar]
  213. Luo Z, Fu X, He X, Luo F, Gao Q, Yu S. 2008a. Effect of ultrasonic treatment on the physicochemical properties of maize starches differing in amylose content. Starch - Stärke 60:646–53 [Google Scholar]
  214. Luo Z, He X, Fu X, Luo F, Gao Q. 2006. Effect of microwave radiation on the physicochemical properties of normal maize, waxy maize and amylomaize V starches. Starch - Stärke 58:468–74 [Google Scholar]
  215. Luo Z-G, Fu X, He X-W, Luo F-X, Tu Y-J. 2008b. Effect of ultrasound treatment on rheological properties of waxy maize starch paste. Gaofenzi Cailiao Kexue Yu Gongchen 24:147 (Abstr.) [Google Scholar]
  216. Luo Z-G, Fu X, Luo F-X, He X-W, Tu Y-J. 2008c. Properties of high-amylose maize starch paste treated with ultrasound in water system. Huanan Ligong Daxue Xuebao, Ziran Kexueban 36:74 (Abstr.) [Google Scholar]
  217. Maache-Rezzoug Z, Maugard T, Zarguili I, Bezzine E. Marzouki M-N, Loisel C. , El 2009. Effect of instantaneous controlled pressure drop (DIC) on physicochemical properties of wheat, waxy and standard maize starches. J. Cereal Sci. 49:346–53 [Google Scholar]
  218. Maache-Rezzoug Z, Zarguili I, Loisel C, Doublier JL. 2010. Study of DIC hydrothermal treatment effect on rheological properties of standard maize (SMS), waxy maize (WMS), wheat (WTS) and potato (PTS) starches. J. Food Eng. 99:452–58 [Google Scholar]
  219. Maache-Rezzoug Z, Zarguili I, Loisel C, Queveau D, Buléon A. 2008. Structural modifications and thermal transitions of standard maize starch after DIC hydrothermal treatment. Carbohydr. Polym. 74:802–12 [Google Scholar]
  220. Maier W. 1933. Starch forming a paste with cold water. US Patent No. 1901109
  221. Majzoobi M, Sabery B, Farahnaky A, Karrila TT. 2012. Physicochemical properties of cross-linked-annealed wheat starch. Iran. Polym. J. 21:513–22 [Google Scholar]
  222. Manchun S, Nunthanid J, Limmatvapirat S, Sriamornsak P. 2012. Effect of ultrasonic treatment on physical properties of tapioca starch. Adv. Mater. Res. 506:294–97 [Google Scholar]
  223. Maruta I, Kurahashi Y, Takano R, Hayashi K, Yoshino O. et al. 1994. Reduced-pressurized heat-moisture treatment: a new method for heat-moisture treatment of starch. Starch - Stärke 46:177–81 [Google Scholar]
  224. Mason TJ. 1998. Power ultrasound in food processing—the way forward. Ultrasound in Food Processing MJW Povey, TJ Mason 105–25 London: Thomson Sci. [Google Scholar]
  225. Mason TJ, Paniwnyk L, Lorimer JP. 1996. The uses of ultrasound in food technology. Ultrason. Sonochem. 3:S253–60 [Google Scholar]
  226. McClements DJ. 1995. Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 6:293–99 [Google Scholar]
  227. McDermott EE. 1980. The rapid non-enzymic determination of damaged starch in flour. J. Sci. Food Agric. 31:405–13 [Google Scholar]
  228. Mei S-F, Zhang G-Q, Luo Q-G. 2008. A study on optimization technological conditions for preparation of wheat granular cold-water-soluble starch. Liangshi Yu Siliao Gongye 70:20 (Abstr.) [Google Scholar]
  229. Merlin A, Fouassier J-P. 1981. Etude de radicaux libres formés par irradiation ultraviolette de l'amidon: application aux réactions de photodégradation et de photogreffage. Macromol. Chem. 182:3053–68 [Google Scholar]
  230. Meuser F, Klinger RW, Niediek EA. 1978. Charakterisierung mechanisch modifizierter Stärke. Starch - Stärke 30:376–84 [Google Scholar]
  231. Miklus MB, Hamaker BR. 2003. Isolation and characterization of a soluble branched starch fraction from corn masa associated with adhesiveness. Cereal Chem. 80:693–98 [Google Scholar]
  232. Ming J, Deng K, Tan J. 2009. Effect of ultrasonic treatment on gel texture of water caltrop starch paste. Shipin Kexue 30:81 (Abstr.) [Google Scholar]
  233. Miyoshi E. 2002. Effects of heat-moisture treatments and lipids on gelatinization and retrogradation of maize and potato starches. Cereal Chem. 79:72–77 [Google Scholar]
  234. Mojiono JF, Kusumawardani S, Puspitasari C, Maula A, Purwandari U. 2013. Annealed purple yam (Dioscorea alata var. purpurea) flour improved gelatinisation profile, but increased glycemic index of substituted bread. Int. Food Res. J. 20:865–71 [Google Scholar]
  235. Mok C, Dick JW. 1991a. Moisture adsorption of damaged wheat starch. Cereal Chem. 68:405–9 [Google Scholar]
  236. Mok C, Dick JW. 1991b. Response of starch of different wheat classes to ball milling. Cereal Chem. 68:409–12 [Google Scholar]
  237. Mollekopf N, Treppe K, Dixit O, Bauch J, Führlich T. 2011a. Simultaneous drying and modification of properties of starch using vacuum microwave treatment. Dry. Technol. 29:599–605 [Google Scholar]
  238. Mollekopf N, Treppe K, Fiala P, Dixit O. 2011b. Vacuum microwave treatment of potato starch and the resultant modification of properties. Chem. Ing. Tech. 83:262–72 [Google Scholar]
  239. Montalbo-Lomboy M, Khanal SK, van Leeuwen J, Raman DR, Dunn L, Grewell D. 2010. Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous systems. Ultrason. Sonochem. 17:939–46 [Google Scholar]
  240. Morrison WR, Tester RF. 1994. Properties of damaged starch granules. IV. Composition of ball-milled wheat starches and of fractions obtained on hydration. J. Cereal Sci. 20:69–77 [Google Scholar]
  241. Morrison WR, Tester RF, Gidley MJ. 1994. Properties of damaged starch granules. II. Crystallinity, molecular order and gelatinization of ball-milled starches. J. Cereal Sci. 19:209–17 [Google Scholar]
  242. Moza MI, Mironescu M, Florea A. 2012. Influence of physical treatments on the potato starch granules micro- and ultrastructure. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 69:304 (Abstr.) [Google Scholar]
  243. Muhr AH, Blanshard JMV. 1982. Effect of hydrostatic pressure on starch gelatinization. Carbohydr. Polym. 2:61–74 [Google Scholar]
  244. Muhrbeck P, Svensson E. 1996. Annealing properties of potato starches with different degrees of phosphorylation. Carbohydr. Polym. 31:263–67 [Google Scholar]
  245. Muhrbeck P, Wischmann B. 1998. Influence of phosphate esters on the annealing properties of starch. Starch - Stärke 50:423–26 [Google Scholar]
  246. Murayama K, Harashina S, Komota Y, Hayashi Y. 2008. Indigestible treatment for starches. JP Patent No. 2008248082 (Abstr.)
  247. Mutungi C, Onyango C, Doert T, Paasch S, Thiele S. et al. 2011a. Long- and short-range structural changes of recrystallized cassava starch subjected to in vitro digestion. Food Hydrocoll. 25:477–85 [Google Scholar]
  248. Mutungi C, Onyango C, Rost F, Doert T, Jaros D, Rohm H. 2010. Structural and physicochemical properties and in vitro digestibility of recrystallized linear α-d-(1→4) glucans derived from mild-acid-modified cassava starch. Food Res. Int. 43:1144–54 [Google Scholar]
  249. Mutungi C, Schuldt S, Onyango C, Schneider Y, Jaros D, Rohm H. 2011b. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch. Biomacromol 12:660–71 [Google Scholar]
  250. Nakazawa Y, Wang YJ. 2003. Acid hydrolysis of native and annealed starches and branch structure of their Naegeli dextrins. Carbohydr. Res. 338:2871–82 [Google Scholar]
  251. Narkrugsa W. 1995. Microwave effect on the gelatinized conditions on tapioca and glutinous rice starches. Kasetsart J. Nat. Sci. 29:515 (Abstr.) [Google Scholar]
  252. Narkrugsa W. 1996. Changes in some physicochemical properties of tapioca and glutinous rice starches after microwave heating. Kasetsart J. Nat. Sci. 30:532 (Abstr.) [Google Scholar]
  253. Ndife M, Şumnu G, Bayindirh L. 1998. Differential scanning calorimetry determination of gelatinization rates in different starches due to microwave heating. LWT - Food Sci. Technol. 31:484–88 [Google Scholar]
  254. Niemann C, Meuser F. 1996. Mechanische Modifizierung native und poröser Stärke durch Vermahlung zur Verwendung als Fettimatate. Teil 1: Eigenschaften nativer Stärke nach der Vermahlung im trocken Zustand. Starch - Stärke 48:358–69 [Google Scholar]
  255. Niemann C, Whistler RL. 1992. Effect of acid hydrolysis and ball milling on porous corn starch. Starch - Stärke 44:409–14 [Google Scholar]
  256. Nitsch E. 1993. Preparation of starch degradation products with a narrow molecular-weight distribution. DE Patent No. 4132701 (Abstr.)
  257. Oh HE, Pinder DN, Hemar Y, Anema SG, Wong M. 2008. Effect of high-pressure treatment on various starch-in-water suspensions. Food Hydrocoll. 22:150–55 [Google Scholar]
  258. Olu-Owolabi BI, Afolabi TA, Adebowale KO. 2011. Pasting, thermal, hydration, and functional properties of annealed and heat-moisture treated starch of sword bean (Canavalia gladiata). Int. J. Food Prop. 14:157–74 [Google Scholar]
  259. Ono S. 1940a. On the disintegration of starch paste caused by the irradiation of ultrasonic waves. Rev. Phys. Chem. Jpn. 14:25–41 [Google Scholar]
  260. Ono S. 1940b. Disintegration of starch paste by irradiation with ultrasonic waves. II. Mechanism of disintegration. Nippon Kagaku Kaishi 61:997 (Abstr.) [Google Scholar]
  261. Onwulata CI, Elchediak E. 2000. Starches and fibers treated by dynamic pulsed pressure. Food Res. Int. 33:367–74 [Google Scholar]
  262. Onyango C, Mewa EA, Mutahi AW, Okoth MK. 2013. Effect of heat-moisture-treated cassava starch and amaranth malt on the quality of sorghum-cassava-amaranth bread. Afr. J. Food Sci. 7:80–86 [Google Scholar]
  263. Osundahunsi OF, Titilope seidu K, Mueller R. 2011. Dynamic rheological and physicochemical properties of annealed starches from two cultivars of cassava. Carbohydr. Polym. 83:1916–21 [Google Scholar]
  264. Ovando-Martínez M, Whitney K, Reuhs BL, Doehlert DC, Simsek S. 2013. Effect of hydrothermal treatment on physicochemical and digestibility properties of oat starch. Food Res. Int. 52:17–25 [Google Scholar]
  265. Pallas E. 1930. The preparation of pastes from materials soluble in cold water. Kunstduenger Leim 27:68 (Abstr.) [Google Scholar]
  266. Park SH, Bean SR, Wilson JD, Schober TJ. 2006. Rapid isolation of sorghum and other cereal starches using sonication. Cereal Chem. 83:611–16 [Google Scholar]
  267. Perera C, Hoover H. 1998. The reactivity of porcine pancreatic alpha-amylase towards native, defatted and heat-moisture treated potato starches before and after hydroxypropylation. Starch - Stärke 50:206–13 [Google Scholar]
  268. Perera C, Hoover R, Martin AM. 1997. The effect of hydroxypropylation on the structure and physicochemical properties of native, defatted and heat-moisture treated potato starches. Food Res. Int. 30:235–47 [Google Scholar]
  269. Pfeiffer K, Lebender W. 1926. Verfahren zur Herstellung von in kaltem Wasser verkleisternder Staerke. DE Patent No. 527140
  270. Piecyk M, Konarzewska M, Sitkiewicz I. 2009. Effect of hydrothermal modification of annealing type on some selected properties of pea (Pisum sativum). Zywn.-Nauk. Technol. Jakość 16:58 (Abstr.) [Google Scholar]
  271. Pinto VZ, Vanier NL, Klein B, Zavareze EdR, Elias MC. et al. 2012. Physicochemical, crystallinity, pasting and thermal properties of heat-moisture-treated pinhão starch. Starch - Stärke 64:855–63 [Google Scholar]
  272. Pitchon E, O'Rourke JD, Joseph TH. 1981. Process for cooking or gelatinizing materials. US Patent No. 4280851
  273. Popov ID, Doganova-Koleva L. 1958. Changes in the viscosity of some hydrophilic colloids under the effect of chemical substances and physical agents. Izvest. Inst. “Metodii Popov”, Bulg. Akad. Nauk 9:189 (Abstr.) [Google Scholar]
  274. Powell EL. 1967. Production and use of pregelatinized starch. Starch: Chemistry and Industry II RL Whistler, EF Paschall 523–36 New York: Acad. [Google Scholar]
  275. Pukkahuta C, Shobsngob S, Varavinit S. 2007. Effect of osmotic pressure on starch: new method of physical modification of starch. Starch - Stärke 58:78–90 [Google Scholar]
  276. Pukkahuta C, Suwannawat B, Shobsngob S, Varavinit S. 2008. Comparative study of pasting and thermal transition characteristics of osmotic pressure and heat-moisture treated corn starch. Carbohydr. Polym. 72:527–36 [Google Scholar]
  277. Pukkahuta C, Varavinit S. 2007. Structural transformation of sago starch by heat-moisture and osmotic-pressure treatment. Starch - Stärke 59:624–31 [Google Scholar]
  278. Pulkki LH. 1938. Particle size in relation to flour characteristics and starch cells of wheat. Cereal Chem. 15:749–65 [Google Scholar]
  279. Puncha-arnon S, Uttapap D. 2013. Rice starch versus rice flour: differences in their properties when modified by heat-moisture treatment. Carbohydr. Polym. 91:85–91 [Google Scholar]
  280. Qian J, Chen X, Ying X, Lu B. 2010. Optimisation of porous starch preparation by ultrasonic treatment followed by enzymatic hydrolysis. Int. J. Food Sci. Technol. 46:179–85 [Google Scholar]
  281. Qin H, Gu Z. 2005. The properties of granular cold-water swelling cassava starches. Shipin Yu Fajiao Gongye 31:38 (Abstr.) [Google Scholar]
  282. Rajagopalan S, Seib PA. 1991. Process for the preparation of granular cold water-soluble starch. US Patent No. 5037929
  283. Rajagopalan S, Seib PA. 1992a. Granular cold-water-soluble starches prepared at atmospheric pressure. J. Cereal Sci. 16:13–28 [Google Scholar]
  284. Rajagopalan S, Seib PA. 1992b. Properties of granular cold-water-soluble starches prepared at atmospheric pressure. J. Cereal Sci. 16:29–40 [Google Scholar]
  285. Rocha TS, Cunha VA, Jane JL, Franco CML. 2011. Structural characterization of Peruvian carrot (Arracacia xanthorrhiza) starch and the effect of annealing on its semicrystalline structure. J. Agric. Food Chem. 59:4208–16 [Google Scholar]
  286. Rocha TS, Felizardo G, Jane JL, Franco CML. 2012. Effect of annealing on the semicrystalline structure of normal and waxy corn starches. Food Hydrocoll. 29:93–99 [Google Scholar]
  287. Rodríguez-Damian AR, de la Rosa-Millán J, Agama-Acevedo E, Osorio-Díaz P, Bello-Pérez LA. 2013. Effect of different thermal treatments and storage on starch digestibility and physicochemical characteristics of unripe banana starch. J. Food Process. Preserv. 37:987–98 [Google Scholar]
  288. Ruan S, Liu Y, Ruan J, Liu J. 2005. Preparation of granular cold-water-soluble starch. Zhongguo Liangyou Xuebao 20:29 (Abstr.) [Google Scholar]
  289. Rubens P, Heremans K. 2000. Pressure-temperature gelatinization phase diagram of starch: an in situ Fourier transform infrared study. Biopolymers 54:524–30 [Google Scholar]
  290. Rubens P, Snauwaert J, Heremans K, Stute R. 1999. In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell. Carbohydr. Polym. 39:231–35 [Google Scholar]
  291. Samec M. 1961. Vergleichender Abbau verschiedener Stärken durch Gammastrahlen, Elektronenstrahlen und Ultraschall. Stärke 13:283–92 [Google Scholar]
  292. Samec M. 1963. Beeinflussung von Stärkesubstanzen durch Ultraschall. Starch - Stärke 15:243–45 [Google Scholar]
  293. Sandstedt RM. 1961. The function of starch in the baking of bread. Baker's Dig. 35:36–42 (as cited in Mok and Dick 1991b) [Google Scholar]
  294. Sandstedt RM, Mattern PJ. 1960. Damaged starch. Quantitative determination in flour. Cereal Chem. 37:379–90 [Google Scholar]
  295. Sang Y, Seib PA. 2006. Resistant starches from amylose mutants of corn by simultaneous heat-moisture treatment and phosphorylation. Carbohydr. Polym. 63:167–75 [Google Scholar]
  296. Sankhon A, Amadou I, Yao W, Wang H, Qian H, Mlyuka E. 2014. Effect of heat-moisture treatments on the physicochemical properties of African locust bean (Parkia biglobosa) starches. J. Agric. Sci. Technol. 16:331–42 [Google Scholar]
  297. Sankhon A, Yao W-R, Wang H, Qian H, Sangare M. 2012. The yield improvement of resistant starches from Africa locust (Parkia biglobosa): the influence of heat-moisture, autoclaving-cooling and cross-linking treatments. Am. J. Food Technol. 7:386–97 [Google Scholar]
  298. Satmalee P, Matsuki J. 2011. Effect of debranching and heat-moisture treatment on the properties of Thai rice flours. Int. J. Food Sci. Technol. 46:2628–33 [Google Scholar]
  299. Seguchi M. 1984. Oil-binding ability of heat-treated wheat starch. Cereal Chem. 61:248–50 [Google Scholar]
  300. Seguchi M, Higasa T, Mori T. 1994. Study of wheat starch structures by sonication treatment. Cereal Chem. 71:636–39 [Google Scholar]
  301. Seguchi M, Yamada Y. 1988. Hydrophobic character of heat-treated wheat starch. Cereal Chem. 65:375–76 [Google Scholar]
  302. Seo HI, Kim CS. 2011. Pasting properties and gel strength of non-waxy rice flours prepared by heat-moisture treatment. J. Korean Soc. Food Sci. Nutr. 40:196 (Abstr.) [Google Scholar]
  303. Seow CC, Teo CH. 1993. Annealing of granular rice starches—interpretation of the effect on phase transitions associated with gelatinization. Starch - Stärke 45:345–51 [Google Scholar]
  304. Shi YC. 2008. Two- and multi-step annealing of cereal starches in relation to gelatinization. J. Agric. Food Chem. 56:1097–104 [Google Scholar]
  305. Shin SI, Byun J, Park KH, Moon TW. 2004. Effect of partial acid hydrolysis and heat-moisture treatment on formation of resistant tuber starch. Cereal Chem. 81:194–98 [Google Scholar]
  306. Shin SI, Kim HJ, Ha HJ, Lee SH, Moon TW. 2005. Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch. Starch - Stärke 57:421–30 [Google Scholar]
  307. Shinoda K, Takahashi T, Jin T, Miura M, Kobayashi S. 2002. Effect of roasting and heat-moisture treatments on physical properties of proso millet flour. J. Jpn. Soc. Food Sci. 49:491 (Abstr.) [Google Scholar]
  308. Simsek S, Ovando-Martinez M, Whitney K, Bello-Perez L. 2012. Effect of acetylation, oxidation, and annealing on physicochemical properties of bean starch. Food Chem. 134:1796–803 [Google Scholar]
  309. Singh GD, Bawa AS, Riar CS, Saxena DC. 2009. Influence of heat-moisture treatment and acid modifications on physicochemical, rheological, thermal, and morphological characteristics of Indian water chestnut (Trapa natans) starch and its application in biodegradable films. Starch - Stärke 61:509–13 [Google Scholar]
  310. Singh H, Chang YH, Lin JH, Singh N, Singh N. 2011. Influence of heat–moisture treatment and annealing on functional properties of sorghum starch. Food Res. Int. 44:2949–54 [Google Scholar]
  311. Singh J, Singh N. 2003. Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. Food Hydrocoll. 17:63–72 [Google Scholar]
  312. Singh S, Raina CS, Bawa AS, Saxena DC. 2005. Effect of heat-moisture treatment and acid-modification on rheological, textural, and differential scanning calorimetry characteristics of sweet potato starch. J. Food Sci. 70:E373–78 [Google Scholar]
  313. Siswoyo TA, Morita N. 2010. Influence of annealing on gelatinization properties, retrogradation and susceptibility of breadfruit starch (Artocarpus communis). Int. J. Food Prop. 13:553–61 [Google Scholar]
  314. Song HY, Lee SY, Choi SJ, Kim MK, Kim JS. et al. 2014. Digestibility and physicochemical properties of granular sweet potato starch as affected by annealing. Food Sci. Biotechnol. 23:23–31 [Google Scholar]
  315. Song JY, Park JH, Shin M. 2011. The effects of annealing and acid hydrolysis on resistant starch level and the properties of cross-linked RS4 rice starch. Starch - Stärke 63:147–53 [Google Scholar]
  316. Soria AC, Villamiel M. 2010. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci. Technol. 21:323–31 [Google Scholar]
  317. Stark JR, Yin XS. 1986. The effect of physical damage on large and small barley starch granules. Starch - Stärke 38:369–74 [Google Scholar]
  318. Stern E. 1924. Starch. DE Patent No. 519,300
  319. Stern E. 1926. Cold-water starch. DE Patent No. 542,581
  320. Stevenson DG, Biswas A, Inglett GE. 2005. Thermal and pasting properties of microwaved corn starch. Starch - Stärke 57:347–53 [Google Scholar]
  321. Stolt M, Oinonen S, Autio K. 2001. Effect of high pressure on the physical properties of barley starch. Innov. Food Sci. Emerg. Technol. 1:167–75 [Google Scholar]
  322. Stolt M, Stoforos NG, Taoukis PS, Autio K. 1999. Evaluation and modelling of rheological properties of high pressure treated waxy maize starch dispersions. J. Food Eng. 40:293–98 [Google Scholar]
  323. Stute R. 1992. Hydrothermal modification of starches: the difference between annealing and heat-moisture treatment. Starch - Stärke 44:205–14 [Google Scholar]
  324. Stute R, Klinger RW, Boguslawski S, Eshtiaghi MN, Knorr D. 1996. Effects of high pressures treatment on starches. Starch - Stärke 48:399–408 [Google Scholar]
  325. Sui Z, Shah A, BeMiller JN. 2011. Crosslinked and stabilized in-kernel heat-moisture-treated and temperature-cycled normal maize starch and effects of reaction conditions on starch properties. Carbohydr. Polym. 86:1461–67 [Google Scholar]
  326. Sujka M, Jamroz J. 2013. Ultrasound-treated starch: SEM and TEM imaging, and functional behavior. Food Hydrocoll. 31:413–19 [Google Scholar]
  327. Sun J, Zeng J, Li G, Liu B, Hu L, Liang X. 2009. Ultrasound-assisted enzymatic hydrolysis of corn starch for preparing dextrin. Shipin Kexue 30:126 (Abstr.) [Google Scholar]
  328. Sun P, Qian J, Yang J, Tang X, Bu Q. 2009. Preparation of cold water soluble cornstarch and changes in its microstructure and physical properties. Shipin Kexue 30:130 (Abstr.) [Google Scholar]
  329. Sun P, Wang Y, Chen J, Ma E. 2011. Preparation and properties of granular cold-water-soluble starches. Liangshi Yu Siliao Gongye 2011:33 (Abstr.) [Google Scholar]
  330. Sun Q, Dai L, Nan C, Xiong L. 2014a. Effect of heat moisture treatment on physicochemical and morphological properties of wheat starch and xylitol mixture. Food Chem. 143:54–59 [Google Scholar]
  331. Sun Q, Han Z, Wang L, Xiong L. 2014b. Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chem. 145:756–64 [Google Scholar]
  332. Sun Q, Wang T, Xiong L, Zhao Y. 2013. The effect of heat moisture treatment on physicochemical properties of early indica rice. Food Chem. 141:853–57 [Google Scholar]
  333. Suslick KS, Flannigan DJ. 2009. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Ann. Rev. Phys. Chem. 59:659–83 [Google Scholar]
  334. Sutra R. 1951. Action of ultrasonic waves on starch. Comptes Rendus 232:1490–92 [Google Scholar]
  335. Szepes A, Hasznos-Nezdei M, Kovács J, Funke Z, Ulrich J, Szabó-Révész P. 2005. Microwave processing of natural biopolymers—studies on the properties of different starches. Int. J. Pharm. 302:166–71 [Google Scholar]
  336. Szepes A, Szabó-Révész P, Mohnicke M. 2007. Water sorption behavior and swelling characteristics of starches subjected to dielectric heating. Pharm. Dev. Technol. 12:555–61 [Google Scholar]
  337. Szymońska J, Krok F. 2003. Potato starch granule nanostructure studied by high resolution non-contact AFM. Int. J. Biol. Macromol. 33:1–7 [Google Scholar]
  338. Szymońska J, Wodnicka K. 2005. Effect of multiple freezing and thawing on the surface and functional properties of granular potato starch. Food Hydrocoll. 19:753–60 [Google Scholar]
  339. Takahashi R, Ojima T. 1969. Pregelatinization of wheat starch in a drum dryer. Stärke 21:318–21 [Google Scholar]
  340. Takahashi T, Miura M, Kobayashi S. 2003. Physicochemical properties of pastes and gels of heat-treated rice flour—utilizations for cooking and food processing of heat-treated rice flours Part II. J. Jpn. Soc. Food Sci. 50:230 (Abstr.) [Google Scholar]
  341. Takahashi T, Miura M, Ohisa N, Kobayashi S. 2005a. Modification of gelatinization properties of rice flour by heat-treatment. Nihon Reoroji Gakk 33:81 (Abstr.) [Google Scholar]
  342. Takahashi T, Miura M, Ohisa N, Mori K, Kobayashi S. 2005b. Heat treatments of milled rice and properties of the flours. Cereal Chem. 82:228–32 [Google Scholar]
  343. Takahashi T, Shinoda K, Miura M, Jin Z, Kobayashi S. 2002. Effect of heat treatment on physicochemical properties of rice flour. J. Jpn. Soc. Food Sci. 49:757–64 [Google Scholar]
  344. Takaya T, Sano C, Nishinari K. 2000. Thermal studies on the gelatinisation and retrogradation of heat-moisture treated starch. Carbohydr. Polym. 41:97–100 [Google Scholar]
  345. Tamaki S, Hisamatsu M, Teranishi K, Adachi T, Yamada T. 1998. Structural change of maize starch granules by ball-mill treatment. Starch - Stärke 50:342–48 [Google Scholar]
  346. Tamaki S, Hisamatsu M, Teranishi K, Yamada T. 1997a. Structural change of potato starch granules by ball-mill treatment. Starch - Stärke 49:431–38 [Google Scholar]
  347. Tamaki S, Hisamatsu M, Teranishi K, Yamada T. 1997b. Structural change of wheat starch granule by ball-mill treatment. Oyo Toshitsu Kagaku 44:505 (Abstr.) [Google Scholar]
  348. Tan F-J, Dai W-T, Hsu K-C. 2009. Changes in gelatinization and rheological characteristics of japonica rice starch induced by pressure/heat combinations. J. Cereal Sci. 49:285–89 [Google Scholar]
  349. Tara KA, Finney PL, Bains GS. 1972. Damaged starch and protein contents in relation to water absorption of flours of Indian wheats. Stärke 24:342–45 [Google Scholar]
  350. Tattiyakul J, Naksriarporn T, Pradipasena P. 2012. X-ray diffraction pattern and functional properties of Dioscorea hispida Dennst starch hydrothermally modified at different temperatures. Food Bioprocess Technol. 5:964–71 [Google Scholar]
  351. Tester RF. 1997. Properties of damaged starch granules: composition and swelling properties of maize, rice, pea and potato starch fractions in water at various temperatures. Food Hydrocoll. 11:293–301 [Google Scholar]
  352. Tester RF, Ansell R, Snape CE, Yusuph M. 2005. Effect of storage temperatures and annealing conditions on the structure and properties of potato (Solanum tuberosum) starch. Int. J. Biol. Macromol. 36:1–8 [Google Scholar]
  353. Tester RF, Debon SJJ. 2000. Annealing of starch—a review. Int. J. Biol. Macromol. 27:1–12 [Google Scholar]
  354. Tester RF, Debon SJJ, Davies HV, Gidley MJ. 1999. Effect of temperature on the synthesis, composition and physical properties of potato starch. J. Sci. Food Agric. 79:2045–51 [Google Scholar]
  355. Tester RF, Debon SJJ, Karkalas J. 1998. Annealing of wheat starch. J. Cereal Sci. 28:259–72 [Google Scholar]
  356. Tester RF, Debon SJJ, Sommerville MD. 2000. Annealing of maize starch. Carbohydr. Polym. 42:287–99 [Google Scholar]
  357. Tester RF, Morrison WR. 1994. Properties of damaged starch granules: V. Composition and swelling of fractions of wheat starch in water at various temperatures. J. Cereal Sci. 20:175–81 [Google Scholar]
  358. Tester RF, Morrison WR, Gidley MJ, Kirkland M, Karkalas J. 1994. Properties of damaged starch granules: III. Microscopy and particle size analysis of undamaged granules and remnants. J. Cereal Sci. 20:59–67 [Google Scholar]
  359. Thevelein JM, Van Assche JA, Heremans K, Gerlsma SY. 1981. Gelatinisation temperature of starch, as influenced by high pressure. Carbohydr. Res. 93:304–7 [Google Scholar]
  360. Thivend P, Mercier-Greenwood C, Guilbot A. 1978. Method and apparatus for hydrolysis of a starch dispersion in an aqueous medium. DE Patent No. 270806 (Abstr.)
  361. Tian Y, Zhu Y, Bashari M, Hu X, Xu X, Jin Z. 2013. Identification and releasing characteristics of high-amylose corn starch-cinnamaldehyde inclusion complex prepared using ultrasound treatment. Carbohydr. Polym. 91:586–89 [Google Scholar]
  362. Tipples KH. 1969. Relation of starch damage to the baking performance of flour. Baker's Dig. 43:28 (Abstr.) [Google Scholar]
  363. Traubenberg SE, Korotchenko KA, Putilova IN. 1965. Effect of high doses of 60Co γ-rays on potato starch. Izv. Vyss. Uchebnykh Zaved. Pishchevaya Tekhnologiya 6:24 (Abstr.) [Google Scholar]
  364. Treppe K, Dixit O, Mollekopf N, Fiala P. 2011. Vacuum microwave treatment of potato starch and the resultant modification of properties. Chem. Ing. Tech. 83:262–72 [Google Scholar]
  365. Trinh KS, Lee CJ, Choi SJ, Moon TW. 2012. Hydrothermal treatment of water yam starch in a non-granular state: slowly digestible starch content and structural characteristics. J. Food Sci. 77:C574–82 [Google Scholar]
  366. Truong T, Truong V, Fukai S, Bhandari B. 2012. Changes in cracking behavior and milling quality of selected Australian rice varieties due to postdrying annealing and subsequent storage. Dry. Technol. 16:1831–43 [Google Scholar]
  367. Tsutsui K, Katsuta K, Matoba T, Takemasa M, Funami T. et al. 2013. Effects of time and temperature of annealing on rheological and thermal properties of rice starch suspensions during gelatinization. J. Texture Stud. 44:21–33 [Google Scholar]
  368. Tu Z-C, Zhu X-M, Chen G, Wang H, Zhang B. et al. 2010. Effects of dynamic high-pressure microfluidization on the structure of waxy rice starch. Guangpuxue Yu Guangpu Fenxi 30:834 (Abstr.) [Google Scholar]
  369. Vallons KJR, Arendt EK. 2009. Effects of high pressure and temperature on the structural and rheological properties of sorghum starch. Innov. Food Sci. Emerg. Technol. 10:449–56 [Google Scholar]
  370. Vamadevan V, Bertoft E, Soldatov DV, Seetharaman K. 2013. Impact on molecular organization of amylopectin in starch granules upon annealing. Carbohydr. Polym. 98:1045–55 [Google Scholar]
  371. Varatharajan V, Hoover R, Li J, Vasanthan T, Nantanga KKM. et al. 2011. Impact of structural changes due to heat-moisture treatment at different temperatures on the susceptibility of normal and waxy potato starches towards hydrolysis by porcine pancreatic alpha amylase. Food Res. Int. 44:2594–606 [Google Scholar]
  372. Varatharajan V, Hoover R, Liu Q, Seetharaman K. 2010. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of normal and waxy potato starches. Carbohydr. Polym. 81:466–75 [Google Scholar]
  373. Vasanthan T, Sosulski FW, Hoover R. 1995. The reactivity of native and autoclaved starches from different origins towards acetylation and cationization. Starch - Stärke 47:135–43 [Google Scholar]
  374. Vermeylen R, Goderis B, Delcour JA. 2006. An X-ray study of hydrothermally treated potato starch. Carbohydr. Polym. 64:364–75 [Google Scholar]
  375. Waduge RN, Hoover R, Vasanthan T, Gao J, Li J. 2006. Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Res. Int. 39:59–77 [Google Scholar]
  376. Wang B, Li D, Wang L-j, Chiu YL, Chen XD, Mao Z-h. 2008. Effect of high-pressure homogenization on the structure and thermal properties of maize starch. J. Food Eng. 87:436–44 [Google Scholar]
  377. Wang D, Liu T, Zhang Y. 2013. Method for ultrasonically extracting potato starch. From Faming Zhuanli Shenqing. CN Patent No. 102993318 (Abstr.)
  378. Wang L, Wang Y-J. 2004a. Application of high-intensity ultrasound and surfactants in rice starch isolation. Cereal Chem. 81:140–44 [Google Scholar]
  379. Wang L, Wang Y-J. 2004b. Rice starch isolation by neutral protease and high-intensity ultrasound. J. Cereal Sci. 39:291–96 [Google Scholar]
  380. Wang S, Jin F, Yu J. 2013. Pea starch annealing: new insights. Food Bioprocess Technol. 6:3564–75 [Google Scholar]
  381. Wang WJ, Powell AD, Oaks CG. 1997. Effect of annealing on the hydrolysis of sago starch granules. Carbohydr. Polym. 33:195–202 [Google Scholar]
  382. Wang Y, Sui H, Liu T, Li B, Ye Y. 2005. Novel methods to prepare granular cold water-soluble starch and the primary study on its structure. Zhuzao 54:1069 (Abstr.) [Google Scholar]
  383. Watcharatewinkul Y, Puttanlek C, Rungsardthong V, Uttapap D. 2009. Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics. Carbohydr. Polym. 75:505–11 [Google Scholar]
  384. Watcharatewinkul Y, Uttapap D, Puttanlek C, Rungsardthong V. 2010. Enzyme digestibility and acid/shear stability of heat-moisture treated canna starch. Starch - Stärke 62:205–16 [Google Scholar]
  385. West R, Duizer L, Seetharaman K. 2013. The effect of drying and whole grain content on the pasting, physicochemical and qualitative properties of pasta. Starch - Stärke 65:645–52 [Google Scholar]
  386. Williams PC. 1969. Nature of mechanically damaged starch: its production in flour. Part I. Northwest. Miller 276:8–12 (as cited by Mok and Dick 1991b) [Google Scholar]
  387. Williams PC, Fegol KSW. 1969. Colorimetric determination of damaged starch in flour. Cereal Chem. 47:56–62 [Google Scholar]
  388. Williams PC, LeSeeleur GC. 1970. Determination of damaged starch in flour. Cereal Sci. Today 15:4–9 [Google Scholar]
  389. Witlich M. 1912. Some observations and investigations of soluble starches. Kunstoffe 2:61 (Abstr.) [Google Scholar]
  390. Wongsagonsup R, Varavinit S, BeMiller JN. 2008. Increasing slowly digestible starch content of normal and waxy maize starches and properties of starch products. Cereal Chem. 85:738–45 [Google Scholar]
  391. Wu Y, Du X-F, Ge H-H, Lu Z. 2011. Preparation of microporous starch by glucoamylase and ultrasound. Starch - Stärke 63:217–25 [Google Scholar]
  392. Wu Y, Lu Z, Du X. 2008. Ultrasound-assisted technology for producing porous starch by enzyme hydrolysis. Shipin Yu Fajiao Gongye 34:25 (Abstr.) [Google Scholar]
  393. Xie Y, Yan M, Yuan S, Sun S, Huo Q. 2013. Effect of microwave treatment on the physicochemical properties of potato starch granules. Chem. Central J. 7:113–19 [Google Scholar]
  394. Yadav BS, Guleria P, Yadav RB. 2013. Hydrothermal modification of Indian water chestnut starch: influence of heat-moisture treatment and annealing on the physicochemical, gelatinization and pasting characteristics. LWT - Food Sci. Technol. 53:211–17 [Google Scholar]
  395. Yagishita T, Ito K, Yokomizo E, Endo S, Takahashi K. 2011. Physicochemical properties of monosodium glutamate-compounded tapioca starch exceeds those of simple heat-moisture treated starch. J. Food Sci. 76:C980–84 [Google Scholar]
  396. Yaldagard M, Mortazavi SA, Tabatabaie F. 2008. The principles of ultra high pressure technology and its application in food processing/preservation: a review of microbiological and quality aspects. Afr. J. Biotechnol. 7:2739–67 [Google Scholar]
  397. Yang L, Liu Y, Li C, Zhou J, Jia N, Chen P. 2007. Influence of different mediums on modified research of corn starch by ultra-high pressure. Shipin Keji 2007:342 (Abstr.) [Google Scholar]
  398. Yang Z, Gu Q, Hemar Y. 2013. In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction. Carbohydr. Polym. 97:235–38 [Google Scholar]
  399. Yu R, Zhao L, Liu X, Chen X. 2010. Preparation of water-soluble arrowroot starches and investigation of its properties. Shipin Keji 35:112 (Abstr.) [Google Scholar]
  400. Yu S, Zhang Y, Ge Y, Zhang Y, Sun T. et al. 2013a. Effects of ultrasound processing on the thermal and retrogradation properties of nonwaxy rice starch. J. Food Proc. Eng. 36:793–802 [Google Scholar]
  401. Yu S-F, Yu M, Sun T-Y, Zhang Y, Ge Y. et al. 2013b. Physicochemical properties of RS3 prepared from rice starch. Shipin Keji 38:154 (Abstr.) [Google Scholar]
  402. Yue P, Rayas-Duarte P, Elias E. 1999. Effect of drying temperature on physicochemical properties of starch isolated from pasta. Cereal Chem. 76:541–47 [Google Scholar]
  403. Zarguili I, Maache-Rezzoug Z, Loisel C, Doublier J-L. 2006. Influence of DIC hydrothermal process conditions on the gelatinization properties of standard maize starch. J. Food Eng. 77:454–61 [Google Scholar]
  404. Zarguili I, Maache-Rezzoug Z, Loisel C, Doublier J-L. 2009. A mathematical model to describe the change in moisture distribution in maize starch during hydrothermal treatment. Int. J. Food Sci. Technol. 44:10–17 [Google Scholar]
  405. Zavareze EdR, Dias ARG. 2011. Impact of heat-moisture treatment and annealing in starches: a review. Carbohydr. Polym. 83:317–28 [Google Scholar]
  406. Zavareze EdR, El Halal SLM, de los Santos DG, Helbig E, Pereira JM, Dias ARG. 2012a. Resistant starch and thermal, morphological and textural properties of heat-moisture treated rice starches with high-, medium- and low-amylose content. Starch - Stärke 64:45–54 [Google Scholar]
  407. Zavareze EdR, Pinto VZ, Klein B, El Halal SLM, Elias MC. et al. 2012b. Development of oxidized and heat-moisture treated potato starch film. Food Chem. 132:344–50 [Google Scholar]
  408. Zavareze EdR, Storck CR, de Castro LAS, Schirmer MA, Dias ARG. 2010. Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chem. 121:359–65 [Google Scholar]
  409. Zhang G, Sun S, Tong Q. 2007. Preparation of granular cold-water-soluble lotus root starch. Henan Gongye Daxue Xuebao Ziran Kexueban 28:32 (Abstr.) [Google Scholar]
  410. Zhang H-W, Wang Q, Cui S-P. 2013. Preliminary pilot-scale study of porosity starch produced by ultrasonic-assisted enzyme hydrolysis method. Shipin Keji 38:249 (Abstr.) [Google Scholar]
  411. Zhang J, Chen F, Liu F, Wang Z-W. 2010a. Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocoll. 24:27–34 [Google Scholar]
  412. Zhang J, Wang Z-W, Shi X-M. 2009. Effect of microwave heat/moisture treatment on physicochemical properties of Canna edulis Ker starch. J. Sci. Food Agric. 89:653–64 [Google Scholar]
  413. Zhang J, Wang Z-W, Yang J-A. 2010b. Physicochemical properties of Canna edulis Ker starch on heat-moisture treatment. Int. J. Food Prop. 13:1266–79 [Google Scholar]
  414. Zhang Z, Feng H, Niu Y, Eckhoff SR. 2005a. Starch recovery from degermed corn flour and hominy feed using power ultrasound. Cereal Chem. 82:447–49 [Google Scholar]
  415. Zhang Z, Niu Y, Eckhoff SR, Feng H. 2005b. Sonication enhanced cornstarch separation. Starch - Stärke 57:240–45 [Google Scholar]
  416. Zheng B, Guo Z, Zeng S, Zhang Y, Zheng Y. et al. 2013. Method for increasing resistant starch in lotus seeds by ultra-high pressure treatment. CN Patent No. 103040040 (Abstr.)
  417. Zheng J, Li Q, Hu A, Yang L, Lu J. et al. 2013. Dual-frequency ultrasound effect on structure and properties of sweet potato starch. Starch - Stärke 65:621–27 [Google Scholar]
  418. Zhong H-I, Dou X-F, Xiong H, Zhang Z, Peng H-L. et al. 2013. Optimization of ultrasonic-assisted enzymolysis processing of kudzu root starch by response surface methodology. Shipin Gongye Keji 34:134 (Abstr.) [Google Scholar]
  419. Zhou Y, Meng S, Chen D, Zhu X, Yuan H. 2014. Structure characterization and hypoglycemic effects of dual modified resistant starch from indica rice starch. Carbohydr. Polym. 103:81–86 [Google Scholar]
  420. Zhou Z, Robards K, Helliwell S, Blanchard C. 2003. Effect of rice storage on pasting properties of rice flour. Food Res. Int. 36:625–34 [Google Scholar]
  421. Zhou Z, Robards K, Helliwell S, Blanchard C. 2010. Effect of storage temperature on rice thermal properties. Food Res. Int. 43:709–15 [Google Scholar]
  422. Zhu J, Li L, Chen L, Li X. 2012. Study on supramolecular structural changes of ultrasonic treated potato starch granules. Food Hydrocoll. 29:116–22 [Google Scholar]
  423. Zhu Y, Tian Y, Xu Z, Wang Q, Jin Z. 2012. Preparation of the starch-cinnamaldehyde inclusion complex by the ultrasound technology. Shipin Gongye Keji 33:232 (Abstr.) [Google Scholar]
  424. Zhukov II, Khenokh MA. 1949. Action of supersonic waves on high-molecular compounds. Dokl. Akad. Nauk SSSR 68:333 (Abstr.) [Google Scholar]
  425. Zou J-J, Liu C-J, Eliasson B. 2004. Modification of starch by glow discharge plasma. Carbohydr. Polym. 55:23–26 [Google Scholar]
  426. Zuo JY, Knoerzer K, Mawson R, Kentish S, Ashokkumar M. 2009. The pasting properties of sonicated waxy rice starch suspensions. Ultrason. Sonochem. 16:462–68 [Google Scholar]
  427. Zuo YYJ, Hébraud P, Hemar Y, Ashokkumar M. 2012. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy. Ultrason. Sonochem. 19:421–26 [Google Scholar]
  • Article Type: Review Article