1932

Abstract

Proanthocyanidins (PACs) are an abundant but complex class of polyphenols found in foods and botanicals. PACs are polymeric flavanols with a variety of linkages and subunits. Connectivity and degree of polymerization (DP) determine PAC bioavailability and bioactivity. Current quantitative and qualitative methods may ignore a large percentage of dietary PACs. Subsequent correlations between intake and activity are hindered by a lack of understanding of the true PAC complexity in many foods. Additionally, estimates of dietary intakes are likely inaccurate, as nutrient databank values are largely based on standards from cocoa (monomers to decamers) and blueberries (mean DP of 36). Improved analytical methodologies are needed to increase our understanding of the biological roles of these complex compounds.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-022814-015604
2016-02-28
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/food/7/1/annurev-food-022814-015604.html?itemId=/content/journals/10.1146/annurev-food-022814-015604&mimeType=html&fmt=ahah

Literature Cited

  1. Abia R, Fry SC. 2001. Degradation and metabolism of C-14-labelled proanthocyanidins from carob (Ceratonia siliqua) pods in the gastrointestinal tract of the rat. J. Sci. Food Agric. 81:1156–65 [Google Scholar]
  2. Andriambeloson E, Magnier C, Haan-Archipoff G, Lobstein A, Anton R. et al. 1998. Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J. Nutr. 128:2324–33 [Google Scholar]
  3. Appeldoorn MM, Vincken JP, Gruppen H, Hollman PCH. 2009. Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J. Nutr. 139:1469–73 [Google Scholar]
  4. Arimboor R, Arumughan C. 2012. Effect of polymerization on antioxidant and xanthine oxidase inhibitory potential of sea buckthorn (H. rhamnoides) proanthocyanidins. J. Food Sci. 77:C1036–41 [Google Scholar]
  5. Arranz S, Silván JM, Saura-Calixto F. 2010. Nonextractable polyphenols, usually ignored, are the major part of dietary polyphenols: a study on the Spanish diet. Mol. Nutr. Food Res. 54:1646–58 [Google Scholar]
  6. Behrens A, Maie N, Knicker H, Kögel-Knabner I. 2003. MALDI-TOF mass spectrometry and PSD fragmentation as means for the analysis of condensed tannins in plant leaves and needles. Phytochemistry 62:1159–70 [Google Scholar]
  7. Bitzer ZT, Glisan SL, Dorenkott MR, Goodrich KM, Ye L. et al. 2015. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. J. Nutr. Biochem. 26:827–31 [Google Scholar]
  8. Bodet C, Chandad F, Grenier D. 2007. Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E-2 production by lipopolysaccharide-activated gingival fibroblasts. Eur. J. Oral Sci. 115:64–70 [Google Scholar]
  9. Byun EB, Ishikawa T, Suyama A, Kono M, Nakashima S. et al. 2012. A procyanidin trimer, C1, promotes NO production in rat aortic endothelial cells via both hyperpolarization and PI3K/Akt pathways. Eur. J. Pharmacol. 692:52–60 [Google Scholar]
  10. Chen L, Sun P, Wang T, Chen KX, Jia Q. et al. 2012. Diverse mechanisms of antidiabetic effects of the different procyanidin oligomer types of two different cinnamon species on db/db mice. J. Agric. Food Chem. 60:9144–50 [Google Scholar]
  11. Cheynier V, Labarbe B, Moutounet M. 2001. Estimation of procyanidin chain length. Flavonoids and Other Polyphenols L Packer 82–94 Waltham, MA: Acad. Press [Google Scholar]
  12. Choy YY, Jaggers GK, Oteiza PI, Waterhouse AL. 2013. Bioavailability of intact proanthocyanidins in the rat colon after ingestion of grape seed extract. J. Agric. Food Chem. 61:121–27 [Google Scholar]
  13. Deprez S, Mila I, Huneau JF, Tome D, Scalbert A. 2001. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid. Redox Signal 3:957–67 [Google Scholar]
  14. Dorenkott MR, Griffin LE, Goodrich KM, Thompson-Witrick KA, Fundaro G. et al. 2014. Oligomeric cocoa procyanidins possess enhanced bioactivity compared to monomeric and polymeric cocoa procyanidins for preventing the development of obesity, insulin resistance, and impaired glucose tolerance during high-fat feeding. J. Agric. Food Chem. 62:2216–27 [Google Scholar]
  15. Epasinghe DJ, Yiu CKY, Burrow MF, Hiraishi N, Tay FR. 2013. The inhibitory effect of proanthocyanidin on soluble and collagen-bound proteases. J. Dent. 41:832–39 [Google Scholar]
  16. Esatbeyoglu T, Jaschok-Kentner B, Wray V, Winterhalter P. 2011. Structure elucidation of procyanidin oligomers by low-temperature 1H NMR spectroscopy. J. Agric. Food Chem. 59:62–69 [Google Scholar]
  17. Esatbeyoglu T, Wray V, Winterhalter P. 2013. Identification of two novel prodelphinidin A-type dimers from roasted hazelnut skins (Corylus avellana L.). J. Agric. Food Chem. 61:12640–45 [Google Scholar]
  18. Esatbeyoglu T, Wray V, Winterhalter P. 2015. Isolation of dimeric, trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography. Food Chem. 179:278–89 [Google Scholar]
  19. Everette JD, Bryant QM, Green AM, Abbey YA, Wangila GW, Walker RB. 2010. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J. Agric. Food Chem. 58:8139–44 [Google Scholar]
  20. Fan J, Ding X, Gu W. 2007. Radical-scavenging proanthocyanidins from sea buckthorn seed. Food Chem. 102:168–77 [Google Scholar]
  21. Feng G, Klein MI, Gregoire S, Singh AP, Vorsa N, Koo H. 2013. The specific degree-of-polymerization of A-type proanthocyanidin oligomers impacts Streptococcus mutans glucan-mediated adhesion and transcriptome responses within biofilms. Biofouling 29:629–40 [Google Scholar]
  22. Ferreira D, Nel RJJ, Bekker R. 1999. Condensed tannins. Comprehensive Natural Products Chemistry D Barton, K Nakanishi, O Meth-Cohn 747–97 New York, NY: Elsevier [Google Scholar]
  23. Fitzpatrick DF, Fleming RC, Bing B, Maggi DA, O'Malley RM. 2000. Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J. Agric. Food Chem. 48:6384–90 [Google Scholar]
  24. Foo LY, Lu Y, Howell AB, Vorsa N. 2000. A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J. Nat. Prod. 63:1225–28 [Google Scholar]
  25. Fulcrand H, Mané C, Preys S, Mazerolles G, Bouchut C. et al. 2008. Direct mass spectrometry approaches to characterize polyphenol composition of complex samples. Phytochemistry 69:3131–38 [Google Scholar]
  26. García-Conesa M-T, Tribolo S, Guyot S, Tomás-Barberán FA, Kroon PA. 2009. Oligomeric procyanidins inhibit cell migration and modulate the expression of migration and proliferation associated genes in human umbilical vascular endothelial cells. Mol. Nutr. Food Res. 53:266–76 [Google Scholar]
  27. Gentile C, Allegra M, Angileri F, Pintaudi AM, Livrea MA, Tesoriere L. 2012. Polymeric proanthocyanidins from Sicilian pistachio (Pistacia vera L.) nut extract inhibit lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Eur. J. Nutr. 51:353–63 [Google Scholar]
  28. Girardot M, Guerineau A, Boudesocque L, Costa D, Bazinet L. et al. 2014. Promising results of cranberry in the prevention of oral Candida biofilms. Pathogens Dis. 70:432–39 [Google Scholar]
  29. Goodrich KM, Dorenkott MR, Ye L, O'Keefe SF, Hulver MW, Neilson AP. 2014. Dietary supplementation with cocoa flavanols does not alter colon tissue profiles of native flavanols and their microbial metabolites established during habitual dietary exposure in C57BL/6J mice. J. Agric. Food Chem. 62:11190–99 [Google Scholar]
  30. Goodrich KM, Neilson AP. 2014. Simultaneous UPLC–MS/MS analysis of native catechins and procyanidins and their microbial metabolites in intestinal contents and tissues of male Wistar Furth inbred rats. J. Chromatogr. B 958:63–74 [Google Scholar]
  31. Gosse F, Guyot S, Roussi S, Lobstein A, Fischer B. et al. 2005. Chemopreventive properties of apple procyanidins on human colon cancer–derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 26:1291–95 [Google Scholar]
  32. Gu L. 2002. Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J. Agric. Food Chem. 50:4852–60 [Google Scholar]
  33. Gu L, Kelm M, Hammerstone JF, Beecher G, Cunningham D. et al. 2002. Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J. Agric. Food Chem. 50:4852–60 [Google Scholar]
  34. Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J. et al. 2004. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 134:613–17 [Google Scholar]
  35. Gu YY, Hurst WJ, Stuart DA, Lambert JD. 2011. Inhibition of key digestive enzymes by cocoa extracts and procyanidins. J. Agric. Food Chem. 59:5305–11 [Google Scholar]
  36. Guyot S. 1998. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (var. Kermerrien). J. Agric. Food Chem. 46:1698–705 [Google Scholar]
  37. Guyot S, Doco T, Souquet JM, Moutounet M, Drilleau JF. 1997. Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var. kermerrien) skin and pulp. Phytochemistry 44:351–57 [Google Scholar]
  38. Guyot S, Marnet N, Drilleau J. 2001a. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 49:14–20 [Google Scholar]
  39. Guyot S, Marnet N, Sanoner P, Drilleau JF. 2001b. Direct thiolysis on crude apple materials for high-performance liquid chromatography characterization and quantification of polyphenols in cider apple tissues and juices. Flavonoids and Other Polyphenols L Packer 57–70 Waltham, MA: Acad. Press [Google Scholar]
  40. Hemingway RW, McGraw GW. 1983. Kinetics of acid-catalyzed cleavage of procyanidins. J. Wood Chem. Technol. 3:421–35 [Google Scholar]
  41. Hemmersbach S, Brauer SS, Huwel S, Galla HJ, Humpf HU. 2013. Transepithelial permeability studies of flavan-3-ol-C-glucosides and procyanidin dimers and trimers across the Caco-2 cell monolayer. J. Agric. Food Chem. 61:7932–40 [Google Scholar]
  42. Holt RR, Heiss C, Kelm M, Keen CL. 2012. The potential of flavanol and procyanidin intake to influence age-related vascular disease. J. Nutr. Gerontol. Geriatr. 31:290–323 [Google Scholar]
  43. Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD. et al. 2002. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 76:798–804 [Google Scholar]
  44. Howell AB. 2007. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol. Nutr. Food Res. 51:732–37 [Google Scholar]
  45. Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M. 2005. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66:2281–91 [Google Scholar]
  46. Huang P-L, Chi C-W, Liu T-Y. 2010. Effects of Areca catechu L. containing procyanidins on cyclooxygenase-2 expression in vitro and in vivo. Food Chem. Toxicol. 48:306–13 [Google Scholar]
  47. Hurst WJ, Krake SH, Bergmeier SC, Payne MJ, Miller KB, Stuart DA. 2011. Impact of fermentation, drying, roasting and Dutch processing on flavan-3-ol stereochemistry in cacao beans and cocoa ingredients. Chem. Cent. J. 5:53 [Google Scholar]
  48. Kahle K, Huemmer W, Kempf M, Scheppach W, Erk T, Richling E. 2007. Polyphenols are intensively metabolized in the human gastrointestinal tract after apple juice consumption. J. Agric. Food Chem. 55:10605–14 [Google Scholar]
  49. Kahle K, Kempf M, Schreier P, Scheppach W, Schrenk D. et al. 2011. Intestinal transit and systemic metabolism of apple polyphenols. Eur. J. Nutr. 50:507–22 [Google Scholar]
  50. Karas M, Bachmann D, Bahr U, Hillenkamp F. 1987. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78:53–68 [Google Scholar]
  51. Karas M, Hillenkamp F. 1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60:2299–301 [Google Scholar]
  52. Kim Y, Choi Y, Ham H, Jeong HS, Lee J. 2013. Protective effects of oligomeric and polymeric procyanidin fractions from defatted grape seeds on tert-butyl hydroperoxide-induced oxidative damage in HepG2 cells. Food Chem. 137:136–41 [Google Scholar]
  53. Kimbrough C, Chun M, dela Roca G, Lau BHS. 2002. Pycnogenol® chewing gum minimizes gingival bleeding and plaque formation. Phytomedicine 9:410–13 [Google Scholar]
  54. Knaze V, Zamora-Ros R, Lujan-Barroso L, Romieu I, Scalbert A. et al. 2012. Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 108:1095–108 [Google Scholar]
  55. Koo H, Duarte S, Murata RM, Scott-Anne K, Gregoire S. et al. 2010. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo. Caries Res. 44:116–26 [Google Scholar]
  56. Kosinska A, Andlauer W. 2012. Cocoa polyphenols are absorbed in Caco-2 cell model of intestinal epithelium. Food Chem. 135:999–1005 [Google Scholar]
  57. Kothe L, Zimmermann BF, Galensa R. 2013. Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chem. 141:3656–63 [Google Scholar]
  58. Ku CS, Mun SP. 2007. Characterization of proanthocyanidin in hot water extract isolated from Pinus radiata bark. Wood Sci. Technol. 41:235–47 [Google Scholar]
  59. Lee YA, Cho EJ, Tanaka T, Yokozawa T. 2007a. Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes. J. Nutr. Sci. Vitaminol. 53:287–92 [Google Scholar]
  60. Lee YA, Cho EJ, Yokozawa T. 2008. Effects of proanthocyanidin preparations on hyperlipidemia and other biomarkers in mouse model of type 2 diabetes. J. Agric. Food Chem. 56:7781–89 [Google Scholar]
  61. Lee YA, Kim YJ, Cho EJ, Yokozawa T. 2007b. Ameliorative effects of proanthocyanidin on oxidative stress and inflammation in streptozotocin-induced diabetic rats. J. Agric. Food Chem. 55:9395–400 [Google Scholar]
  62. Lizarraga D, Lozano C, Briede JJ, van Delft JH, Tourino S. et al. 2007. The importance of polymerization and galloylation for the antiproliferative properties of procyanidin-rich natural extracts. FEBS J. 274:4802–11 [Google Scholar]
  63. Lu WC, Huang WT, Kumaran A, Ho CT, Hwang LS. 2011. Transformation of proanthocyanidin A2 to its isomers under different physiological pH conditions and common cell culture medium. J. Agric. Food Chem. 59:6214–20 [Google Scholar]
  64. Manach C, Williamson G, Morand C, Scalbert A, Remesy C. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81:230S–42 [Google Scholar]
  65. Mané C, Sommerer N, Yalcin T, Cheynier V, Cole R, Fulcrand H. 2007. Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Anal. Chem. 79:2239–48 [Google Scholar]
  66. Mao T, Powell J, Van de Water J, Keen C, Schmitz H, Gershwin M. 2000. Effect of cocoa procyanidins on the secretion of interleukin-4 in peripheral blood mononuclear cells. J. Med. Food 3:107–14 [Google Scholar]
  67. Marles MAS, Ray H, Gruber MY. 2003. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–83 [Google Scholar]
  68. Martin MA, Goya L, Ramos S. 2013. Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem. Toxicol. 56:336–51 [Google Scholar]
  69. McKay DL, Chen CY, Zampariello CA, Blumberg JB. 2015. Flavonoids and phenolic acids from cranberry juice are bioavailable and bioactive in healthy older adults. Food Chem. 168:233–40 [Google Scholar]
  70. Meagher LP, Lane G, Sivakumaran S, Tavendale MH, Fraser K. 2004. Characterization of condensed tannins from Lotus species by thiolytic degradation and electrospray mass spectrometry. Anim. Feed Sci. Technol. 117:151–63 [Google Scholar]
  71. Monagas M, Quintanilla-López JE, Gómez-Cordovés C, Bartolomé B, Lebrón-Aguilar R. 2010a. MALDI-TOF MS analysis of plant proanthocyanidins. J. Pharm. Biomed. Anal. 51:358–72 [Google Scholar]
  72. Monagas M, Urpi-Sarda M, Sanchez-Patan F, Llorach R, Garrido I. et al. 2010b. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 1:233–53 [Google Scholar]
  73. Navarrete P, Pizzi A, Pasch H, Rode K, Delmotte L. 2010. MALDI-TOF and 13 C NMR characterization of maritime pine industrial tannin extract. Ind. Crops Prod. 32:105–10 [Google Scholar]
  74. Ohnishi-Kameyama M, Yanagida A, Kanda T, Nagata T. 1997. Identification of catechin oligomers from apple (Malus pumila cv. Fuji) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and fast-atom bombardment mass spectrometry. Rapid Commun. Mass Spectrom. 11:31–36 [Google Scholar]
  75. Ou K, Percival SS, Zou T, Khoo C, Gu L. 2012. Transport of cranberry A-type procyanidin dimers, trimers, and tetramers across monolayers of human intestinal epithelial Caco-2 cells. J. Agric. Food Chem. 60:1390–96 [Google Scholar]
  76. Pappas C, Kyraleou M, Voskidi E, Kotseridis Y, Taranilis PA, Kallithraka S. 2015. Direct and simultaneous quantification of tannin mean degree of polymerization and percentage of galloylation in grape seeds using diffuse reflectance Fourier transform–infrared spectroscopy. J. Food Sci. 80:C298–306 [Google Scholar]
  77. Pasch H, Pizzi A, Rode K. 2001. MALDI-TOF mass spectrometry of polyflavonoid tannins. Polymer 42:7531–39 [Google Scholar]
  78. Payne MJ, Hurst WJ, Stuart DA, Ou BX, Fan E. et al. 2010. Determination of total procyanidins in selected chocolate and confectionery products using DMAC. J. AOAC Int. 93:89–96 [Google Scholar]
  79. Perez-Gregorio MR, Mateus N, de Freitas V. 2014. Rapid screening and identification of new soluble tannin-salivary protein aggregates in saliva by mass spectrometry (MALDI-TOF-TOF and FIA-ESI-MS). Langmuir 30:8528–37 [Google Scholar]
  80. Plumb GW, De Pascual-Teresa S, Santos-Buelga C, Cheynier V, Williamson G. 1998. Antioxidant properties of catechins and proanthocyanidins: effect of polymerisation, galloylation and glycosylation. Free Radic. Res. 29:351–58 [Google Scholar]
  81. Porter LJ. 1992. Structure and chemical properties of the condensed tannins. Plant Polyphenols: Synthesis, Properties, Significance RW Hamingway, PE Laks 245–58 New York, NY: Plenum Press [Google Scholar]
  82. Powell C, Clifford MN, Opie SC, Gibson CL. 1995. Use of Porter's reagents for the characterisation of thearubigins and other non-proanthocyanidins. J. Sci. Food Agric. 68:33–38 [Google Scholar]
  83. Prasain JK, Peng N, Dai Y, Moore R, Arabshahi A. et al. 2009. Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine 16:233–43 [Google Scholar]
  84. Prior RL, Gu L. 2005. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 66:2264–80 [Google Scholar]
  85. Prodanov M, Garrido I, Vacas V, Lebronaguilar R, Duenas M. et al. 2008. Ultrafiltration as alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins. Anal. Chim. Acta 609:241–51 [Google Scholar]
  86. Reed JD, Krueger CG, Vestling MM. 2005. MALDI-TOF mass spectrometry of oligomeric food polyphenols. Phytochemistry 66:2248–63 [Google Scholar]
  87. Robbins RJ, Leonczak J, Li J, Johnson JC, Collins T. et al. 2012. Determination of flavanol and procyanidin (by degree of polymerization) content of chocolate, cocoa liquors, powder(s), and cocoa flavanol extracts by normal phase high-performance liquid chromatography: collaborative study. J. AOAC Int. 95:1153–60 [Google Scholar]
  88. Rohr GE, Meier B, Sticher O. 2000. Analysis of procyanidins. Studies in Natural Products Chemistry R Atta ur 497–570 Amsterdam, Neth: Elsevier [Google Scholar]
  89. Sanchez-Patan F, Bartolome B, Martin-Alvarez PJ, Anderson M, Howell A, Monagas M. 2012. Comprehensive assessment of the quality of commercial cranberry products. Phenolic characterization and in vitro bioactivity. J. Agric. Food Chem. 60:3396–408 [Google Scholar]
  90. Sano A, Yamakoshi J, Tokutake S, Tobe K, Kubota Y, Kikuchi M. 2003. Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci. Biotechnol. Biochem. 67:1140–43 [Google Scholar]
  91. Sarnoski PJ, Johnson JV, Reed KA, Tanko JM, O'Keefe SF. 2012. Separation and characterisation of proanthocyanidins in Virginia type peanut skins by LC-MSn. Food Chem. 131:927–39 [Google Scholar]
  92. Scalbert A, Monties B, Janin G. 1989. Tannins in wood: comparison of different estimation methods. J. Agric. Food Chem. 37:1324–29 [Google Scholar]
  93. Schmidt BM, Howell AB, McEniry B, Knight CT, Seigler D. et al. 2004. Effective separation of potent antiproliferation and antiadhesion components from wild blueberry (Vaccinium angustifolium Ait.) fruits. J. Agric. Food Chem. 52:6433–42 [Google Scholar]
  94. Serra A, Macia A, Romero MP, Valls J, Blade C. et al. 2010. Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Br. J. Nutr. 103:944–52 [Google Scholar]
  95. Serra A, Macia A, Rubio L, Angles N, Ortega N. et al. 2013. Distribution of procyanidins and their metabolites in rat plasma and tissues in relation to ingestion of procyanidin-enriched or procyanidin-rich cocoa creams. Eur. J. Nutr. 52:1029–38 [Google Scholar]
  96. Shoji T, Masumoto S, Moriichi N, Akiyama H, Kanda T. et al. 2006. Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the Porter method and high-performance liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 54:884–92 [Google Scholar]
  97. Shrestha SP, Thompson JA, Wempe MF, Gu M, Agarwal R, Agarwal C. 2012. Glucuronidation and methylation of procyanidin dimers b2 and 3,3″-di-o-galloyl-b2 and corresponding monomers epicatechin and 3-o-galloyl-epicatechin in mouse liver. Pharm. Res. 29:856–65 [Google Scholar]
  98. Spranger I, Sun B, Mateus AM, de Freitas V, Ricardo-da-Silva JM. 2008. Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chem. 108:519–32 [Google Scholar]
  99. Stoupi S, Williamson G, Viton F, Barron D, King LJ. et al. 2010. In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats. Drug Metab. Dispos. 38:287–91 [Google Scholar]
  100. Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M. et al. 2007. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J. Agric. Food Chem. 55:4604–9 [Google Scholar]
  101. Sun B. 1998. Separation of grape and wine proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem. 46:1390–96 [Google Scholar]
  102. Sun BS, Ricardo-da-Silva JM, Spranger I. 1998. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 46:4267–74 [Google Scholar]
  103. Taheri R, Connolly BA, Brand MH, Bolling BW. 2013. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. J. Agric. Food Chem. 61:8581–88 [Google Scholar]
  104. Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda I. 2001. Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J. Agric. Food Chem. 49:5843–47 [Google Scholar]
  105. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y. et al. 1988. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2:151–53 [Google Scholar]
  106. Tatsuno T, Jinno M, Arima Y, Kawabata T, Hasegawa T. et al. 2012. Anti-inflammatory and anti-melanogenic proanthocyanidin oligomers from peanut skin. Biol. Pharm. Bull. 35:909–16 [Google Scholar]
  107. Taubert D, Berkels R, Klaus W, Roesen R. 2002. Nitric oxide formation and corresponding relaxation of porcine coronary arteries induced by plant phenols: essential structural features. J. Cardiovasc. Pharmacol. 40:701–13 [Google Scholar]
  108. Taylor AW, Barofsky E, Kennedy JA, Deinzer ML. 2003. Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J. Agric. Food Chem. 51:4101–10 [Google Scholar]
  109. Tebib K, Bitri L, Besançon P, Rouanet J. 1994. Polymeric grape seed tannins prevent plasma-cholesterol changes in high-cholesterol-fed rats. Food Chem. 49:403–6 [Google Scholar]
  110. Torres JL, Varela B, García MT, Carilla J, Matito C. et al. 2002. Valorization of grape (Vitis vinifera) byproducts. Antioxidant and biological properties of polyphenolic fractions differing in procyanidin composition and flavonol content. J. Agric. Food Chem. 50:7548–55 [Google Scholar]
  111. US Dep. Agric. Agric. Res Serv 2004. USDA database for the proanthocyanidin content of selected foods. US Dep. Agric. Nutr. Data Lab., Beltsville, MD [Google Scholar]
  112. Ugartondo V, Mitjans M, Touriño S, Torres JL, Vinardell MaP. 2007. Comparative antioxidant and cytotoxic effect of procyanidin fractions from grape and pine. Chem. Res. Toxicol. 20:1543–48 [Google Scholar]
  113. Urpi-Sarda M, Monagas M, Khan N, Lamuela-Raventos RM, Santos-Buelga C. et al. 2009. Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Anal. Bioanal. Chem. 394:1545–56 [Google Scholar]
  114. Vidal CMP, Aguiar TR, Phansalkar R, McAlpine JB, Napolitano JG. et al. 2014. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomater. 10:3288–94 [Google Scholar]
  115. Vorsa N, Howell AB, Foo LY, Lu Y. 2003. Structure and genetic variation of cranberry proanthocyanidins that inhibit adherence of uropathogenic P-fimbriated E. coli. Food Factors in Health Promotion and Disease Prevention298–311 Washington, DC: Am. Chem. Soc. [Google Scholar]
  116. Wang Y, Chung SJ, Song WO, Chun OK. 2011. Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J. Nutr. 141:447–52 [Google Scholar]
  117. Wang Y, Stevens VL, Shah R, Peterson JJ, Dwyer JT. et al. 2014. Dietary flavonoid and proanthocyanidin intakes and prostate cancer risk in a prospective cohort of US men. Am. J. Epidemiol. 179:974–86 [Google Scholar]
  118. Weiss E, Lev-Dor R, Sharon N, Ofek I. 2002. Inhibitory effect of a high-molecular-weight constituent of cranberry on adhesion of oral bacteria. Crit. Rev. Food Sci. Nutr. 42:285–92 [Google Scholar]
  119. Weiss EI, Kozlovsky A, Steinberg D, Lev-Dor R, Bar Ness Greenstein R. et al. 2004. A high molecular mass cranberry constituent reduces mutans streptococci level in saliva and inhibits in vitro adhesion to hydroxyapatite. FEMS Microbiol. Lett. 232:89–92 [Google Scholar]
  120. Wiese S, Esatbeyoglu T, Winterhalter P, Kruse HP, Winkler S. et al. 2015. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: a randomized cross-over study in humans. Mol. Nutr. Food Res. 59:610–21 [Google Scholar]
  121. Xiao J-S, Xie B-J, Cao Y-P, Wu H, Sun Z-D, Xiao D. 2012. Characterization of oligomeric procyanidins and identification of quercetin glucuronide from lotus (Nelumbo nucifera Gaertn.) seedpod. J. Agric. Food Chem. 60:2825–29 [Google Scholar]
  122. Xie Q, Bedran-Russo AK, Wu CD. 2008. In vitro remineralization effects of grape seed extract on artificial root caries. J. Dent. 36:900–6 [Google Scholar]
  123. Yamanaka-Okada A, Sato E, Kouchi T, Kimizuka R, Kato T, Okuda K. 2008. Inhibitory effect of cranberry polyphenol on cariogenic bacteria. Bull. Tokyo Dent. Coll. 49:107–12 [Google Scholar]
  124. Yamashita Y, Okabe M, Natsume M, Ashida H. 2012. Comparison of anti-hyperglycemic activities between low- and high-degree of polymerization procyanidin fractions from cacao liquor extract. J. Food Drug Anal. 20:283–87 [Google Scholar]
  125. Yamashita Y, Okabe M, Natsume M, Ashida H. 2013. Cinnamtannin A2, a tetrameric procyanidin, increases GLP-1 and insulin secretion in mice. Biosci. Biotechnol. Biochem. 77:888–91 [Google Scholar]
  126. Zeller WE, Ramsay A, Ropiak HM, Fryganas C, Mueller-Harvey I. et al. 2015a. 1H–13C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans-flavan-3-ol ratios of condensed tannin samples: correlation with thiolysis. J. Agric. Food Chem. 63:1967–73 [Google Scholar]
  127. Zeller WE, Sullivan M, Mueller-Harvey I, Grabber JH, Ramsay A. et al. 2015b. Protein precipitation behavior of condensed tannins from Lotus pedunculatus and Trifolium repens with different mean degrees of polymerization. J. Agric. Food Chem. In press [Google Scholar]
  128. Zhou K, Raffoul JJ. 2012. Potential anticancer properties of grape antioxidants. J. Oncol. 2012:803294 [Google Scholar]
  129. Zumdick S, Deters A, Hensel A. 2012. In vitro intestinal transport of oligomeric procyanidins (DP 2 to 4) across monolayers of Caco-2 cells. Fitoterapia 83:1210–17 [Google Scholar]
/content/journals/10.1146/annurev-food-022814-015604
Loading
/content/journals/10.1146/annurev-food-022814-015604
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error